Multi-View Spatial-Temporal Graph Convolutional Network for Traffic Prediction

Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 25; no. 8; pp. 9572 - 9586
Main Authors Wei, Shuqing, Feng, Siyuan, Yang, Hai
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2024
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2024.3364759

Cover

Abstract Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and effectively integrate them within a single prediction framework needs further exploration. To tackle the above issues, we propose a multi-view spatial-temporal graph convolutional framework MVSTG, which adequately exploits the multi-view spatial-temporal dependencies and their interactions to improve the accuracy of traffic prediction. Multi-view temporal learning captures the multiple temporal trends by temporal convolution from multi-granularity historical data, and multi-view spatial learning handles the multiple spatial correlations by graph convolution from multiple graphs. In addition, view-wise attention-based fusion is proposed to adaptively identify the importance of each upstream view, fuse the multi-view information, and generate integrated results for downstream views. The experiments on two real-world urban traffic datasets demonstrate that the multi-view data and the proposed model framework enhance performance on the accuracy of speed prediction, especially in mid-term and long-term prediction.
AbstractList Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and effectively integrate them within a single prediction framework needs further exploration. To tackle the above issues, we propose a multi-view spatial-temporal graph convolutional framework MVSTG, which adequately exploits the multi-view spatial-temporal dependencies and their interactions to improve the accuracy of traffic prediction. Multi-view temporal learning captures the multiple temporal trends by temporal convolution from multi-granularity historical data, and multi-view spatial learning handles the multiple spatial correlations by graph convolution from multiple graphs. In addition, view-wise attention-based fusion is proposed to adaptively identify the importance of each upstream view, fuse the multi-view information, and generate integrated results for downstream views. The experiments on two real-world urban traffic datasets demonstrate that the multi-view data and the proposed model framework enhance performance on the accuracy of speed prediction, especially in mid-term and long-term prediction.
Author Feng, Siyuan
Wei, Shuqing
Yang, Hai
Author_xml – sequence: 1
  givenname: Shuqing
  orcidid: 0000-0002-1670-3582
  surname: Wei
  fullname: Wei, Shuqing
  organization: Division of Emerging Interdisciplinary Area, The Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 2
  givenname: Siyuan
  orcidid: 0000-0002-3194-1124
  surname: Feng
  fullname: Feng, Siyuan
  email: siyuan.feng@polyu.edu.hk
  organization: Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Hai
  orcidid: 0000-0001-5210-8468
  surname: Yang
  fullname: Yang, Hai
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
BookMark eNp9kE1OwzAQhS1UJNrCAZBY5AIOdvyTeIkqKJVKQWpgG7nuWBjSOHJcKm5PonaBWLCZGY3eN3rzJmjU-AYQuqYkpZSo23JRrtOMZDxlTPJcqDM0pkIUmBAqR8OccayIIBdo0nUf_ZYLSsdo9bSvo8NvDg7JutXR6RqXsGt90HUyD7p9T2a--fL1Pjrf9LsVxIMPn4n1ISmDttaZ5CXA1plBcInOra47uDr1KXp9uC9nj3j5PF_M7pbY0IJGLPVGaWkyyKQomLBGbDPS-ynEUAVoJeVmUwDLpQIlFM1t_xo3uaKCcWXZFOXHuyb4rgtgK-OiHhzEoF1dUVINsVRDLNUQS3WKpSfpH7INbqfD97_MzZFxAPBLz3kvKNgPWOdv0g
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2024_3472754
crossref_primary_10_1080_13658816_2024_2403023
crossref_primary_10_1109_JIOT_2024_3476498
crossref_primary_10_1016_j_engappai_2025_110526
crossref_primary_10_1016_j_chaos_2024_115437
crossref_primary_10_1016_j_eswa_2024_125144
Cites_doi 10.1145/2939672.2939754
10.1007/978-3-030-04167-0_33
10.1109/CVPR.2018.00745
10.1609/aaai.v37i7.25976
10.1109/TKDE.2020.3008774
10.3390/ijgi10070485
10.1109/TITS.2019.2935152
10.1111/tgis.12302
10.1109/CVPR.2016.90
10.5555/3045118.3045167
10.1016/j.neucom.2020.11.026
10.1155/2020/7586154
10.1016/j.compenvurbsys.2018.05.009
10.1016/j.neucom.2021.07.052
10.1007/11494669_93
10.1109/TITS.2006.869623
10.1198/jasa.2009.0042
10.1016/j.trc.2019.02.002
10.1109/TNNLS.2020.2978386
10.1109/TITS.2019.2963722
10.1109/VTC2020-Spring48590.2020.9129440
10.3115/v1/W14-4012
10.3390/s17040818
10.1109/TITS.2004.837813
10.1162/0899766042321814
10.1609/aaai.v31i1.10735
10.1016/j.trc.2017.10.016
10.24963/ijcai.2019/264
10.1109/TITS.2011.2158001
10.1088/1742-6596/1693/1/012173
10.1016/j.trc.2020.02.013
10.1109/ITSC.2019.8916778
10.1609/aaai.v33i01.33013656
10.1145/3195106.3195117
10.1109/TITS.2021.3069234
10.1145/2629592
10.1016/j.trc.2014.01.005
10.1007/s12544-015-0170-8
10.1609/aaai.v34i04.5758
10.1109/TMC.2021.3129796
10.1016/j.trc.2019.05.039
10.1162/neco.1997.9.8.1735
10.1080/01441647.2018.1442887
10.3390/su141912397
10.1016/j.trc.2021.103063
10.1109/TITS.2019.2950416
10.1016/j.neucom.2020.03.031
10.3390/s21206735
10.1109/TMM.2017.2648498
10.1109/TBDATA.2015.2465959
10.48550/ARXIV.1706.03762
10.1109/YAC.2016.7804912
10.1145/3583780.3615160
10.1109/TITS.2021.3056415
10.1145/3340531.3411894
10.1145/2487575.2488188
10.1609/aaai.v33i01.33014602
10.1016/j.is.2016.01.007
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3364759
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 9586
ExternalDocumentID 10_1109_TITS_2024_3364759
10443648
Genre orig-research
GrantInformation_xml – fundername: Hong Kong Research Grants Council (RGC)
  grantid: HKUST16210520
  funderid: 10.13039/501100002920
– fundername: Hong Kong Research Grants Council (RGC) Theme-based Research Scheme (TRS)
  grantid: T41-603/20R
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c181t-6ab9a6c2e265835fc5d205118505115ea966bb8e3769e95917f0244c7915349f3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Wed Oct 01 05:03:19 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Wed Aug 27 02:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c181t-6ab9a6c2e265835fc5d205118505115ea966bb8e3769e95917f0244c7915349f3
ORCID 0000-0002-3194-1124
0000-0001-5210-8468
0000-0002-1670-3582
PageCount 15
ParticipantIDs ieee_primary_10443648
crossref_citationtrail_10_1109_TITS_2024_3364759
crossref_primary_10_1109_TITS_2024_3364759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Aug.
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref15
Ahmed (ref16) 1979
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
Cui (ref24) 2018
ref44
Xu (ref43) 2013
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Yu (ref26) 2017
ref40
ref35
ref34
Kingma (ref65) 2014
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Yi (ref42)
Bai (ref56) 2018
ref23
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref51
  doi: 10.1145/2939672.2939754
– ident: ref31
  doi: 10.1007/978-3-030-04167-0_33
– ident: ref60
  doi: 10.1109/CVPR.2018.00745
– ident: ref63
  doi: 10.1609/aaai.v37i7.25976
– ident: ref44
  doi: 10.1109/TKDE.2020.3008774
– ident: ref30
  doi: 10.3390/ijgi10070485
– ident: ref32
  doi: 10.1109/TITS.2019.2935152
– ident: ref7
  doi: 10.1111/tgis.12302
– ident: ref53
  doi: 10.1109/CVPR.2016.90
– ident: ref57
  doi: 10.5555/3045118.3045167
– ident: ref62
  doi: 10.1016/j.neucom.2020.11.026
– ident: ref29
  doi: 10.1155/2020/7586154
– ident: ref5
  doi: 10.1016/j.compenvurbsys.2018.05.009
– ident: ref28
  doi: 10.1016/j.neucom.2021.07.052
– ident: ref52
  doi: 10.1007/11494669_93
– ident: ref19
  doi: 10.1109/TITS.2006.869623
– ident: ref20
  doi: 10.1198/jasa.2009.0042
– ident: ref6
  doi: 10.1016/j.trc.2019.02.002
– ident: ref58
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref27
  doi: 10.1109/TITS.2019.2963722
– ident: ref22
  doi: 10.1109/VTC2020-Spring48590.2020.9129440
– ident: ref55
  doi: 10.3115/v1/W14-4012
– year: 2017
  ident: ref26
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: arXiv:1709.04875
– ident: ref21
  doi: 10.3390/s17040818
– ident: ref18
  doi: 10.1109/TITS.2004.837813
– ident: ref41
  doi: 10.1162/0899766042321814
– ident: ref11
  doi: 10.1609/aaai.v31i1.10735
– ident: ref23
  doi: 10.1016/j.trc.2017.10.016
– year: 2018
  ident: ref24
  article-title: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction
  publication-title: arXiv:1801.02143
– ident: ref37
  doi: 10.24963/ijcai.2019/264
– ident: ref1
  doi: 10.1109/TITS.2011.2158001
– ident: ref45
  doi: 10.1088/1742-6596/1693/1/012173
– ident: ref9
  doi: 10.1016/j.trc.2020.02.013
– ident: ref49
  doi: 10.1109/ITSC.2019.8916778
– ident: ref12
  doi: 10.1609/aaai.v33i01.33013656
– ident: ref61
  doi: 10.1145/3195106.3195117
– ident: ref35
  doi: 10.1109/TITS.2021.3069234
– ident: ref2
  doi: 10.1145/2629592
– ident: ref15
  doi: 10.1016/j.trc.2014.01.005
– ident: ref17
  doi: 10.1007/s12544-015-0170-8
– issue: 722
  volume-title: Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques
  year: 1979
  ident: ref16
– ident: ref50
  doi: 10.1609/aaai.v34i04.5758
– ident: ref36
  doi: 10.1109/TMC.2021.3129796
– ident: ref48
  doi: 10.1016/j.trc.2019.05.039
– ident: ref54
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref4
  doi: 10.1080/01441647.2018.1442887
– ident: ref13
  doi: 10.3390/su141912397
– ident: ref14
  doi: 10.1016/j.trc.2021.103063
– ident: ref34
  doi: 10.1109/TITS.2019.2950416
– start-page: 2704
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref42
  article-title: ST-MVL: Filling missing values in geo-sensory time series data
– year: 2013
  ident: ref43
  article-title: A survey on multi-view learning
  publication-title: arXiv:1304.5634
– ident: ref33
  doi: 10.1016/j.neucom.2020.03.031
– ident: ref8
  doi: 10.3390/s21206735
– ident: ref47
  doi: 10.1109/TMM.2017.2648498
– ident: ref39
  doi: 10.1109/TBDATA.2015.2465959
– ident: ref46
  doi: 10.48550/ARXIV.1706.03762
– ident: ref25
  doi: 10.1109/YAC.2016.7804912
– ident: ref64
  doi: 10.1145/3583780.3615160
– year: 2018
  ident: ref56
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
  publication-title: arXiv:1803.01271
– ident: ref10
  doi: 10.1109/TITS.2021.3056415
– ident: ref38
  doi: 10.1145/3340531.3411894
– year: 2014
  ident: ref65
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref40
  doi: 10.1145/2487575.2488188
– ident: ref59
  doi: 10.1609/aaai.v33i01.33014602
– ident: ref3
  doi: 10.1016/j.is.2016.01.007
SSID ssj0014511
Score 2.4542503
Snippet Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 9572
SubjectTerms Attention mechanism
Computational modeling
Convolutional neural networks
Correlation
Data models
multi-view learning
Predictive models
Public transportation
Roads
spatial–temporal graph convolutional network
traffic prediction
Title Multi-View Spatial-Temporal Graph Convolutional Network for Traffic Prediction
URI https://ieeexplore.ieee.org/document/10443648
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58T5RR58Elq7NOmaRxnqFCyCneytNGkK4uhkdAr-9d4l3SiC4ksJIYFwd8nd9e5-R8hFDCpWiziCK66kx4UMsZE798QgL5VgShvbreExicYT_jAV06ZY3dbCGGNs8pnxcWhj-cVcL_FXGdxwzsOIxx3SGcaRK9ZahwwQaMuCozLuyUCsQpiDQF6l9-kzuIKM-yHCpSMuaUsJtbqqWKVyu0OS1XFcLsmbv6yVr79-IDX--7y7ZLsxL-m1k4c9smGqfbLVAh08IImtufVeXs0nxYbEIIBe6gCqZvQO8avpaF59NCIJc4nLFKdg3lJQbYg5QZ8WGODBBT0yub1JR2Ov6argadDmtRflSuaRZoaB8RGKUouCBehnCPwKk4MDpFRs4OWRRgpw50qgHNdDCY8jl2V4SLrVvDJHhHLFFVzgQhSx5iGP8pDlJlIlAwZrVag-CVZkznQDOY6dL2aZdT0CmSFnMuRM1nCmTy7XW94d3sZfi3tI9NZCR-_jX-ZPyCZud_l7p6RbL5bmDGyKWp1bWfoG1OfGOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H9QHv8X52QefhM6uvdTmUYZz060IdrK30qQpiKOT0Sn413uXdqMIii-lhLSEu0vuLnf3O8YuA1Sxigc-bnEpbODCo0buYPN2kknuSqVNt4Zh6PdG8DDm46pY3dTCaK1N8plu0auJ5adTNaerMtzhAJ4PwSpb4wDAy3KtZdCAoLYMPKoLtnD4IojZdsR11I-e0Rl0oeURYDohk9bUUK2vilEr3W0WLhZUZpO8teaFbKmvH1iN_17xDtuqDEzrtpSIXbai8z22WYMd3Gehqbq1X171p0UtiVEE7aiEqJpY94RgbXWm-UcllDgWlrniFhq4Fio3Qp2wnmYU4qEJB2zUvYs6Pbvqq2Ar1OeF7SdSJL5ytYvmh8czxVPXIU-D05PrBF0gKQONZ4_QgqNDlyHlQN0IPB5BZN4ha-TTXB8xCyRI3MIpTwMFHviJ5ybal5mLLFYylU3mLMgcqwp0nHpfTGLjfDgiJs7ExJm44kyTXS0_eS8RN_6afEBEr00s6X38y_gFW-9Fw0E86IePJ2yDflVm852yRjGb6zO0MAp5buTqG2P_yYU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-View+Spatial-Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wei%2C+Shuqing&rft.au=Feng%2C+Siyuan&rft.au=Yang%2C+Hai&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=9572&rft.epage=9586&rft_id=info:doi/10.1109%2FTITS.2024.3364759&rft.externalDocID=10443648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon