O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth

The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number i...

Full description

Saved in:
Bibliographic Details
Published inDiscrete mathematics Vol. 348; no. 9; p. 114502
Main Author Zaker, Manouchehr
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Subjects
Online AccessGet full text
ISSN0012-365X
DOI10.1016/j.disc.2025.114502

Cover

Abstract The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number is hard to approximate within the ratio c. We first obtain an O(VE) algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define Δ2(G)=maxu∈V⁡maxv∈N(u):d(v)≤d(u)⁡d(v). We obtain an O(VE) algorithm to determine Γ(G) for graphs G whose girth g is at least 2Δ2(G)+1. This algorithm provides a polynomial time approximation algorithm within ratio min⁡{1,(g+1)/(2Δ2(G)+2)} for Γ(G) of general graphs G with girth g.
AbstractList The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy) coloring of G. The determining Γ(G) is NP-complete for various classes of graphs. Also there exists a constant c>0 such that the Grundy number is hard to approximate within the ratio c. We first obtain an O(VE) algorithm to determine the Grundy number of block graphs i.e. graphs in which every biconnected component is a complete graph. We prove that the Grundy number of a general graph G with cut-vertices is upper bounded by the Grundy number of a block graph corresponding to G. This provides a reasonable upper bound for the Grundy number of graphs with cut-vertices. Next, define Δ2(G)=maxu∈V⁡maxv∈N(u):d(v)≤d(u)⁡d(v). We obtain an O(VE) algorithm to determine Γ(G) for graphs G whose girth g is at least 2Δ2(G)+1. This algorithm provides a polynomial time approximation algorithm within ratio min⁡{1,(g+1)/(2Δ2(G)+2)} for Γ(G) of general graphs G with girth g.
ArticleNumber 114502
Author Zaker, Manouchehr
Author_xml – sequence: 1
  givenname: Manouchehr
  surname: Zaker
  fullname: Zaker, Manouchehr
  email: mzaker@iasbs.ac.ir
  organization: Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan 45137-66731, Iran
BookMark eNp9kD1PwzAQhj0UiRb4A0we2yHBdpqPSiyoagtSpS6A2CznYicuSVydXVD_PakKK9PdvdLz6vRMyKh3vSbknrOYM5497OPKeogFE2nM-TxlYkTGjHERJVn6cU0m3u_ZcGdJMSbdbvq-mtFgO01VWzu0oek8NQ5paDTd4LGvTnS6tuhDtLZhRqFB16lggfbHrtRInaFl6-CT1qgOjaeqr_7W76GNtgprTWuLobklV0a1Xt_9zhvytl69Lp-j7W7zsnzaRsALHiKj8spoVRrQrACzyHO-KNKCCZVDkczz1KgFE2UpWD6kAEyBAa7MPOEsK9I8uSHi0gvovEdt5AFtp_AkOZNnSXIvz5LkWZK8SBqgxwukh8--rEbpweoedGVRQ5CVs__hPyXCdJc
Cites_doi 10.1007/s00453-011-9604-4
10.1007/s10878-015-9981-8
10.1137/S0895480194275825
10.1007/s10878-015-9900-z
10.1016/j.dam.2007.07.002
10.1016/j.disc.2005.06.044
10.1016/0095-8956(79)90067-4
10.1137/S0895480191218861
10.1002/jgt.20298
10.1016/j.dam.2009.12.009
10.4086/toc.2007.v003a006
10.1016/j.dam.2017.12.022
10.1007/BF01294263
10.1016/j.dam.2024.11.020
10.1002/jgt.20327
10.1002/jgt.3190120212
10.1016/j.disc.2012.03.029
10.1007/s00453-020-00759-7
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disc.2025.114502
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_disc_2025_114502
S0012365X25001104
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSW
SSZ
T5K
TN5
UPT
VH1
WH7
WUQ
XJT
XOL
XPP
ZCG
ZMT
ZY4
~G-
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c181t-fa7dfeabfce08cf9771985802a7c83475fa902bb207580cc0acfc1af431068573
IEDL.DBID .~1
ISSN 0012-365X
IngestDate Wed Oct 01 05:53:07 EDT 2025
Sat Jun 28 18:18:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Grundy number
Graph coloring
Block graphs
First-Fit coloring
Girth
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c181t-fa7dfeabfce08cf9771985802a7c83475fa902bb207580cc0acfc1af431068573
ParticipantIDs crossref_primary_10_1016_j_disc_2025_114502
elsevier_sciencedirect_doi_10_1016_j_disc_2025_114502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Discrete mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bonnet, Foucaud, Kim, Sikora (br0020) 2018; 243
Bosek, Gutowski, Lasoń, Przybyło (br0030) 2024
West (br0180) 2001
Cormen, Leiserson, Rivest, Stein (br0070) 2009
Irani (br0120) 1994; 11
Zuckerman (br0240) 2007; 3
Tang, Wu, Hu, Zaker (br0160) 2017; 33
Chang, Hsu (br0040) 2012; 312
Zaker (br0190) 2006; 306
Kortsarz (br0150) 2007; 9
Füredi, Gyárfás, Sárközy, Selkow (br0080) 2008; 59
Kierstead, Trotter (br0140) 1992
Kierstead, Penrice, Trotter (br0130) 1995; 8
Zaker (br0200) 2007; 155
Telle, Proskurowski (br0170) 1997; 10
Christen, Selkow (br0060) 1979; 27
Hedetniemi, Hedetniemi, Beyer (br0110) 1982; 36
Zaker (br0210) 2008; 89
Zaker (br0220) 2025; 362
Choudum, Karthick (br0050) 2010; 158
Gyárfás, Lehel (br0090) 1988; 12
Zaker, Soltani (br0230) 2016; 32
Albers, Schraink (br0010) 2021; 83
Havet, Sampaio (br0100) 2013; 65
Zaker (10.1016/j.disc.2025.114502_br0190) 2006; 306
Albers (10.1016/j.disc.2025.114502_br0010) 2021; 83
Chang (10.1016/j.disc.2025.114502_br0040) 2012; 312
Choudum (10.1016/j.disc.2025.114502_br0050) 2010; 158
Hedetniemi (10.1016/j.disc.2025.114502_br0110) 1982; 36
Zuckerman (10.1016/j.disc.2025.114502_br0240) 2007; 3
Füredi (10.1016/j.disc.2025.114502_br0080) 2008; 59
Havet (10.1016/j.disc.2025.114502_br0100) 2013; 65
Irani (10.1016/j.disc.2025.114502_br0120) 1994; 11
Zaker (10.1016/j.disc.2025.114502_br0230) 2016; 32
Gyárfás (10.1016/j.disc.2025.114502_br0090) 1988; 12
West (10.1016/j.disc.2025.114502_br0180) 2001
Kierstead (10.1016/j.disc.2025.114502_br0130) 1995; 8
Tang (10.1016/j.disc.2025.114502_br0160) 2017; 33
Bonnet (10.1016/j.disc.2025.114502_br0020) 2018; 243
Zaker (10.1016/j.disc.2025.114502_br0220) 2025; 362
Telle (10.1016/j.disc.2025.114502_br0170) 1997; 10
Kierstead (10.1016/j.disc.2025.114502_br0140) 1992
Kortsarz (10.1016/j.disc.2025.114502_br0150) 2007; 9
Zaker (10.1016/j.disc.2025.114502_br0200) 2007; 155
Zaker (10.1016/j.disc.2025.114502_br0210) 2008; 89
Bosek (10.1016/j.disc.2025.114502_br0030) 2024
Cormen (10.1016/j.disc.2025.114502_br0070) 2009
Christen (10.1016/j.disc.2025.114502_br0060) 1979; 27
References_xml – volume: 312
  start-page: 2088
  year: 2012
  end-page: 2090
  ident: br0040
  article-title: First-fit chromatic numbers of
  publication-title: Discrete Math.
– volume: 59
  start-page: 75
  year: 2008
  end-page: 88
  ident: br0080
  article-title: Inequalities for the First-fit chromatic number
  publication-title: J. Graph Theory
– volume: 158
  start-page: 620
  year: 2010
  end-page: 626
  ident: br0050
  article-title: First-Fit coloring of
  publication-title: Discrete Appl. Math.
– start-page: 85
  year: 1992
  end-page: 92
  ident: br0140
  article-title: On-line graph coloring
  publication-title: On-Line Algorithms: Proceedings of DIMACS Workshop
– volume: 65
  start-page: 885
  year: 2013
  end-page: 899
  ident: br0100
  article-title: On the Grundy and b-chromatic numbers of a graph
  publication-title: Algorithmica
– volume: 362
  start-page: 50
  year: 2025
  end-page: 60
  ident: br0220
  article-title: Upper bounds for some graph invariants in terms of blocks and cut-vertices
  publication-title: Discrete Appl. Math.
– volume: 155
  start-page: 2567
  year: 2007
  end-page: 2572
  ident: br0200
  article-title: Inequalities for the Grundy chromatic number of graphs
  publication-title: Discrete Appl. Math.
– volume: 33
  start-page: 580
  year: 2017
  end-page: 589
  ident: br0160
  article-title: More bounds for the Grundy number of graphs
  publication-title: J. Comb. Optim.
– year: 2009
  ident: br0070
  article-title: Introduction to Algorithms
– volume: 12
  start-page: 217
  year: 1988
  end-page: 227
  ident: br0090
  article-title: On-line and first-fit coloring of graphs
  publication-title: J. Graph Theory
– volume: 10
  start-page: 529
  year: 1997
  end-page: 550
  ident: br0170
  article-title: Algorithms for vertex partitioning problems on partial
  publication-title: SIAM J. Discrete Math.
– volume: 32
  start-page: 775
  year: 2016
  end-page: 783
  ident: br0230
  article-title: First-Fit colorings of graphs with no cycles of a prescribed even length
  publication-title: J. Comb. Optim.
– volume: 11
  start-page: 53
  year: 1994
  end-page: 72
  ident: br0120
  article-title: Coloring inductive graphs on-line
  publication-title: Algorithmica
– volume: 9
  year: 2007
  ident: br0150
  article-title: A Lower bound for approximating Grundy numbering
  publication-title: Discret. Math. Theor. Comput. Sci.
– volume: 306
  start-page: 3166
  year: 2006
  end-page: 3173
  ident: br0190
  article-title: Results on the Grundy chromatic number of graphs
  publication-title: Discrete Math.
– volume: 89
  start-page: 110
  year: 2008
  end-page: 122
  ident: br0210
  article-title: New bounds for the chromatic number of graphs
  publication-title: J. Graph Theory
– volume: 27
  start-page: 49
  year: 1979
  end-page: 59
  ident: br0060
  article-title: Some perfect coloring properties of graphs
  publication-title: J. Comb. Theory, Ser. B
– volume: 36
  start-page: 351
  year: 1982
  end-page: 363
  ident: br0110
  article-title: A linear algorithm for the Grundy (coloring) number of a tree
  publication-title: Congr. Numer.
– volume: 83
  start-page: 337
  year: 2021
  end-page: 360
  ident: br0010
  article-title: Tight bounds for online coloring of basic graph classes
  publication-title: Algorithmica
– volume: 8
  start-page: 485
  year: 1995
  end-page: 498
  ident: br0130
  article-title: On-line first fit coloring of graphs that do not induce
  publication-title: SIAM J. Discrete Math.
– year: 2001
  ident: br0180
  article-title: Introduction to Graph Theory
– start-page: 1
  year: 2024
  end-page: 10
  ident: br0030
  article-title: First-Fit coloring of forests in random arrival model
  publication-title: 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)
– volume: 243
  start-page: 99
  year: 2018
  end-page: 114
  ident: br0020
  article-title: Complexity of Grundy coloring and its variants
  publication-title: Discrete Appl. Math.
– volume: 3
  start-page: 103
  year: 2007
  end-page: 128
  ident: br0240
  article-title: Linear degree extractors and the inaproximablity of Max Clique and Chromatic Number
  publication-title: Theory Comput.
– start-page: 1
  year: 2024
  ident: 10.1016/j.disc.2025.114502_br0030
  article-title: First-Fit coloring of forests in random arrival model
– volume: 65
  start-page: 885
  year: 2013
  ident: 10.1016/j.disc.2025.114502_br0100
  article-title: On the Grundy and b-chromatic numbers of a graph
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9604-4
– volume: 33
  start-page: 580
  year: 2017
  ident: 10.1016/j.disc.2025.114502_br0160
  article-title: More bounds for the Grundy number of graphs
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-015-9981-8
– volume: 10
  start-page: 529
  year: 1997
  ident: 10.1016/j.disc.2025.114502_br0170
  article-title: Algorithms for vertex partitioning problems on partial k-trees
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480194275825
– volume: 32
  start-page: 775
  year: 2016
  ident: 10.1016/j.disc.2025.114502_br0230
  article-title: First-Fit colorings of graphs with no cycles of a prescribed even length
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-015-9900-z
– volume: 155
  start-page: 2567
  year: 2007
  ident: 10.1016/j.disc.2025.114502_br0200
  article-title: Inequalities for the Grundy chromatic number of graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2007.07.002
– volume: 9
  issue: 1
  year: 2007
  ident: 10.1016/j.disc.2025.114502_br0150
  article-title: A Lower bound for approximating Grundy numbering
  publication-title: Discret. Math. Theor. Comput. Sci.
– volume: 306
  start-page: 3166
  year: 2006
  ident: 10.1016/j.disc.2025.114502_br0190
  article-title: Results on the Grundy chromatic number of graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2005.06.044
– volume: 27
  start-page: 49
  year: 1979
  ident: 10.1016/j.disc.2025.114502_br0060
  article-title: Some perfect coloring properties of graphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/0095-8956(79)90067-4
– start-page: 85
  year: 1992
  ident: 10.1016/j.disc.2025.114502_br0140
  article-title: On-line graph coloring
– volume: 8
  start-page: 485
  issue: 4
  year: 1995
  ident: 10.1016/j.disc.2025.114502_br0130
  article-title: On-line first fit coloring of graphs that do not induce P5
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480191218861
– volume: 89
  start-page: 110
  year: 2008
  ident: 10.1016/j.disc.2025.114502_br0210
  article-title: New bounds for the chromatic number of graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20298
– volume: 158
  start-page: 620
  year: 2010
  ident: 10.1016/j.disc.2025.114502_br0050
  article-title: First-Fit coloring of {P5,K4∖e}-free graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2009.12.009
– volume: 3
  start-page: 103
  year: 2007
  ident: 10.1016/j.disc.2025.114502_br0240
  article-title: Linear degree extractors and the inaproximablity of Max Clique and Chromatic Number
  publication-title: Theory Comput.
  doi: 10.4086/toc.2007.v003a006
– volume: 243
  start-page: 99
  year: 2018
  ident: 10.1016/j.disc.2025.114502_br0020
  article-title: Complexity of Grundy coloring and its variants
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2017.12.022
– year: 2009
  ident: 10.1016/j.disc.2025.114502_br0070
– volume: 11
  start-page: 53
  year: 1994
  ident: 10.1016/j.disc.2025.114502_br0120
  article-title: Coloring inductive graphs on-line
  publication-title: Algorithmica
  doi: 10.1007/BF01294263
– volume: 362
  start-page: 50
  year: 2025
  ident: 10.1016/j.disc.2025.114502_br0220
  article-title: Upper bounds for some graph invariants in terms of blocks and cut-vertices
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2024.11.020
– volume: 59
  start-page: 75
  year: 2008
  ident: 10.1016/j.disc.2025.114502_br0080
  article-title: Inequalities for the First-fit chromatic number
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.20327
– year: 2001
  ident: 10.1016/j.disc.2025.114502_br0180
– volume: 12
  start-page: 217
  year: 1988
  ident: 10.1016/j.disc.2025.114502_br0090
  article-title: On-line and first-fit coloring of graphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190120212
– volume: 36
  start-page: 351
  year: 1982
  ident: 10.1016/j.disc.2025.114502_br0110
  article-title: A linear algorithm for the Grundy (coloring) number of a tree
  publication-title: Congr. Numer.
– volume: 312
  start-page: 2088
  year: 2012
  ident: 10.1016/j.disc.2025.114502_br0040
  article-title: First-fit chromatic numbers of d-degenerate graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2012.03.029
– volume: 83
  start-page: 337
  year: 2021
  ident: 10.1016/j.disc.2025.114502_br0010
  article-title: Tight bounds for online coloring of basic graph classes
  publication-title: Algorithmica
  doi: 10.1007/s00453-020-00759-7
SSID ssj0001638
Score 2.4223993
Snippet The Grundy (or First-Fit) chromatic number of a graph G=(V,E), denoted by Γ(G) (or χFF(G)), is the maximum number of colors used by a First-Fit (greedy)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114502
SubjectTerms Block graphs
First-Fit coloring
Girth
Graph coloring
Grundy number
Title O(VE) time algorithms for the Grundy (First-Fit) chromatic number of block graphs and graphs with large girth
URI https://dx.doi.org/10.1016/j.disc.2025.114502
Volume 348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0012-365X
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001638
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0012-365X
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001638
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  issn: 0012-365X
  databaseCode: AIKHN
  dateStart: 20211101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001638
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 0012-365X
  databaseCode: ACRLP
  dateStart: 20211101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001638
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0012-365X
  databaseCode: AKRWK
  dateStart: 19710501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001638
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IxPsgcPELNS2l1ajoSAqAEvYrg1u9suVKEQKAcv_nZn-vAREw_e2mY3ab42M99svvmGkCtLQdZ1Pc4cLQTjruUy6UjOWlwZ3YIqVzSwwXkwbPZH_H4sxiXSKXphUFaZx_4spqfROn9Sz9GsL6MIe3zROQSKLZEan6EnKOcuTjG4ef-SeSDfyKKxzXB13jiTabyw8xVqRFugZa7Ij1Z-JadvCae3R3Zzpkjb2cvsk1IYH5CdwafN6vqQzB-rz90axfnwVM4mCyj0p_M1BR5KYRW9XW3i4I1WexFQPNaLkhrV09Ui3U2zUSB0YaiCfPZKU-fqNZVxUFziES2doVKcTqJVMj0io173qdNn-fwEpiFvJ8xINzChBNBDy9MGmB5i71m2dLXncFcY2bJspWygDZ6ltSW10Q1pgFNYTU-4zjEpx4s4PCHUMUoGjmdsT0OJw5UKAkfarYYD1ZRUoTkl1wVw_jKzyfAL_diLjzD7CLOfwXxKRIGt_-Nj-xDH_9h39s9952Qb7zJp2AUpJ6tNeAlcIlGV9GepkK323UN_-AHR0cgh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQcPELNa2l3aHg2hogJewHBrdrddqEIhUA5e_O3O9uEjJh68Ne1O0nxtZr5v880sQpeGgKprO5RYkjFCbcMm3OKUuFQo6YLKZXXd4NztNdoD-jBkwxJqFr0w2laZ5_4sp6fZOr9zk6N5M48i3eOrJ4eA2GLp4DO6htYpM22twK7fv3wemnBk6dgkenneOZOZvHTrK4hEk-mZuSzfW_lVnb5VHG8HbedUEd9mb7OLSmG8h7a6n3NWl_to-lR9btWwPiAe88loBkp_PF1iIKIYVuG7xSoO3nDVi4DjES9KaliOF7M0GmdngeCZwgIK2itOR1cvMY-D4lLv0eKJtorjUbRIxgdo4LX6zTbJD1AgEgp3QhS3AxVyQD00HKmA6mnwHcPktnQsajPFXcMUwgTe4BhSGlwqWecKSIXRcJhtHaJyPIvDI4QtJXhgOcp0JGgcKkQQWNx06xbIKS5CVUFXBXD-PJuT4RcGshdfw-xrmP0M5gpiBbb-j6_tQyL_I-74n3EXaKPd73b8zn3v8QRt6ieZT-wUlZPFKjwDYpGI8_TH-QCrYsm2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=O+%28+V+E+%29+time+algorithms+for+the+Grundy+%28First-Fit%29+chromatic+number+of+block+graphs+and+graphs+with+large+girth&rft.jtitle=Discrete+mathematics&rft.au=Zaker%2C+Manouchehr&rft.date=2025-09-01&rft.issn=0012-365X&rft.volume=348&rft.issue=9&rft.spage=114502&rft_id=info:doi/10.1016%2Fj.disc.2025.114502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2025_114502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon