DecGAN: Decoupling Generative Adversarial Network for Detecting Abnormal Neural Circuits in Alzheimer's Disease
One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoup...
Saved in:
| Published in | IEEE transactions on artificial intelligence Vol. 5; no. 10; pp. 5050 - 5063 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2691-4581 2691-4581 |
| DOI | 10.1109/TAI.2024.3416420 |
Cover
| Abstract | One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoupling generative adversarial network (DecGAN) is proposed to detect abnormal neural circuits for AD. Concretely, a decoupling module is designed to decompose a brain network into two parts: one part is composed of a few sparse graphs that represent the neural circuits largely determining the development of AD; the other part is a supplement graph, whose influence on AD can be ignored. Furthermore, the adversarial strategy is utilized to guide the decoupling module to extract the feature more related to AD. Meanwhile, by encoding the detected neural circuits to hypergraph data, an analytic module associated with the hyperedge neurons algorithm is designed to identify the neural circuits. More importantly, a novel sparse capacity loss based on the spatial-spectral hypergraph similarity is developed to minimize the intrinsic topological distribution of neural circuits, which can significantly improve the accuracy and robustness of the proposed model. Experimental results demonstrate that the proposed model can effectively detect the abnormal neural circuits at different stages of AD, which is helpful for pathological study and early treatment. |
|---|---|
| AbstractList | One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoupling generative adversarial network (DecGAN) is proposed to detect abnormal neural circuits for AD. Concretely, a decoupling module is designed to decompose a brain network into two parts: one part is composed of a few sparse graphs that represent the neural circuits largely determining the development of AD; the other part is a supplement graph, whose influence on AD can be ignored. Furthermore, the adversarial strategy is utilized to guide the decoupling module to extract the feature more related to AD. Meanwhile, by encoding the detected neural circuits to hypergraph data, an analytic module associated with the hyperedge neurons algorithm is designed to identify the neural circuits. More importantly, a novel sparse capacity loss based on the spatial-spectral hypergraph similarity is developed to minimize the intrinsic topological distribution of neural circuits, which can significantly improve the accuracy and robustness of the proposed model. Experimental results demonstrate that the proposed model can effectively detect the abnormal neural circuits at different stages of AD, which is helpful for pathological study and early treatment. |
| Author | Pan, Junren Chen, C.L. Philip Wang, Bingchuan Wang, Shuqiang Zuo, Qiankun Lei, Baiying |
| Author_xml | – sequence: 1 givenname: Junren surname: Pan fullname: Pan, Junren organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 2 givenname: Qiankun orcidid: 0009-0002-8487-5762 surname: Zuo fullname: Zuo, Qiankun organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – sequence: 3 givenname: Bingchuan orcidid: 0000-0002-0234-2843 surname: Wang fullname: Wang, Bingchuan organization: School of Automation, Central South University, Changsha, China – sequence: 4 givenname: C.L. Philip orcidid: 0000-0001-5451-7230 surname: Chen fullname: Chen, C.L. Philip organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 5 givenname: Baiying orcidid: 0000-0002-3087-2550 surname: Lei fullname: Lei, Baiying email: leiby@szu.edu.cn organization: School of Biomedical Engineering, Shenzhen University, Shenzhen, China – sequence: 6 givenname: Shuqiang orcidid: 0000-0003-1119-320X surname: Wang fullname: Wang, Shuqiang email: sq.wang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| BookMark | eNp9kDFPwzAQRi1UJErpzsDgjSnFdpw0ZotaKJWqspQ5cuwzGNK4st0i-PWktEPFwPSddN876d4l6rWuBYSuKRlRSsTdqpyPGGF8lHKac0bOUJ_lgiY8K2jvZL5AwxDeCSEso4yxcR-5KahZubzHXbrtprHtK55BC15GuwNc6h34IL2VDV5C_HT-Axvnu3YEFfflsm6dX_-ut76LifVqa2PAtsVl8_0Gdg3-NuCpDSADXKFzI5sAw2MO0Mvjw2rylCyeZ_NJuUgULWhM1JhzqVNRcAm8NgBcAc9NQYyWQuuxYrUWWglV14USRaqN0LI2Kh1nUkiq0gHKD3eVdyF4MJWysfvJtdFL21SUVHtzVWeu2purjuY6kPwBN96upf_6D7k5IBYATupZzqjg6Q8GVH4H |
| CODEN | ITAICB |
| CitedBy_id | crossref_primary_10_1186_s40708_024_00245_8 crossref_primary_10_3389_fninf_2024_1507217 crossref_primary_10_3389_fphys_2025_1515881 crossref_primary_10_3934_era_2025055 crossref_primary_10_3389_fcomp_2024_1404494 crossref_primary_10_1016_j_media_2024_103448 crossref_primary_10_32604_cmes_2025_060545 crossref_primary_10_1007_s10044_024_01376_8 crossref_primary_10_3389_fnbot_2024_1499734 crossref_primary_10_3389_fncom_2024_1360095 |
| Cites_doi | 10.1109/TNSRE.2023.3333952 10.1007/978-3-030-59728-3_23 10.1007/978-3-030-35817-4_9 10.1109/TCYB.2020.3005859 10.1016/j.nicl.2019.101972 10.1109/IJCNN48605.2020.9206837 10.1109/TCYB.2019.2904186 10.3390/app8081372 10.1109/TBME.2019.2957921 10.1016/j.media.2020.101947 10.3389/fnins.2018.00975 10.1609/aaai.v34i04.5921 10.1016/j.patcog.2019.01.015 10.1126/science.1238411 10.1371/journal.pone.0222446 10.1016/j.jalz.2009.01.028 10.1145/1557019.1557162 10.3389/fnhum.2013.00042 10.1136/jnnp.71.4.441 10.1016/j.media.2020.101652 10.1016/j.media.2021.102082 10.3389/fnsys.2010.00013 10.1016/j.neuroimage.2011.01.008 10.1609/aaai.v35i11.17206 10.1109/TMI.2020.2976825 10.1109/TCYB.2019.2940526 10.1109/TMI.2019.2953584 10.1109/TMI.2022.3187141 10.1007/978-3-319-66182-7_54 10.1006/nimg.2001.0978 10.1109/ACCESS.2019.2913847 10.1145/3357384.3357815 10.1016/S0140-6736(94)92028-1 10.1017/S135561771700100X 10.1016/j.jalz.2019.01.010 10.1016/j.neucom.2018.12.018 10.1038/nature20412 10.1093/nsr/nwac104 10.1109/TNNLS.2021.3118369 10.1109/tcyb.2023.3344641 10.1007/s00702-017-1734-7 10.1016/j.neuroimage.2010.10.081 10.1001/archneur.58.9.1403 10.1109/TNSRE.2023.3323432 10.1016/j.neuroimage.2017.12.052 10.1016/j.neurobiolaging.2014.07.019 10.1016/j.media.2020.101694 10.3389/fnhum.2015.00458 10.1016/j.media.2018.06.001 10.3233/JAD-142292 10.1016/j.jalz.2018.08.005 10.1016/0022-510X(90)90029-M 10.1016/j.neuron.2020.06.005 10.1109/TNNLS.2021.3063516 10.5555/2969033.2969125 10.1007/s00234-007-0269-2 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAI.2024.3416420 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2691-4581 |
| EndPage | 5063 |
| ExternalDocumentID | 10_1109_TAI_2024_3416420 10562194 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Excellent Young Scholars of Shenzhen grantid: RCYX20200714114641211 – fundername: Distinguished Young Scholars Fund of Guangdong grantid: 2021B1515020019 – fundername: National Natural Science Foundation of China; National Natural Science Foundations of China grantid: 62172403; U22A2041 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c181t-c744ad3984ae4bfee4ce46f80fda9dd7c2bd9dc9cbb8c983df9dabfc375a9a1c3 |
| IEDL.DBID | RIE |
| ISSN | 2691-4581 |
| IngestDate | Wed Oct 01 05:34:05 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Wed Aug 27 07:40:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c181t-c744ad3984ae4bfee4ce46f80fda9dd7c2bd9dc9cbb8c983df9dabfc375a9a1c3 |
| ORCID | 0009-0002-8487-5762 0000-0002-0234-2843 0000-0002-3087-2550 0000-0003-1119-320X 0000-0001-5451-7230 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TAI_2024_3416420 crossref_citationtrail_10_1109_TAI_2024_3416420 ieee_primary_10562194 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct. |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on artificial intelligence |
| PublicationTitleAbbrev | TAI |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 Dong (ref40) 2020 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref5 Fei (ref6) 2022; 9 ref35 ref34 ref37 Patterson (ref2) 2018 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref60 |
| References_xml | – ident: ref9 doi: 10.1109/TNSRE.2023.3333952 – ident: ref33 doi: 10.1007/978-3-030-59728-3_23 – ident: ref20 doi: 10.1007/978-3-030-35817-4_9 – ident: ref25 doi: 10.1109/TCYB.2020.3005859 – ident: ref36 doi: 10.1007/978-3-030-35817-4_9 – ident: ref56 doi: 10.1016/j.nicl.2019.101972 – ident: ref23 doi: 10.1109/IJCNN48605.2020.9206837 – ident: ref26 doi: 10.1109/TCYB.2019.2904186 – ident: ref55 doi: 10.3390/app8081372 – ident: ref29 doi: 10.1109/TBME.2019.2957921 – ident: ref34 doi: 10.1016/j.media.2020.101947 – volume-title: World Alzheimer Report 2018: The State of the Art of Dementia Research: New Frontiers year: 2018 ident: ref2 – ident: ref53 doi: 10.3389/fnins.2018.00975 – ident: ref17 doi: 10.1609/aaai.v34i04.5921 – ident: ref35 doi: 10.1016/j.patcog.2019.01.015 – ident: ref14 doi: 10.1126/science.1238411 – ident: ref52 doi: 10.1371/journal.pone.0222446 – ident: ref11 doi: 10.1016/j.jalz.2009.01.028 – ident: ref51 doi: 10.1145/1557019.1557162 – ident: ref43 doi: 10.3389/fnhum.2013.00042 – ident: ref49 doi: 10.1136/jnnp.71.4.441 – ident: ref44 doi: 10.1016/j.media.2020.101652 – ident: ref45 doi: 10.1016/j.media.2021.102082 – ident: ref41 doi: 10.3389/fnsys.2010.00013 – ident: ref8 doi: 10.1016/j.neuroimage.2011.01.008 – ident: ref39 doi: 10.1609/aaai.v35i11.17206 – year: 2020 ident: ref40 article-title: HNHN: Hypergraph networks with hyperedge neurons – ident: ref27 doi: 10.1109/TMI.2020.2976825 – ident: ref24 doi: 10.1109/TCYB.2019.2940526 – ident: ref28 doi: 10.1109/TMI.2019.2953584 – ident: ref46 doi: 10.1109/TMI.2022.3187141 – ident: ref32 doi: 10.1007/978-3-319-66182-7_54 – ident: ref38 doi: 10.1006/nimg.2001.0978 – ident: ref22 doi: 10.1109/ACCESS.2019.2913847 – ident: ref37 doi: 10.1145/3357384.3357815 – ident: ref60 doi: 10.1016/S0140-6736(94)92028-1 – ident: ref1 doi: 10.1017/S135561771700100X – ident: ref3 doi: 10.1016/j.jalz.2019.01.010 – ident: ref4 doi: 10.1016/j.neucom.2018.12.018 – ident: ref13 doi: 10.1038/nature20412 – ident: ref5 doi: 10.1093/nsr/nwac104 – ident: ref18 doi: 10.1109/TNNLS.2021.3118369 – ident: ref10 doi: 10.1109/tcyb.2023.3344641 – ident: ref57 doi: 10.1007/s00702-017-1734-7 – ident: ref7 doi: 10.1016/j.neuroimage.2010.10.081 – ident: ref48 doi: 10.1001/archneur.58.9.1403 – ident: ref30 doi: 10.1109/TNSRE.2023.3323432 – ident: ref19 doi: 10.1016/j.neuroimage.2017.12.052 – ident: ref59 doi: 10.1016/j.neurobiolaging.2014.07.019 – ident: ref21 doi: 10.1016/j.media.2020.101694 – ident: ref42 doi: 10.3389/fnhum.2015.00458 – volume: 9 issue: 14 year: 2022 ident: ref6 article-title: A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification publication-title: Adv. Sci. – ident: ref31 doi: 10.1016/j.media.2018.06.001 – ident: ref58 doi: 10.3233/JAD-142292 – ident: ref47 doi: 10.1016/j.jalz.2018.08.005 – ident: ref50 doi: 10.1016/0022-510X(90)90029-M – ident: ref12 doi: 10.1016/j.neuron.2020.06.005 – ident: ref16 doi: 10.1109/TNNLS.2021.3063516 – ident: ref15 doi: 10.5555/2969033.2969125 – ident: ref54 doi: 10.1007/s00234-007-0269-2 |
| SSID | ssj0002512227 |
| Score | 2.4421663 |
| Snippet | One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success,... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 5050 |
| SubjectTerms | Alzheimer's disease Brain modeling Brain networks decoupling algorithm Diffusion tensor imaging Feature extraction hypergraph Integrated circuit modeling multimodal neuroimaging Neural circuits Neuroimaging sparse capacity loss |
| Title | DecGAN: Decoupling Generative Adversarial Network for Detecting Abnormal Neural Circuits in Alzheimer's Disease |
| URI | https://ieeexplore.ieee.org/document/10562194 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJxbKUUQ5Kg9IiCFtDucwW9QWChKdWqlbFNsvUFES1CZLB347dpxUBQnElMh-lix9tt-z3_EhdG2aYEJAYsN0wTGIoJbBwHMNSKxACF-4XEdbTLzxjDzN3XmVrF7mwgBAGXwGPfVb-vJFxgv1VNZXLPFyh5EGaviBp5O1tg8qSlHbtl-7Ik3an4aP8gJok548qaWZbX5TPTtcKqUquW-hST0JHUHy1ity1uObH_UZ_z3LQ3RQGZU41KvgCO1BeoxaNWEDrvbvCcqGwB_CyR2W36xQubgvWNedVoceLsmZ17Fakniiw8OxtGmltPI0KOGQpcrGVd2qXAceLFa8WORrvEhxuNy8wuIdVjdrPNRunzaa3Y-mg7FRMS4YXGr63OA-IbFwqAQPCEsACAfiJYGZiJhK6LjNBBWccsYCTgNHJFTELOGO78Y0trhzippplsIZwpTZ4DuBD0CF1HkW86WM5RDZ5HAJSgf1azAiXpUjV6wYy6i8lpg0kvBFCr6ogq-DbrcjPnQpjj9k2wqYHTmNyfkv7RdoXw3XUXqXqJmvCriS1kbOuqjx_DnqlmvtCzHu1Q4 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3oRPzDiZw8mxsNgHx1bvS0gguJOkHBb1vZNiTgMbBf-ett1EDTReNrSvi1Nfm3fa9_HD6Eb0wQTfBIbpguOQQS1DAYt14DE8oXwhMt1tEXY6o3I09gdl8nqRS4MABTBZ9BQr4UvX8x4rq7KmoolXq4wso12XEKIq9O11lcqSlXbtrdyRpq0OQz68ghok4bcq6WhbX5TPhtsKoUy6VZRuBqGjiF5b-QZa_DljwqN_x7nAdovzUoc6HlwiLYgPULVFWUDLlfwMZp1gD8G4T2Wz1musnFfsa48rbY9XNAzL2I1KXGoA8SxtGqltPI1KOGApcrKVd2qYAduT-Y8n2QLPElxMF2-weQD5rcL3NGOnxoadR-G7Z5Rci4YXOr6zOAeIbFwqIQPCEsACAfSSnwzETGV4HGbCSo45Yz5nPqOSKiIWcIdz41pbHHnBFXSWQqnCFNmg-f4HgAVUutZzJMylkNkk8MlKHXUXIER8bIgueLFmEbFwcSkkYQvUvBFJXx1dLf-4lMX4_hDtqaA2ZDTmJz90n6NdnvDl0E06IfP52hP_UrH7F2gSjbP4VLaHhm7KmbcF3Vn1yo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DecGAN%3A+Decoupling+Generative+Adversarial+Network+for+Detecting+Abnormal+Neural+Circuits+in+Alzheimer%27s+Disease&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Pan%2C+Junren&rft.au=Zuo%2C+Qiankun&rft.au=Wang%2C+Bingchuan&rft.au=Chen%2C+C.L.+Philip&rft.date=2024-10-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=5&rft.issue=10&rft.spage=5050&rft.epage=5063&rft_id=info:doi/10.1109%2FTAI.2024.3416420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2024_3416420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |