Multi-View Spatial-Temporal Graph Convolutional Network for Traffic Prediction
Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and e...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 25; no. 8; pp. 9572 - 9586 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 |
| DOI | 10.1109/TITS.2024.3364759 |
Cover
| Abstract | Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and effectively integrate them within a single prediction framework needs further exploration. To tackle the above issues, we propose a multi-view spatial-temporal graph convolutional framework MVSTG, which adequately exploits the multi-view spatial-temporal dependencies and their interactions to improve the accuracy of traffic prediction. Multi-view temporal learning captures the multiple temporal trends by temporal convolution from multi-granularity historical data, and multi-view spatial learning handles the multiple spatial correlations by graph convolution from multiple graphs. In addition, view-wise attention-based fusion is proposed to adaptively identify the importance of each upstream view, fuse the multi-view information, and generate integrated results for downstream views. The experiments on two real-world urban traffic datasets demonstrate that the multi-view data and the proposed model framework enhance performance on the accuracy of speed prediction, especially in mid-term and long-term prediction. |
|---|---|
| AbstractList | Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially those formed by different traffic modes, are not fully exploited, and how to simultaneously consider spatial and temporal dependencies and effectively integrate them within a single prediction framework needs further exploration. To tackle the above issues, we propose a multi-view spatial-temporal graph convolutional framework MVSTG, which adequately exploits the multi-view spatial-temporal dependencies and their interactions to improve the accuracy of traffic prediction. Multi-view temporal learning captures the multiple temporal trends by temporal convolution from multi-granularity historical data, and multi-view spatial learning handles the multiple spatial correlations by graph convolution from multiple graphs. In addition, view-wise attention-based fusion is proposed to adaptively identify the importance of each upstream view, fuse the multi-view information, and generate integrated results for downstream views. The experiments on two real-world urban traffic datasets demonstrate that the multi-view data and the proposed model framework enhance performance on the accuracy of speed prediction, especially in mid-term and long-term prediction. |
| Author | Feng, Siyuan Wei, Shuqing Yang, Hai |
| Author_xml | – sequence: 1 givenname: Shuqing orcidid: 0000-0002-1670-3582 surname: Wei fullname: Wei, Shuqing organization: Division of Emerging Interdisciplinary Area, The Hong Kong University of Science and Technology, Hong Kong, China – sequence: 2 givenname: Siyuan orcidid: 0000-0002-3194-1124 surname: Feng fullname: Feng, Siyuan email: siyuan.feng@polyu.edu.hk organization: Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hong Kong, China – sequence: 3 givenname: Hai orcidid: 0000-0001-5210-8468 surname: Yang fullname: Yang, Hai organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China |
| BookMark | eNp9kE1OwzAQhS1UJNrCAZBY5AIOdvyTeIkqKJVKQWpgG7nuWBjSOHJcKm5PonaBWLCZGY3eN3rzJmjU-AYQuqYkpZSo23JRrtOMZDxlTPJcqDM0pkIUmBAqR8OccayIIBdo0nUf_ZYLSsdo9bSvo8NvDg7JutXR6RqXsGt90HUyD7p9T2a--fL1Pjrf9LsVxIMPn4n1ISmDttaZ5CXA1plBcInOra47uDr1KXp9uC9nj3j5PF_M7pbY0IJGLPVGaWkyyKQomLBGbDPS-ynEUAVoJeVmUwDLpQIlFM1t_xo3uaKCcWXZFOXHuyb4rgtgK-OiHhzEoF1dUVINsVRDLNUQS3WKpSfpH7INbqfD97_MzZFxAPBLz3kvKNgPWOdv0g |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1109_TITS_2024_3472754 crossref_primary_10_1080_13658816_2024_2403023 crossref_primary_10_1109_JIOT_2024_3476498 crossref_primary_10_1016_j_engappai_2025_110526 crossref_primary_10_1016_j_chaos_2024_115437 crossref_primary_10_1016_j_eswa_2024_125144 |
| Cites_doi | 10.1145/2939672.2939754 10.1007/978-3-030-04167-0_33 10.1109/CVPR.2018.00745 10.1609/aaai.v37i7.25976 10.1109/TKDE.2020.3008774 10.3390/ijgi10070485 10.1109/TITS.2019.2935152 10.1111/tgis.12302 10.1109/CVPR.2016.90 10.5555/3045118.3045167 10.1016/j.neucom.2020.11.026 10.1155/2020/7586154 10.1016/j.compenvurbsys.2018.05.009 10.1016/j.neucom.2021.07.052 10.1007/11494669_93 10.1109/TITS.2006.869623 10.1198/jasa.2009.0042 10.1016/j.trc.2019.02.002 10.1109/TNNLS.2020.2978386 10.1109/TITS.2019.2963722 10.1109/VTC2020-Spring48590.2020.9129440 10.3115/v1/W14-4012 10.3390/s17040818 10.1109/TITS.2004.837813 10.1162/0899766042321814 10.1609/aaai.v31i1.10735 10.1016/j.trc.2017.10.016 10.24963/ijcai.2019/264 10.1109/TITS.2011.2158001 10.1088/1742-6596/1693/1/012173 10.1016/j.trc.2020.02.013 10.1109/ITSC.2019.8916778 10.1609/aaai.v33i01.33013656 10.1145/3195106.3195117 10.1109/TITS.2021.3069234 10.1145/2629592 10.1016/j.trc.2014.01.005 10.1007/s12544-015-0170-8 10.1609/aaai.v34i04.5758 10.1109/TMC.2021.3129796 10.1016/j.trc.2019.05.039 10.1162/neco.1997.9.8.1735 10.1080/01441647.2018.1442887 10.3390/su141912397 10.1016/j.trc.2021.103063 10.1109/TITS.2019.2950416 10.1016/j.neucom.2020.03.031 10.3390/s21206735 10.1109/TMM.2017.2648498 10.1109/TBDATA.2015.2465959 10.48550/ARXIV.1706.03762 10.1109/YAC.2016.7804912 10.1145/3583780.3615160 10.1109/TITS.2021.3056415 10.1145/3340531.3411894 10.1145/2487575.2488188 10.1609/aaai.v33i01.33014602 10.1016/j.is.2016.01.007 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TITS.2024.3364759 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 9586 |
| ExternalDocumentID | 10_1109_TITS_2024_3364759 10443648 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hong Kong Research Grants Council (RGC) grantid: HKUST16210520 funderid: 10.13039/501100002920 – fundername: Hong Kong Research Grants Council (RGC) Theme-based Research Scheme (TRS) grantid: T41-603/20R |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c181t-6ab9a6c2e265835fc5d205118505115ea966bb8e3769e95917f0244c7915349f3 |
| IEDL.DBID | RIE |
| ISSN | 1524-9050 |
| IngestDate | Wed Oct 01 05:03:19 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Wed Aug 27 02:33:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c181t-6ab9a6c2e265835fc5d205118505115ea966bb8e3769e95917f0244c7915349f3 |
| ORCID | 0000-0002-3194-1124 0000-0001-5210-8468 0000-0002-1670-3582 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10443648 crossref_citationtrail_10_1109_TITS_2024_3364759 crossref_primary_10_1109_TITS_2024_3364759 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Aug. |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref15 Ahmed (ref16) 1979 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 Cui (ref24) 2018 ref44 Xu (ref43) 2013 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Yu (ref26) 2017 ref40 ref35 ref34 Kingma (ref65) 2014 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Yi (ref42) Bai (ref56) 2018 ref23 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref51 doi: 10.1145/2939672.2939754 – ident: ref31 doi: 10.1007/978-3-030-04167-0_33 – ident: ref60 doi: 10.1109/CVPR.2018.00745 – ident: ref63 doi: 10.1609/aaai.v37i7.25976 – ident: ref44 doi: 10.1109/TKDE.2020.3008774 – ident: ref30 doi: 10.3390/ijgi10070485 – ident: ref32 doi: 10.1109/TITS.2019.2935152 – ident: ref7 doi: 10.1111/tgis.12302 – ident: ref53 doi: 10.1109/CVPR.2016.90 – ident: ref57 doi: 10.5555/3045118.3045167 – ident: ref62 doi: 10.1016/j.neucom.2020.11.026 – ident: ref29 doi: 10.1155/2020/7586154 – ident: ref5 doi: 10.1016/j.compenvurbsys.2018.05.009 – ident: ref28 doi: 10.1016/j.neucom.2021.07.052 – ident: ref52 doi: 10.1007/11494669_93 – ident: ref19 doi: 10.1109/TITS.2006.869623 – ident: ref20 doi: 10.1198/jasa.2009.0042 – ident: ref6 doi: 10.1016/j.trc.2019.02.002 – ident: ref58 doi: 10.1109/TNNLS.2020.2978386 – ident: ref27 doi: 10.1109/TITS.2019.2963722 – ident: ref22 doi: 10.1109/VTC2020-Spring48590.2020.9129440 – ident: ref55 doi: 10.3115/v1/W14-4012 – year: 2017 ident: ref26 article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting publication-title: arXiv:1709.04875 – ident: ref21 doi: 10.3390/s17040818 – ident: ref18 doi: 10.1109/TITS.2004.837813 – ident: ref41 doi: 10.1162/0899766042321814 – ident: ref11 doi: 10.1609/aaai.v31i1.10735 – ident: ref23 doi: 10.1016/j.trc.2017.10.016 – year: 2018 ident: ref24 article-title: Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction publication-title: arXiv:1801.02143 – ident: ref37 doi: 10.24963/ijcai.2019/264 – ident: ref1 doi: 10.1109/TITS.2011.2158001 – ident: ref45 doi: 10.1088/1742-6596/1693/1/012173 – ident: ref9 doi: 10.1016/j.trc.2020.02.013 – ident: ref49 doi: 10.1109/ITSC.2019.8916778 – ident: ref12 doi: 10.1609/aaai.v33i01.33013656 – ident: ref61 doi: 10.1145/3195106.3195117 – ident: ref35 doi: 10.1109/TITS.2021.3069234 – ident: ref2 doi: 10.1145/2629592 – ident: ref15 doi: 10.1016/j.trc.2014.01.005 – ident: ref17 doi: 10.1007/s12544-015-0170-8 – issue: 722 volume-title: Analysis of Freeway Traffic Time-series Data by Using Box-Jenkins Techniques year: 1979 ident: ref16 – ident: ref50 doi: 10.1609/aaai.v34i04.5758 – ident: ref36 doi: 10.1109/TMC.2021.3129796 – ident: ref48 doi: 10.1016/j.trc.2019.05.039 – ident: ref54 doi: 10.1162/neco.1997.9.8.1735 – ident: ref4 doi: 10.1080/01441647.2018.1442887 – ident: ref13 doi: 10.3390/su141912397 – ident: ref14 doi: 10.1016/j.trc.2021.103063 – ident: ref34 doi: 10.1109/TITS.2019.2950416 – start-page: 2704 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref42 article-title: ST-MVL: Filling missing values in geo-sensory time series data – year: 2013 ident: ref43 article-title: A survey on multi-view learning publication-title: arXiv:1304.5634 – ident: ref33 doi: 10.1016/j.neucom.2020.03.031 – ident: ref8 doi: 10.3390/s21206735 – ident: ref47 doi: 10.1109/TMM.2017.2648498 – ident: ref39 doi: 10.1109/TBDATA.2015.2465959 – ident: ref46 doi: 10.48550/ARXIV.1706.03762 – ident: ref25 doi: 10.1109/YAC.2016.7804912 – ident: ref64 doi: 10.1145/3583780.3615160 – year: 2018 ident: ref56 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling publication-title: arXiv:1803.01271 – ident: ref10 doi: 10.1109/TITS.2021.3056415 – ident: ref38 doi: 10.1145/3340531.3411894 – year: 2014 ident: ref65 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref40 doi: 10.1145/2487575.2488188 – ident: ref59 doi: 10.1609/aaai.v33i01.33014602 – ident: ref3 doi: 10.1016/j.is.2016.01.007 |
| SSID | ssj0014511 |
| Score | 2.4542503 |
| Snippet | Multi-step traffic speed prediction is a challenging issue due to the multiple spatial-temporal dependencies among roads. Some spatial dependencies, especially... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9572 |
| SubjectTerms | Attention mechanism Computational modeling Convolutional neural networks Correlation Data models multi-view learning Predictive models Public transportation Roads spatial–temporal graph convolutional network traffic prediction |
| Title | Multi-View Spatial-Temporal Graph Convolutional Network for Traffic Prediction |
| URI | https://ieeexplore.ieee.org/document/10443648 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uT_rg58T5RR58Elq7NOmaRxnqFCyCneytNGkK4uhkdAr-9d4l3SiC4ksJIYFwd8nd9e5-R8hFDCpWiziCK66kx4UMsZE798QgL5VgShvbreExicYT_jAV06ZY3dbCGGNs8pnxcWhj-cVcL_FXGdxwzsOIxx3SGcaRK9ZahwwQaMuCozLuyUCsQpiDQF6l9-kzuIKM-yHCpSMuaUsJtbqqWKVyu0OS1XFcLsmbv6yVr79-IDX--7y7ZLsxL-m1k4c9smGqfbLVAh08IImtufVeXs0nxYbEIIBe6gCqZvQO8avpaF59NCIJc4nLFKdg3lJQbYg5QZ8WGODBBT0yub1JR2Ov6argadDmtRflSuaRZoaB8RGKUouCBehnCPwKk4MDpFRs4OWRRgpw50qgHNdDCY8jl2V4SLrVvDJHhHLFFVzgQhSx5iGP8pDlJlIlAwZrVag-CVZkznQDOY6dL2aZdT0CmSFnMuRM1nCmTy7XW94d3sZfi3tI9NZCR-_jX-ZPyCZud_l7p6RbL5bmDGyKWp1bWfoG1OfGOA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H9QHv8X52QefhM6uvdTmUYZz060IdrK30qQpiKOT0Sn413uXdqMIii-lhLSEu0vuLnf3O8YuA1Sxigc-bnEpbODCo0buYPN2kknuSqVNt4Zh6PdG8DDm46pY3dTCaK1N8plu0auJ5adTNaerMtzhAJ4PwSpb4wDAy3KtZdCAoLYMPKoLtnD4IojZdsR11I-e0Rl0oeURYDohk9bUUK2vilEr3W0WLhZUZpO8teaFbKmvH1iN_17xDtuqDEzrtpSIXbai8z22WYMd3Gehqbq1X171p0UtiVEE7aiEqJpY94RgbXWm-UcllDgWlrniFhq4Fio3Qp2wnmYU4qEJB2zUvYs6Pbvqq2Ar1OeF7SdSJL5ytYvmh8czxVPXIU-D05PrBF0gKQONZ4_QgqNDlyHlQN0IPB5BZN4ha-TTXB8xCyRI3MIpTwMFHviJ5ybal5mLLFYylU3mLMgcqwp0nHpfTGLjfDgiJs7ExJm44kyTXS0_eS8RN_6afEBEr00s6X38y_gFW-9Fw0E86IePJ2yDflVm852yRjGb6zO0MAp5buTqG2P_yYU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-View+Spatial-Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Wei%2C+Shuqing&rft.au=Feng%2C+Siyuan&rft.au=Yang%2C+Hai&rft.date=2024-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=25&rft.issue=8&rft.spage=9572&rft.epage=9586&rft_id=info:doi/10.1109%2FTITS.2024.3364759&rft.externalDocID=10443648 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |