DecGAN: Decoupling Generative Adversarial Network for Detecting Abnormal Neural Circuits in Alzheimer's Disease

One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoup...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on artificial intelligence Vol. 5; no. 10; pp. 5050 - 5063
Main Authors Pan, Junren, Zuo, Qiankun, Wang, Bingchuan, Chen, C.L. Philip, Lei, Baiying, Wang, Shuqiang
Format Journal Article
LanguageEnglish
Published IEEE 01.10.2024
Subjects
Online AccessGet full text
ISSN2691-4581
2691-4581
DOI10.1109/TAI.2024.3416420

Cover

Abstract One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoupling generative adversarial network (DecGAN) is proposed to detect abnormal neural circuits for AD. Concretely, a decoupling module is designed to decompose a brain network into two parts: one part is composed of a few sparse graphs that represent the neural circuits largely determining the development of AD; the other part is a supplement graph, whose influence on AD can be ignored. Furthermore, the adversarial strategy is utilized to guide the decoupling module to extract the feature more related to AD. Meanwhile, by encoding the detected neural circuits to hypergraph data, an analytic module associated with the hyperedge neurons algorithm is designed to identify the neural circuits. More importantly, a novel sparse capacity loss based on the spatial-spectral hypergraph similarity is developed to minimize the intrinsic topological distribution of neural circuits, which can significantly improve the accuracy and robustness of the proposed model. Experimental results demonstrate that the proposed model can effectively detect the abnormal neural circuits at different stages of AD, which is helpful for pathological study and early treatment.
AbstractList One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success, however, detecting abnormal neural circuits from the perspective of brain networks is still a big challenge. In this work, a novel decoupling generative adversarial network (DecGAN) is proposed to detect abnormal neural circuits for AD. Concretely, a decoupling module is designed to decompose a brain network into two parts: one part is composed of a few sparse graphs that represent the neural circuits largely determining the development of AD; the other part is a supplement graph, whose influence on AD can be ignored. Furthermore, the adversarial strategy is utilized to guide the decoupling module to extract the feature more related to AD. Meanwhile, by encoding the detected neural circuits to hypergraph data, an analytic module associated with the hyperedge neurons algorithm is designed to identify the neural circuits. More importantly, a novel sparse capacity loss based on the spatial-spectral hypergraph similarity is developed to minimize the intrinsic topological distribution of neural circuits, which can significantly improve the accuracy and robustness of the proposed model. Experimental results demonstrate that the proposed model can effectively detect the abnormal neural circuits at different stages of AD, which is helpful for pathological study and early treatment.
Author Pan, Junren
Chen, C.L. Philip
Wang, Bingchuan
Wang, Shuqiang
Zuo, Qiankun
Lei, Baiying
Author_xml – sequence: 1
  givenname: Junren
  surname: Pan
  fullname: Pan, Junren
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 2
  givenname: Qiankun
  orcidid: 0009-0002-8487-5762
  surname: Zuo
  fullname: Zuo, Qiankun
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– sequence: 3
  givenname: Bingchuan
  orcidid: 0000-0002-0234-2843
  surname: Wang
  fullname: Wang, Bingchuan
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: C.L. Philip
  orcidid: 0000-0001-5451-7230
  surname: Chen
  fullname: Chen, C.L. Philip
  organization: School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Baiying
  orcidid: 0000-0002-3087-2550
  surname: Lei
  fullname: Lei, Baiying
  email: leiby@szu.edu.cn
  organization: School of Biomedical Engineering, Shenzhen University, Shenzhen, China
– sequence: 6
  givenname: Shuqiang
  orcidid: 0000-0003-1119-320X
  surname: Wang
  fullname: Wang, Shuqiang
  email: sq.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BookMark eNp9kDFPwzAQRi1UJErpzsDgjSnFdpw0ZotaKJWqspQ5cuwzGNK4st0i-PWktEPFwPSddN876d4l6rWuBYSuKRlRSsTdqpyPGGF8lHKac0bOUJ_lgiY8K2jvZL5AwxDeCSEso4yxcR-5KahZubzHXbrtprHtK55BC15GuwNc6h34IL2VDV5C_HT-Axvnu3YEFfflsm6dX_-ut76LifVqa2PAtsVl8_0Gdg3-NuCpDSADXKFzI5sAw2MO0Mvjw2rylCyeZ_NJuUgULWhM1JhzqVNRcAm8NgBcAc9NQYyWQuuxYrUWWglV14USRaqN0LI2Kh1nUkiq0gHKD3eVdyF4MJWysfvJtdFL21SUVHtzVWeu2purjuY6kPwBN96upf_6D7k5IBYATupZzqjg6Q8GVH4H
CODEN ITAICB
CitedBy_id crossref_primary_10_1186_s40708_024_00245_8
crossref_primary_10_3389_fninf_2024_1507217
crossref_primary_10_3389_fphys_2025_1515881
crossref_primary_10_3934_era_2025055
crossref_primary_10_3389_fcomp_2024_1404494
crossref_primary_10_1016_j_media_2024_103448
crossref_primary_10_32604_cmes_2025_060545
crossref_primary_10_1007_s10044_024_01376_8
crossref_primary_10_3389_fnbot_2024_1499734
crossref_primary_10_3389_fncom_2024_1360095
Cites_doi 10.1109/TNSRE.2023.3333952
10.1007/978-3-030-59728-3_23
10.1007/978-3-030-35817-4_9
10.1109/TCYB.2020.3005859
10.1016/j.nicl.2019.101972
10.1109/IJCNN48605.2020.9206837
10.1109/TCYB.2019.2904186
10.3390/app8081372
10.1109/TBME.2019.2957921
10.1016/j.media.2020.101947
10.3389/fnins.2018.00975
10.1609/aaai.v34i04.5921
10.1016/j.patcog.2019.01.015
10.1126/science.1238411
10.1371/journal.pone.0222446
10.1016/j.jalz.2009.01.028
10.1145/1557019.1557162
10.3389/fnhum.2013.00042
10.1136/jnnp.71.4.441
10.1016/j.media.2020.101652
10.1016/j.media.2021.102082
10.3389/fnsys.2010.00013
10.1016/j.neuroimage.2011.01.008
10.1609/aaai.v35i11.17206
10.1109/TMI.2020.2976825
10.1109/TCYB.2019.2940526
10.1109/TMI.2019.2953584
10.1109/TMI.2022.3187141
10.1007/978-3-319-66182-7_54
10.1006/nimg.2001.0978
10.1109/ACCESS.2019.2913847
10.1145/3357384.3357815
10.1016/S0140-6736(94)92028-1
10.1017/S135561771700100X
10.1016/j.jalz.2019.01.010
10.1016/j.neucom.2018.12.018
10.1038/nature20412
10.1093/nsr/nwac104
10.1109/TNNLS.2021.3118369
10.1109/tcyb.2023.3344641
10.1007/s00702-017-1734-7
10.1016/j.neuroimage.2010.10.081
10.1001/archneur.58.9.1403
10.1109/TNSRE.2023.3323432
10.1016/j.neuroimage.2017.12.052
10.1016/j.neurobiolaging.2014.07.019
10.1016/j.media.2020.101694
10.3389/fnhum.2015.00458
10.1016/j.media.2018.06.001
10.3233/JAD-142292
10.1016/j.jalz.2018.08.005
10.1016/0022-510X(90)90029-M
10.1016/j.neuron.2020.06.005
10.1109/TNNLS.2021.3063516
10.5555/2969033.2969125
10.1007/s00234-007-0269-2
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2024.3416420
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 5063
ExternalDocumentID 10_1109_TAI_2024_3416420
10562194
Genre orig-research
GrantInformation_xml – fundername: Excellent Young Scholars of Shenzhen
  grantid: RCYX20200714114641211
– fundername: Distinguished Young Scholars Fund of Guangdong
  grantid: 2021B1515020019
– fundername: National Natural Science Foundation of China; National Natural Science Foundations of China
  grantid: 62172403; U22A2041
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c181t-c744ad3984ae4bfee4ce46f80fda9dd7c2bd9dc9cbb8c983df9dabfc375a9a1c3
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Wed Oct 01 05:34:05 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Wed Aug 27 07:40:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c181t-c744ad3984ae4bfee4ce46f80fda9dd7c2bd9dc9cbb8c983df9dabfc375a9a1c3
ORCID 0009-0002-8487-5762
0000-0002-0234-2843
0000-0002-3087-2550
0000-0003-1119-320X
0000-0001-5451-7230
PageCount 14
ParticipantIDs crossref_primary_10_1109_TAI_2024_3416420
crossref_citationtrail_10_1109_TAI_2024_3416420
ieee_primary_10562194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Oct.
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
Dong (ref40) 2020
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref5
Fei (ref6) 2022; 9
ref35
ref34
ref37
Patterson (ref2) 2018
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref60
References_xml – ident: ref9
  doi: 10.1109/TNSRE.2023.3333952
– ident: ref33
  doi: 10.1007/978-3-030-59728-3_23
– ident: ref20
  doi: 10.1007/978-3-030-35817-4_9
– ident: ref25
  doi: 10.1109/TCYB.2020.3005859
– ident: ref36
  doi: 10.1007/978-3-030-35817-4_9
– ident: ref56
  doi: 10.1016/j.nicl.2019.101972
– ident: ref23
  doi: 10.1109/IJCNN48605.2020.9206837
– ident: ref26
  doi: 10.1109/TCYB.2019.2904186
– ident: ref55
  doi: 10.3390/app8081372
– ident: ref29
  doi: 10.1109/TBME.2019.2957921
– ident: ref34
  doi: 10.1016/j.media.2020.101947
– volume-title: World Alzheimer Report 2018: The State of the Art of Dementia Research: New Frontiers
  year: 2018
  ident: ref2
– ident: ref53
  doi: 10.3389/fnins.2018.00975
– ident: ref17
  doi: 10.1609/aaai.v34i04.5921
– ident: ref35
  doi: 10.1016/j.patcog.2019.01.015
– ident: ref14
  doi: 10.1126/science.1238411
– ident: ref52
  doi: 10.1371/journal.pone.0222446
– ident: ref11
  doi: 10.1016/j.jalz.2009.01.028
– ident: ref51
  doi: 10.1145/1557019.1557162
– ident: ref43
  doi: 10.3389/fnhum.2013.00042
– ident: ref49
  doi: 10.1136/jnnp.71.4.441
– ident: ref44
  doi: 10.1016/j.media.2020.101652
– ident: ref45
  doi: 10.1016/j.media.2021.102082
– ident: ref41
  doi: 10.3389/fnsys.2010.00013
– ident: ref8
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: ref39
  doi: 10.1609/aaai.v35i11.17206
– year: 2020
  ident: ref40
  article-title: HNHN: Hypergraph networks with hyperedge neurons
– ident: ref27
  doi: 10.1109/TMI.2020.2976825
– ident: ref24
  doi: 10.1109/TCYB.2019.2940526
– ident: ref28
  doi: 10.1109/TMI.2019.2953584
– ident: ref46
  doi: 10.1109/TMI.2022.3187141
– ident: ref32
  doi: 10.1007/978-3-319-66182-7_54
– ident: ref38
  doi: 10.1006/nimg.2001.0978
– ident: ref22
  doi: 10.1109/ACCESS.2019.2913847
– ident: ref37
  doi: 10.1145/3357384.3357815
– ident: ref60
  doi: 10.1016/S0140-6736(94)92028-1
– ident: ref1
  doi: 10.1017/S135561771700100X
– ident: ref3
  doi: 10.1016/j.jalz.2019.01.010
– ident: ref4
  doi: 10.1016/j.neucom.2018.12.018
– ident: ref13
  doi: 10.1038/nature20412
– ident: ref5
  doi: 10.1093/nsr/nwac104
– ident: ref18
  doi: 10.1109/TNNLS.2021.3118369
– ident: ref10
  doi: 10.1109/tcyb.2023.3344641
– ident: ref57
  doi: 10.1007/s00702-017-1734-7
– ident: ref7
  doi: 10.1016/j.neuroimage.2010.10.081
– ident: ref48
  doi: 10.1001/archneur.58.9.1403
– ident: ref30
  doi: 10.1109/TNSRE.2023.3323432
– ident: ref19
  doi: 10.1016/j.neuroimage.2017.12.052
– ident: ref59
  doi: 10.1016/j.neurobiolaging.2014.07.019
– ident: ref21
  doi: 10.1016/j.media.2020.101694
– ident: ref42
  doi: 10.3389/fnhum.2015.00458
– volume: 9
  issue: 14
  year: 2022
  ident: ref6
  article-title: A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification
  publication-title: Adv. Sci.
– ident: ref31
  doi: 10.1016/j.media.2018.06.001
– ident: ref58
  doi: 10.3233/JAD-142292
– ident: ref47
  doi: 10.1016/j.jalz.2018.08.005
– ident: ref50
  doi: 10.1016/0022-510X(90)90029-M
– ident: ref12
  doi: 10.1016/j.neuron.2020.06.005
– ident: ref16
  doi: 10.1109/TNNLS.2021.3063516
– ident: ref15
  doi: 10.5555/2969033.2969125
– ident: ref54
  doi: 10.1007/s00234-007-0269-2
SSID ssj0002512227
Score 2.4421663
Snippet One of the main reasons for Alzheimer's disease (AD) is the disorder of some neural circuits. Existing methods for AD prediction have achieved great success,...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5050
SubjectTerms Alzheimer's disease
Brain modeling
Brain networks
decoupling algorithm
Diffusion tensor imaging
Feature extraction
hypergraph
Integrated circuit modeling
multimodal neuroimaging
Neural circuits
Neuroimaging
sparse capacity loss
Title DecGAN: Decoupling Generative Adversarial Network for Detecting Abnormal Neural Circuits in Alzheimer's Disease
URI https://ieeexplore.ieee.org/document/10562194
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLZoJxbKUUQ5Kg9IiCFtDucwW9QWChKdWqlbFNsvUFES1CZLB347dpxUBQnElMh-lix9tt-z3_EhdG2aYEJAYsN0wTGIoJbBwHMNSKxACF-4XEdbTLzxjDzN3XmVrF7mwgBAGXwGPfVb-vJFxgv1VNZXLPFyh5EGaviBp5O1tg8qSlHbtl-7Ik3an4aP8gJok548qaWZbX5TPTtcKqUquW-hST0JHUHy1ity1uObH_UZ_z3LQ3RQGZU41KvgCO1BeoxaNWEDrvbvCcqGwB_CyR2W36xQubgvWNedVoceLsmZ17Fakniiw8OxtGmltPI0KOGQpcrGVd2qXAceLFa8WORrvEhxuNy8wuIdVjdrPNRunzaa3Y-mg7FRMS4YXGr63OA-IbFwqAQPCEsACAfiJYGZiJhK6LjNBBWccsYCTgNHJFTELOGO78Y0trhzippplsIZwpTZ4DuBD0CF1HkW86WM5RDZ5HAJSgf1azAiXpUjV6wYy6i8lpg0kvBFCr6ogq-DbrcjPnQpjj9k2wqYHTmNyfkv7RdoXw3XUXqXqJmvCriS1kbOuqjx_DnqlmvtCzHu1Q4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UD3oRPzDiZw8mxsNgHx1bvS0gguJOkHBb1vZNiTgMbBf-ett1EDTReNrSvi1Nfm3fa9_HD6Eb0wQTfBIbpguOQQS1DAYt14DE8oXwhMt1tEXY6o3I09gdl8nqRS4MABTBZ9BQr4UvX8x4rq7KmoolXq4wso12XEKIq9O11lcqSlXbtrdyRpq0OQz68ghok4bcq6WhbX5TPhtsKoUy6VZRuBqGjiF5b-QZa_DljwqN_x7nAdovzUoc6HlwiLYgPULVFWUDLlfwMZp1gD8G4T2Wz1musnFfsa48rbY9XNAzL2I1KXGoA8SxtGqltPI1KOGApcrKVd2qYAduT-Y8n2QLPElxMF2-weQD5rcL3NGOnxoadR-G7Z5Rci4YXOr6zOAeIbFwqIQPCEsACAfSSnwzETGV4HGbCSo45Yz5nPqOSKiIWcIdz41pbHHnBFXSWQqnCFNmg-f4HgAVUutZzJMylkNkk8MlKHXUXIER8bIgueLFmEbFwcSkkYQvUvBFJXx1dLf-4lMX4_hDtqaA2ZDTmJz90n6NdnvDl0E06IfP52hP_UrH7F2gSjbP4VLaHhm7KmbcF3Vn1yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DecGAN%3A+Decoupling+Generative+Adversarial+Network+for+Detecting+Abnormal+Neural+Circuits+in+Alzheimer%27s+Disease&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Pan%2C+Junren&rft.au=Zuo%2C+Qiankun&rft.au=Wang%2C+Bingchuan&rft.au=Chen%2C+C.L.+Philip&rft.date=2024-10-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=5&rft.issue=10&rft.spage=5050&rft.epage=5063&rft_id=info:doi/10.1109%2FTAI.2024.3416420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2024_3416420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon