UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS

In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a unio...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on numerical analysis Vol. 52; no. 4; pp. 2137 - 2162
Main Authors DECKELNICK, KLAUS, ELLIOTT, CHARLES M., RANNER, THOMAS
Format Journal Article
LanguageEnglish
Published Society for Industrial and Applied Mathematics 01.01.2014
Subjects
Online AccessGet full text
ISSN0036-1429
1095-7170
DOI10.1137/130948641

Cover

Abstract In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, 𝓘h, of (n + 1)-simplices. The unifying feature of the methodological approach is that the finite element approximating space is based on continuous piecewise linear finite element functions on the bulk triangulation 𝓘h which is independent of Γ. Our first method is a sharp interface method (SIF) which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γh, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes SIF from the method of [M. A. Olshanskii, A. Reusken, and J. Grande, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358]. The second method is a narrow band method (NBM) in which the region of integration is a narrow band of width O(h). NBM is similar to the method of [K. Deckelnick et al., IMA J. Numer. Anal., 30 (2010), pp. 351–376] but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L2 and H1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces, and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection-diffusion conservation law. Numerical results are given which illustrate the rates of convergence.
AbstractList In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, 𝓘h, of (n + 1)-simplices. The unifying feature of the methodological approach is that the finite element approximating space is based on continuous piecewise linear finite element functions on the bulk triangulation 𝓘h which is independent of Γ. Our first method is a sharp interface method (SIF) which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γh, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes SIF from the method of [M. A. Olshanskii, A. Reusken, and J. Grande, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358]. The second method is a narrow band method (NBM) in which the region of integration is a narrow band of width O(h). NBM is similar to the method of [K. Deckelnick et al., IMA J. Numer. Anal., 30 (2010), pp. 351–376] but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L2 and H1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces, and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection-diffusion conservation law. Numerical results are given which illustrate the rates of convergence.
Author DECKELNICK, KLAUS
ELLIOTT, CHARLES M.
RANNER, THOMAS
Author_xml – sequence: 1
  givenname: KLAUS
  surname: DECKELNICK
  fullname: DECKELNICK, KLAUS
– sequence: 2
  givenname: CHARLES M.
  surname: ELLIOTT
  fullname: ELLIOTT, CHARLES M.
– sequence: 3
  givenname: THOMAS
  surname: RANNER
  fullname: RANNER, THOMAS
BookMark eNptkMFPgzAYxRszE7fpwT_ApFcPuH60QDniVrZGBgrlZkK6riQscxjg4n8vy4wH4-nL-_J-L3lvhian9mQRugfyBECDBVASMu4zuEJTIKHnBBCQCZoSQn0HmBveoFnfH8ioOdApei_TWColVjiWqVQCi0RsRarwVqhNtipwWch0jZ_L5GV8FRtR4DjLcVHmcbQU-DXKlYwSvJJxLPKROwvxVkZKZmlxi65rfezt3c-dozIWarlxkmwtl1HiGOAwONRy15gdrX3XEqOt5-6M0YbvTAiGsr0XGF7b_ViKMLAUjE9oWBvfD7Tvhcyjc_R4yTVd2_edravPrvnQ3VcFpDrPUv3OMnoXf7ymGfTQtKeh083xX-LhQhz6oe1-o13mgQuc0W_-jGc3
CitedBy_id crossref_primary_10_1137_16M1099388
crossref_primary_10_1051_matecconf_20164401055
crossref_primary_10_1007_s10596_024_10332_8
crossref_primary_10_1051_m2an_2018038
crossref_primary_10_1093_imanum_draa042
crossref_primary_10_1093_imanum_draa062
crossref_primary_10_1016_j_cma_2016_06_033
crossref_primary_10_1137_16M1102203
crossref_primary_10_1137_23M156968X
crossref_primary_10_1016_j_cam_2019_112424
crossref_primary_10_1007_s10915_023_02326_y
crossref_primary_10_1137_20M1341283
crossref_primary_10_1016_j_cma_2016_04_012
crossref_primary_10_1002_nme_4892
crossref_primary_10_1007_s00211_018_0946_6
crossref_primary_10_1515_cmam_2020_0056
crossref_primary_10_1016_j_cma_2023_116223
crossref_primary_10_1515_jnma_2017_0109
crossref_primary_10_3934_mine_2024015
crossref_primary_10_1002_fld_4510
crossref_primary_10_1093_imanum_drv068
crossref_primary_10_1017_S0962492913000056
crossref_primary_10_1051_m2an_2023064
crossref_primary_10_1137_17M1148633
crossref_primary_10_1093_imanum_drx041
crossref_primary_10_1093_imanum_drz021
crossref_primary_10_1007_s40687_018_0137_1
crossref_primary_10_1016_j_cam_2015_03_002
crossref_primary_10_1016_j_cma_2017_07_037
crossref_primary_10_1016_j_jcp_2019_109166
crossref_primary_10_1002_nme_7495
crossref_primary_10_1016_j_jcp_2022_111734
Cites_doi 10.1016/j.jcp.2008.07.023
10.1007/s00791-008-0122-0
10.1007/s00791-007-0081-x
10.1007/s10884-004-7834-8
10.1016/S0045-7825(02)00524-8
10.1093/imanum/drn049
10.1016/j.jcp.2007.05.025
10.1007/s00607-008-0003-x
10.1137/120895433
10.1007/s00607-008-0004-9
10.4171/IFB/182
10.1098/rsif.2012.0276
10.1016/j.jcp.2005.11.031
10.1090/S0025-5718-2012-02601-9
10.1137/090779917
10.1006/jcph.2001.6937
10.1007/s00285-011-0401-0
10.1093/imanum/4.3.309
10.1016/j.jcp.2008.12.035
10.1073/pnas.0504953102
10.1016/j.actamat.2012.07.059
10.1002/nme.2631
10.1007/s00607-010-0110-3
10.1137/110842235
10.1137/070708135
10.1007/s00211-009-0260-4
10.1515/rnam-2013-0007
10.1137/050642873
10.1137/080717602
10.1137/110828642
ContentType Journal Article
Copyright Copyright ©2014 Society for Industrial and Applied Mathematics
Copyright_xml – notice: Copyright ©2014 Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
DOI 10.1137/130948641
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1095-7170
EndPage 2162
ExternalDocumentID 10_1137_130948641
24512184
GroupedDBID -DZ
-~X
123
2AX
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
AALVN
AASXH
AAWIL
ABAWQ
ABBHK
ABFAN
ABJCF
ABKAD
ABMZU
ABPFR
ABPQH
ABUWG
ABXSQ
ABYWD
ACBEA
ACGFO
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACPRK
ACTMH
ACUBG
ADBBV
ADODI
ADULT
AENEX
AEUPB
AFKRA
AFRAH
AFVYC
AFXHP
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ANXRF
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
CZ9
D1I
D1J
D1K
DQDLB
DSRWC
DU5
DWQXO
EBS
ECEWR
EDO
EJD
EST
ESX
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
HQ6
H~9
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
N9A
P0-
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RSI
SA0
TAE
TN5
WH7
YNT
.4S
.DC
3EH
3R3
8WZ
A6W
AAYJJ
AAYXX
ABDBF
ACUHS
ARCSS
CITATION
DQ2
EAP
EMK
FEDTE
FVMVE
HGD
HVGLF
I-F
MVM
NHB
PQGLB
PUEGO
RNS
T9H
TUS
WHG
YXE
ZCG
ID FETCH-LOGICAL-c181t-3e82ccb3f62e0cae52bccac8bc91c34d57c8fed641041e31c6039fc667a659453
ISSN 0036-1429
IngestDate Thu Apr 24 22:52:17 EDT 2025
Wed Oct 01 03:44:38 EDT 2025
Fri Jun 20 01:19:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c181t-3e82ccb3f62e0cae52bccac8bc91c34d57c8fed641041e31c6039fc667a659453
PageCount 26
ParticipantIDs crossref_primary_10_1137_130948641
crossref_citationtrail_10_1137_130948641
jstor_primary_24512184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140101
2014-01-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140101
  day: 1
PublicationDecade 2010
PublicationTitle SIAM journal on numerical analysis
PublicationYear 2014
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb8
Engwer C. (atypb27) 2012
Dziuk G. (atypb17) 1988
atypb26
Shewchuk J. R. (atypb39) 1996
Dziuk G. (atypb18) 2007; 25
atypb28
atypb29
atypb22
atypb23
atypb24
atypb25
atypb20
atypb21
Dziuk G. (atypb19) 2007; 25
atypb15
atypb16
atypb38
atypb11
atypb33
atypb12
atypb34
atypb13
atypb14
atypb36
atypb30
atypb31
atypb2
atypb10
atypb32
atypb5
atypb4
atypb7
atypb6
References_xml – ident: atypb24
  doi: 10.1016/j.jcp.2008.07.023
– ident: atypb21
  doi: 10.1007/s00791-008-0122-0
– start-page: 203
  year: 1996
  ident: atypb39
  publication-title: Berlin
– ident: atypb10
  doi: 10.1007/s00791-007-0081-x
– ident: atypb5
  doi: 10.1007/s10884-004-7834-8
– ident: atypb31
  doi: 10.1016/S0045-7825(02)00524-8
– ident: atypb12
  doi: 10.1093/imanum/drn049
– ident: atypb32
  doi: 10.1016/j.jcp.2007.05.025
– ident: atypb6
  doi: 10.1007/s00607-008-0003-x
– ident: atypb36
  doi: 10.1137/120895433
– ident: atypb7
  doi: 10.1007/s00607-008-0004-9
– ident: atypb20
  doi: 10.4171/IFB/182
– start-page: 142
  year: 1988
  ident: atypb17
  publication-title: Berlin
– ident: atypb26
  doi: 10.1098/rsif.2012.0276
– ident: atypb30
  doi: 10.1016/j.jcp.2005.11.031
– volume: 25
  start-page: 385
  year: 2007
  ident: atypb18
  publication-title: IMA J. Numer. Anal.
– ident: atypb23
  doi: 10.1090/S0025-5718-2012-02601-9
– ident: atypb25
  doi: 10.1137/090779917
– ident: atypb9
  doi: 10.1006/jcph.2001.6937
– ident: atypb2
  doi: 10.1007/s00285-011-0401-0
– ident: atypb4
  doi: 10.1093/imanum/4.3.309
– start-page: 89
  year: 2012
  ident: atypb27
  publication-title: Berlin
– ident: atypb29
  doi: 10.1016/j.jcp.2008.12.035
– ident: atypb38
  doi: 10.1073/pnas.0504953102
– ident: atypb28
  doi: 10.1016/j.actamat.2012.07.059
– volume: 25
  start-page: 385
  year: 2007
  ident: atypb19
  publication-title: J. Comput. Math.
– ident: atypb8
  doi: 10.1002/nme.2631
– ident: atypb13
  doi: 10.1007/s00607-010-0110-3
– ident: atypb16
  doi: 10.1137/110842235
– ident: atypb14
  doi: 10.1137/070708135
– ident: atypb33
  doi: 10.1007/s00211-009-0260-4
– ident: atypb11
  doi: 10.1515/rnam-2013-0007
– ident: atypb15
  doi: 10.1137/050642873
– ident: atypb34
  doi: 10.1137/080717602
– ident: atypb22
  doi: 10.1137/110828642
SSID ssj0003813
Score 2.2475412
Snippet In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk...
SourceID crossref
jstor
SourceType Enrichment Source
Index Database
Publisher
StartPage 2137
SubjectTerms Approximation
Degrees of freedom
Elliptic equations
Error analysis
Finite element method
Hypersurfaces
Mathematical surfaces
Numerical methods
Partial differential equations
Triangulation
Title UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS
URI https://www.jstor.org/stable/24512184
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: true
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: BENPR
  dateStart: 19660101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1095-7170
  dateEnd: 20140531
  omitProxy: true
  ssIdentifier: ssj0003813
  issn: 0036-1429
  databaseCode: 8FG
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4EDPwYTg4EsxAEp8oh_Jj1uqNME6jTBKu2AVNmOo01UAdbkwv75vcSuk7IdBpe0seJIyfvy_D37-XsIvadGskJTTVypJRHSWZLnhpEi5SJTqixl2c53zE7U8Vx8Ppfno9H1cHdJbfbtnzv3lfyPVaEN7Nrukv0Hy8abQgP8B_vCESwMx3vZeF6Vl3VLGY8uW-qYTH0ueDLrykKvEp8PcNgsf0DT6sJ12gvgK65KDZ_zaXvHzuv5GindyfR3M5jDC6z1G8T7vcZElVSNX-dpZQa8pknkww68wrIK5dm_LHXTc_Y-OySs8Sez_X6ZaV0CbJCxFCYjqBhMRgQHyxWhIkxiOO9TgcURiBrTodOVbAAuseFBvQhMGI0Z9c76tqf3WgEcwtNcee2sTTXtv0a5mHvYRT08W8SuD9AWA1iyMdo6nJ6cfo0DOZCZqNncPlMQpoLOH2PnDTozzGjt-MnZU_Q4BBb4wKPkGRq5ahs9CUEGDi58tY0ezaJQ7-o5-r6GEPYQwgFCOEAIdxDCLYSwhxAGCOEAIRwghIcQwhFCL9D8aHr26ZiEghvEAtGrCXc5s9bwUjGXWu0kM_CB29zYCbVcFDKzeekKeOxUUMepVSmflFapTCs5EZLvoHH1s3IvEc4s0xJGD_gtBDfaaC2BXEM8QJkrWLqLPqzf28IGNfq2KMpyccs-u-hdvPSXl2C566Kd7uXHK5gAKktz8eo-vV-jhz2a99C4vmrcGyCbtXkbQHED3tt-jg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unfitted+Finite+Element+Methods+Using+Bulk+Meshes+for+Surface+Partial+Differential+Equations&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Deckelnick%2C+Klaus&rft.au=Elliott%2C+Charles+M.&rft.au=Ranner%2C+Thomas&rft.date=2014-01-01&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=52&rft.issue=4&rft.spage=2137&rft.epage=2162&rft_id=info:doi/10.1137%2F130948641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_130948641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon