O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth
The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number i...
Saved in:
| Published in | Discrete mathematics Vol. 348; no. 9; p. 114502 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0012-365X |
| DOI | 10.1016/j.disc.2025.114502 |
Cover
| Abstract | The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number is hard to approximate within the ratio c. We first obtain an O(VE) algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define Δ2(G)=maxu∈Vmaxv∈N(u):d(v)≤d(u)d(v). We obtain an O(VE) algorithm to determine Γ(G) for graphs G whose girth g is at least 2Δ2(G)+1. This algorithm provides a polynomial time approximation algorithm within ratio min{1,(g+1)/(2Δ2(G)+2)} for Γ(G) of general graphs G with girth g. |
|---|---|
| AbstractList | The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number is hard to approximate within the ratio c. We first obtain an O(VE) algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define Δ2(G)=maxu∈Vmaxv∈N(u):d(v)≤d(u)d(v). We obtain an O(VE) algorithm to determine Γ(G) for graphs G whose girth g is at least 2Δ2(G)+1. This algorithm provides a polynomial time approximation algorithm within ratio min{1,(g+1)/(2Δ2(G)+2)} for Γ(G) of general graphs G with girth g. |
| ArticleNumber | 114502 |
| Author | Zaker, Manouchehr |
| Author_xml | – sequence: 1 givenname: Manouchehr surname: Zaker fullname: Zaker, Manouchehr email: mzaker@iasbs.ac.ir organization: Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran |
| BookMark | eNp9kD1PwzAQhj0UiRb4A0we2yHBdpqPSiyoagtSpS6A2CznYicuSVydXVD_PakKK9PdvdLz6vRMyKh3vSbknrOYM5497OPKeogFE2nM-TxlYkTGjHERJVn6cU0m3u_ZcGdJMSbdbvq-mtFgO01VWzu0oek8NQ5paDTd4LGvTnS6tuhDtLZhRqFB16lggfbHrtRInaFl6-CT1qgOjaeqr_7W76GNtgprTWuLobklV0a1Xt_9zhvytl69Lp-j7W7zsnzaRsALHiKj8spoVRrQrACzyHO-KNKCCZVDkczz1KgFE2UpWD6kAEyBAa7MPOEsK9I8uSHi0gvovEdt5AFtp_AkOZNnSXIvz5LkWZK8SBqgxwukh8--rEbpweoedGVRQ5CVs__hPyXCdJc |
| Cites_doi | 10.1007/s00453-011-9604-4 10.1007/s10878-015-9981-8 10.1137/S0895480194275825 10.1007/s10878-015-9900-z 10.1016/j.dam.2007.07.002 10.1016/j.disc.2005.06.044 10.1016/0095-8956(79)90067-4 10.1137/S0895480191218861 10.1002/jgt.20298 10.1016/j.dam.2009.12.009 10.4086/toc.2007.v003a006 10.1016/j.dam.2017.12.022 10.1007/BF01294263 10.1016/j.dam.2024.11.020 10.1002/jgt.20327 10.1002/jgt.3190120212 10.1016/j.disc.2012.03.029 10.1007/s00453-020-00759-7 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.disc.2025.114502 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_disc_2025_114502 S0012365X25001104 |
| GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AEXQZ AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c181t-fa7dfeabfce08cf9771985802a7c83475fa902bb207580cc0acfc1af431068573 |
| IEDL.DBID | .~1 |
| ISSN | 0012-365X |
| IngestDate | Wed Oct 01 05:53:07 EDT 2025 Sat Jun 28 18:18:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Grundy number Graph coloring Block graphs First-Fit coloring Girth |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c181t-fa7dfeabfce08cf9771985802a7c83475fa902bb207580cc0acfc1af431068573 |
| ParticipantIDs | crossref_primary_10_1016_j_disc_2025_114502 elsevier_sciencedirect_doi_10_1016_j_disc_2025_114502 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete mathematics |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bonnet, Foucaud, Kim, Sikora (br0020) 2018; 243 Bosek, Gutowski, Lasoń, Przybyło (br0030) 2024 West (br0180) 2001 Cormen, Leiserson, Rivest, Stein (br0070) 2009 Irani (br0120) 1994; 11 Zuckerman (br0240) 2007; 3 Tang, Wu, Hu, Zaker (br0160) 2017; 33 Chang, Hsu (br0040) 2012; 312 Zaker (br0190) 2006; 306 Kortsarz (br0150) 2007; 9 Füredi, Gyárfás, Sárközy, Selkow (br0080) 2008; 59 Kierstead, Trotter (br0140) 1992 Kierstead, Penrice, Trotter (br0130) 1995; 8 Zaker (br0200) 2007; 155 Telle, Proskurowski (br0170) 1997; 10 Christen, Selkow (br0060) 1979; 27 Hedetniemi, Hedetniemi, Beyer (br0110) 1982; 36 Zaker (br0210) 2008; 89 Zaker (br0220) 2025; 362 Choudum, Karthick (br0050) 2010; 158 Gyárfás, Lehel (br0090) 1988; 12 Zaker, Soltani (br0230) 2016; 32 Albers, Schraink (br0010) 2021; 83 Havet, Sampaio (br0100) 2013; 65 Zaker (10.1016/j.disc.2025.114502_br0190) 2006; 306 Albers (10.1016/j.disc.2025.114502_br0010) 2021; 83 Chang (10.1016/j.disc.2025.114502_br0040) 2012; 312 Choudum (10.1016/j.disc.2025.114502_br0050) 2010; 158 Hedetniemi (10.1016/j.disc.2025.114502_br0110) 1982; 36 Zuckerman (10.1016/j.disc.2025.114502_br0240) 2007; 3 Füredi (10.1016/j.disc.2025.114502_br0080) 2008; 59 Havet (10.1016/j.disc.2025.114502_br0100) 2013; 65 Irani (10.1016/j.disc.2025.114502_br0120) 1994; 11 Zaker (10.1016/j.disc.2025.114502_br0230) 2016; 32 Gyárfás (10.1016/j.disc.2025.114502_br0090) 1988; 12 West (10.1016/j.disc.2025.114502_br0180) 2001 Kierstead (10.1016/j.disc.2025.114502_br0130) 1995; 8 Tang (10.1016/j.disc.2025.114502_br0160) 2017; 33 Bonnet (10.1016/j.disc.2025.114502_br0020) 2018; 243 Zaker (10.1016/j.disc.2025.114502_br0220) 2025; 362 Telle (10.1016/j.disc.2025.114502_br0170) 1997; 10 Kierstead (10.1016/j.disc.2025.114502_br0140) 1992 Kortsarz (10.1016/j.disc.2025.114502_br0150) 2007; 9 Zaker (10.1016/j.disc.2025.114502_br0200) 2007; 155 Zaker (10.1016/j.disc.2025.114502_br0210) 2008; 89 Bosek (10.1016/j.disc.2025.114502_br0030) 2024 Cormen (10.1016/j.disc.2025.114502_br0070) 2009 Christen (10.1016/j.disc.2025.114502_br0060) 1979; 27 |
| References_xml | – volume: 312 start-page: 2088 year: 2012 end-page: 2090 ident: br0040 article-title: First-fit chromatic numbers of publication-title: Discrete Math. – volume: 59 start-page: 75 year: 2008 end-page: 88 ident: br0080 article-title: Inequalities for the First-fit chromatic number publication-title: J. Graph Theory – volume: 158 start-page: 620 year: 2010 end-page: 626 ident: br0050 article-title: First-Fit coloring of publication-title: Discrete Appl. Math. – start-page: 85 year: 1992 end-page: 92 ident: br0140 article-title: On-line graph coloring publication-title: On-Line Algorithms: Proceedings of DIMACS Workshop – volume: 65 start-page: 885 year: 2013 end-page: 899 ident: br0100 article-title: On the Grundy and b-chromatic numbers of a graph publication-title: Algorithmica – volume: 362 start-page: 50 year: 2025 end-page: 60 ident: br0220 article-title: Upper bounds for some graph invariants in terms of blocks and cut-vertices publication-title: Discrete Appl. Math. – volume: 155 start-page: 2567 year: 2007 end-page: 2572 ident: br0200 article-title: Inequalities for the Grundy chromatic number of graphs publication-title: Discrete Appl. Math. – volume: 33 start-page: 580 year: 2017 end-page: 589 ident: br0160 article-title: More bounds for the Grundy number of graphs publication-title: J. Comb. Optim. – year: 2009 ident: br0070 article-title: Introduction to Algorithms – volume: 12 start-page: 217 year: 1988 end-page: 227 ident: br0090 article-title: On-line and first-fit coloring of graphs publication-title: J. Graph Theory – volume: 10 start-page: 529 year: 1997 end-page: 550 ident: br0170 article-title: Algorithms for vertex partitioning problems on partial publication-title: SIAM J. Discrete Math. – volume: 32 start-page: 775 year: 2016 end-page: 783 ident: br0230 article-title: First-Fit colorings of graphs with no cycles of a prescribed even length publication-title: J. Comb. Optim. – volume: 11 start-page: 53 year: 1994 end-page: 72 ident: br0120 article-title: Coloring inductive graphs on-line publication-title: Algorithmica – volume: 9 year: 2007 ident: br0150 article-title: A Lower bound for approximating Grundy numbering publication-title: Discret. Math. Theor. Comput. Sci. – volume: 306 start-page: 3166 year: 2006 end-page: 3173 ident: br0190 article-title: Results on the Grundy chromatic number of graphs publication-title: Discrete Math. – volume: 89 start-page: 110 year: 2008 end-page: 122 ident: br0210 article-title: New bounds for the chromatic number of graphs publication-title: J. Graph Theory – volume: 27 start-page: 49 year: 1979 end-page: 59 ident: br0060 article-title: Some perfect coloring properties of graphs publication-title: J. Comb. Theory, Ser. B – volume: 36 start-page: 351 year: 1982 end-page: 363 ident: br0110 article-title: A linear algorithm for the Grundy (coloring) number of a tree publication-title: Congr. Numer. – volume: 83 start-page: 337 year: 2021 end-page: 360 ident: br0010 article-title: Tight bounds for online coloring of basic graph classes publication-title: Algorithmica – volume: 8 start-page: 485 year: 1995 end-page: 498 ident: br0130 article-title: On-line first fit coloring of graphs that do not induce publication-title: SIAM J. Discrete Math. – year: 2001 ident: br0180 article-title: Introduction to Graph Theory – start-page: 1 year: 2024 end-page: 10 ident: br0030 article-title: First-Fit coloring of forests in random arrival model publication-title: 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024) – volume: 243 start-page: 99 year: 2018 end-page: 114 ident: br0020 article-title: Complexity of Grundy coloring and its variants publication-title: Discrete Appl. Math. – volume: 3 start-page: 103 year: 2007 end-page: 128 ident: br0240 article-title: Linear degree extractors and the inaproximablity of Max Clique and Chromatic Number publication-title: Theory Comput. – start-page: 1 year: 2024 ident: 10.1016/j.disc.2025.114502_br0030 article-title: First-Fit coloring of forests in random arrival model – volume: 65 start-page: 885 year: 2013 ident: 10.1016/j.disc.2025.114502_br0100 article-title: On the Grundy and b-chromatic numbers of a graph publication-title: Algorithmica doi: 10.1007/s00453-011-9604-4 – volume: 33 start-page: 580 year: 2017 ident: 10.1016/j.disc.2025.114502_br0160 article-title: More bounds for the Grundy number of graphs publication-title: J. Comb. Optim. doi: 10.1007/s10878-015-9981-8 – volume: 10 start-page: 529 year: 1997 ident: 10.1016/j.disc.2025.114502_br0170 article-title: Algorithms for vertex partitioning problems on partial k-trees publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480194275825 – volume: 32 start-page: 775 year: 2016 ident: 10.1016/j.disc.2025.114502_br0230 article-title: First-Fit colorings of graphs with no cycles of a prescribed even length publication-title: J. Comb. Optim. doi: 10.1007/s10878-015-9900-z – volume: 155 start-page: 2567 year: 2007 ident: 10.1016/j.disc.2025.114502_br0200 article-title: Inequalities for the Grundy chromatic number of graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2007.07.002 – volume: 9 issue: 1 year: 2007 ident: 10.1016/j.disc.2025.114502_br0150 article-title: A Lower bound for approximating Grundy numbering publication-title: Discret. Math. Theor. Comput. Sci. – volume: 306 start-page: 3166 year: 2006 ident: 10.1016/j.disc.2025.114502_br0190 article-title: Results on the Grundy chromatic number of graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2005.06.044 – volume: 27 start-page: 49 year: 1979 ident: 10.1016/j.disc.2025.114502_br0060 article-title: Some perfect coloring properties of graphs publication-title: J. Comb. Theory, Ser. B doi: 10.1016/0095-8956(79)90067-4 – start-page: 85 year: 1992 ident: 10.1016/j.disc.2025.114502_br0140 article-title: On-line graph coloring – volume: 8 start-page: 485 issue: 4 year: 1995 ident: 10.1016/j.disc.2025.114502_br0130 article-title: On-line first fit coloring of graphs that do not induce P5 publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480191218861 – volume: 89 start-page: 110 year: 2008 ident: 10.1016/j.disc.2025.114502_br0210 article-title: New bounds for the chromatic number of graphs publication-title: J. Graph Theory doi: 10.1002/jgt.20298 – volume: 158 start-page: 620 year: 2010 ident: 10.1016/j.disc.2025.114502_br0050 article-title: First-Fit coloring of {P5,K4∖e}-free graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2009.12.009 – volume: 3 start-page: 103 year: 2007 ident: 10.1016/j.disc.2025.114502_br0240 article-title: Linear degree extractors and the inaproximablity of Max Clique and Chromatic Number publication-title: Theory Comput. doi: 10.4086/toc.2007.v003a006 – volume: 243 start-page: 99 year: 2018 ident: 10.1016/j.disc.2025.114502_br0020 article-title: Complexity of Grundy coloring and its variants publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2017.12.022 – year: 2009 ident: 10.1016/j.disc.2025.114502_br0070 – volume: 11 start-page: 53 year: 1994 ident: 10.1016/j.disc.2025.114502_br0120 article-title: Coloring inductive graphs on-line publication-title: Algorithmica doi: 10.1007/BF01294263 – volume: 362 start-page: 50 year: 2025 ident: 10.1016/j.disc.2025.114502_br0220 article-title: Upper bounds for some graph invariants in terms of blocks and cut-vertices publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2024.11.020 – volume: 59 start-page: 75 year: 2008 ident: 10.1016/j.disc.2025.114502_br0080 article-title: Inequalities for the First-fit chromatic number publication-title: J. Graph Theory doi: 10.1002/jgt.20327 – year: 2001 ident: 10.1016/j.disc.2025.114502_br0180 – volume: 12 start-page: 217 year: 1988 ident: 10.1016/j.disc.2025.114502_br0090 article-title: On-line and first-fit coloring of graphs publication-title: J. Graph Theory doi: 10.1002/jgt.3190120212 – volume: 36 start-page: 351 year: 1982 ident: 10.1016/j.disc.2025.114502_br0110 article-title: A linear algorithm for the Grundy (coloring) number of a tree publication-title: Congr. Numer. – volume: 312 start-page: 2088 year: 2012 ident: 10.1016/j.disc.2025.114502_br0040 article-title: First-fit chromatic numbers of d-degenerate graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2012.03.029 – volume: 83 start-page: 337 year: 2021 ident: 10.1016/j.disc.2025.114502_br0010 article-title: Tight bounds for online coloring of basic graph classes publication-title: Algorithmica doi: 10.1007/s00453-020-00759-7 |
| SSID | ssj0001638 |
| Score | 2.4223993 |
| Snippet | The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy)... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 114502 |
| SubjectTerms | Block graphs First-Fit coloring Girth Graph coloring Grundy number |
| Title | O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth |
| URI | https://dx.doi.org/10.1016/j.disc.2025.114502 |
| Volume | 348 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0012-365X databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001638 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0012-365X databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001638 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals issn: 0012-365X databaseCode: AIKHN dateStart: 20211101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001638 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 0012-365X databaseCode: ACRLP dateStart: 20211101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0001638 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0012-365X databaseCode: AKRWK dateStart: 19710501 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001638 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IxPsgcPELNS2l1ajoSAqAEvYrg1u9suVKEQKAcv_nZn-vAREw_e2mY3ab42M99svvmGkCtLQdZ1Pc4cLQTjruUy6UjOWlwZ3YIqVzSwwXkwbPZH_H4sxiXSKXphUFaZx_4spqfROn9Sz9GsL6MIe3zROQSKLZEan6EnKOcuTjG4ef-SeSDfyKKxzXB13jiTabyw8xVqRFugZa7Ij1Z-JadvCae3R3Zzpkjb2cvsk1IYH5CdwafN6vqQzB-rz90axfnwVM4mCyj0p_M1BR5KYRW9XW3i4I1WexFQPNaLkhrV09Ui3U2zUSB0YaiCfPZKU-fqNZVxUFziES2doVKcTqJVMj0io173qdNn-fwEpiFvJ8xINzChBNBDy9MGmB5i71m2dLXncFcY2bJspWygDZ6ltSW10Q1pgFNYTU-4zjEpx4s4PCHUMUoGjmdsT0OJw5UKAkfarYYD1ZRUoTkl1wVw_jKzyfAL_diLjzD7CLOfwXxKRIGt_-Nj-xDH_9h39s9952Qb7zJp2AUpJ6tNeAlcIlGV9GepkK323UN_-AHR0cgh |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQcPELNa2l3aHg2hogJewHBrdrddqEIhUA5e_O3O9uEjJh68Ne1O0nxtZr5v880sQpeGgKprO5RYkjFCbcMm3OKUuFQo6YLKZXXd4NztNdoD-jBkwxJqFr0w2laZ5_4sp6fZOr9zk6N5M48i3eOrJ4eA2GLp4DO6htYpM22twK7fv3wemnBk6dgkenneOZOZvHTrK4hEk-mZuSzfW_lVnb5VHG8HbedUEd9mb7OLSmG8h7a6n3NWl_to-lR9btWwPiAe88loBkp_PF1iIKIYVuG7xSoO3nDVi4DjES9KaliOF7M0GmdngeCZwgIK2itOR1cvMY-D4lLv0eKJtorjUbRIxgdo4LX6zTbJD1AgEgp3QhS3AxVyQD00HKmA6mnwHcPktnQsajPFXcMUwgTe4BhSGlwqWecKSIXRcJhtHaJyPIvDI4QtJXhgOcp0JGgcKkQQWNx06xbIKS5CVUFXBXD-PJuT4RcGshdfw-xrmP0M5gpiBbb-j6_tQyL_I-74n3EXaKPd73b8zn3v8QRt6ieZT-wUlZPFKjwDYpGI8_TH-QCrYsm2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O+%28+V+E+%29+time+algorithms+for+the+Grundy+%28First-Fit%29+chromatic+number+of+block+graphs+and+graphs+with+large+girth&rft.jtitle=Discrete+mathematics&rft.au=Zaker%2C+Manouchehr&rft.date=2025-09-01&rft.issn=0012-365X&rft.volume=348&rft.issue=9&rft.spage=114502&rft_id=info:doi/10.1016%2Fj.disc.2025.114502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2025_114502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |