UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a unio...
Saved in:
Published in | SIAM journal on numerical analysis Vol. 52; no. 4; pp. 2137 - 2162 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Society for Industrial and Applied Mathematics
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-1429 1095-7170 |
DOI | 10.1137/130948641 |
Cover
Abstract | In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, 𝓘h, of (n + 1)-simplices. The unifying feature of the methodological approach is that the finite element approximating space is based on continuous piecewise linear finite element functions on the bulk triangulation 𝓘h which is independent of Γ. Our first method is a sharp interface method (SIF) which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γh, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes SIF from the method of [M. A. Olshanskii, A. Reusken, and J. Grande, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358]. The second method is a narrow band method (NBM) in which the region of integration is a narrow band of width O(h). NBM is similar to the method of [K. Deckelnick et al., IMA J. Numer. Anal., 30 (2010), pp. 351–376] but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L2 and H1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces, and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection-diffusion conservation law. Numerical results are given which illustrate the rates of convergence. |
---|---|
AbstractList | In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ ℝn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, 𝓘h, of (n + 1)-simplices. The unifying feature of the methodological approach is that the finite element approximating space is based on continuous piecewise linear finite element functions on the bulk triangulation 𝓘h which is independent of Γ. Our first method is a sharp interface method (SIF) which uses the bulk finite element space in an approximating weak formulation obtained from integration on a polygonal approximation, Γh, of Γ. The full gradient is used rather than the projected tangential gradient and it is this which distinguishes SIF from the method of [M. A. Olshanskii, A. Reusken, and J. Grande, SIAM J. Numer. Anal., 47 (2009), pp. 3339–3358]. The second method is a narrow band method (NBM) in which the region of integration is a narrow band of width O(h). NBM is similar to the method of [K. Deckelnick et al., IMA J. Numer. Anal., 30 (2010), pp. 351–376] but again the full gradient is used in the discrete weak formulation. The a priori error analysis in this paper shows that the methods are of optimal order in the surface L2 and H1 norms and have the advantage that the normal derivative of the discrete solution is small and converges to zero. Our third method combines bulk finite elements, discrete sharp interfaces, and narrow bands in order to give an unfitted finite element method for parabolic equations on evolving surfaces. We show that our method is conservative so that it preserves mass in the case of an advection-diffusion conservation law. Numerical results are given which illustrate the rates of convergence. |
Author | DECKELNICK, KLAUS ELLIOTT, CHARLES M. RANNER, THOMAS |
Author_xml | – sequence: 1 givenname: KLAUS surname: DECKELNICK fullname: DECKELNICK, KLAUS – sequence: 2 givenname: CHARLES M. surname: ELLIOTT fullname: ELLIOTT, CHARLES M. – sequence: 3 givenname: THOMAS surname: RANNER fullname: RANNER, THOMAS |
BookMark | eNptkMFPgzAYxRszE7fpwT_ApFcPuH60QDniVrZGBgrlZkK6riQscxjg4n8vy4wH4-nL-_J-L3lvhian9mQRugfyBECDBVASMu4zuEJTIKHnBBCQCZoSQn0HmBveoFnfH8ioOdApei_TWColVjiWqVQCi0RsRarwVqhNtipwWch0jZ_L5GV8FRtR4DjLcVHmcbQU-DXKlYwSvJJxLPKROwvxVkZKZmlxi65rfezt3c-dozIWarlxkmwtl1HiGOAwONRy15gdrX3XEqOt5-6M0YbvTAiGsr0XGF7b_ViKMLAUjE9oWBvfD7Tvhcyjc_R4yTVd2_edravPrvnQ3VcFpDrPUv3OMnoXf7ymGfTQtKeh083xX-LhQhz6oe1-o13mgQuc0W_-jGc3 |
CitedBy_id | crossref_primary_10_1137_16M1099388 crossref_primary_10_1051_matecconf_20164401055 crossref_primary_10_1007_s10596_024_10332_8 crossref_primary_10_1051_m2an_2018038 crossref_primary_10_1093_imanum_draa042 crossref_primary_10_1093_imanum_draa062 crossref_primary_10_1016_j_cma_2016_06_033 crossref_primary_10_1137_16M1102203 crossref_primary_10_1137_23M156968X crossref_primary_10_1016_j_cam_2019_112424 crossref_primary_10_1007_s10915_023_02326_y crossref_primary_10_1137_20M1341283 crossref_primary_10_1016_j_cma_2016_04_012 crossref_primary_10_1002_nme_4892 crossref_primary_10_1007_s00211_018_0946_6 crossref_primary_10_1515_cmam_2020_0056 crossref_primary_10_1016_j_cma_2023_116223 crossref_primary_10_1515_jnma_2017_0109 crossref_primary_10_3934_mine_2024015 crossref_primary_10_1002_fld_4510 crossref_primary_10_1093_imanum_drv068 crossref_primary_10_1017_S0962492913000056 crossref_primary_10_1051_m2an_2023064 crossref_primary_10_1137_17M1148633 crossref_primary_10_1093_imanum_drx041 crossref_primary_10_1093_imanum_drz021 crossref_primary_10_1007_s40687_018_0137_1 crossref_primary_10_1016_j_cam_2015_03_002 crossref_primary_10_1016_j_cma_2017_07_037 crossref_primary_10_1016_j_jcp_2019_109166 crossref_primary_10_1002_nme_7495 crossref_primary_10_1016_j_jcp_2022_111734 |
Cites_doi | 10.1016/j.jcp.2008.07.023 10.1007/s00791-008-0122-0 10.1007/s00791-007-0081-x 10.1007/s10884-004-7834-8 10.1016/S0045-7825(02)00524-8 10.1093/imanum/drn049 10.1016/j.jcp.2007.05.025 10.1007/s00607-008-0003-x 10.1137/120895433 10.1007/s00607-008-0004-9 10.4171/IFB/182 10.1098/rsif.2012.0276 10.1016/j.jcp.2005.11.031 10.1090/S0025-5718-2012-02601-9 10.1137/090779917 10.1006/jcph.2001.6937 10.1007/s00285-011-0401-0 10.1093/imanum/4.3.309 10.1016/j.jcp.2008.12.035 10.1073/pnas.0504953102 10.1016/j.actamat.2012.07.059 10.1002/nme.2631 10.1007/s00607-010-0110-3 10.1137/110842235 10.1137/070708135 10.1007/s00211-009-0260-4 10.1515/rnam-2013-0007 10.1137/050642873 10.1137/080717602 10.1137/110828642 |
ContentType | Journal Article |
Copyright | Copyright ©2014 Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: Copyright ©2014 Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION |
DOI | 10.1137/130948641 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1095-7170 |
EndPage | 2162 |
ExternalDocumentID | 10_1137_130948641 24512184 |
GroupedDBID | -DZ -~X 123 2AX 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 AALVN AASXH AAWIL ABAWQ ABBHK ABFAN ABJCF ABKAD ABMZU ABPFR ABPQH ABUWG ABXSQ ABYWD ACBEA ACGFO ACGOD ACHJO ACIWK ACMTB ACNCT ACPRK ACTMH ACUBG ADBBV ADODI ADULT AENEX AEUPB AFKRA AFRAH AFVYC AFXHP AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG ANXRF ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CS3 CZ9 D1I D1J D1K DQDLB DSRWC DU5 DWQXO EBS ECEWR EDO EJD EST ESX FRNLG GNUQQ GUQSH H13 HCIFZ HQ6 H~9 IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S N9A P0- P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RSI SA0 TAE TN5 WH7 YNT .4S .DC 3EH 3R3 8WZ A6W AAYJJ AAYXX ABDBF ACUHS ARCSS CITATION DQ2 EAP EMK FEDTE FVMVE HGD HVGLF I-F MVM NHB PQGLB PUEGO RNS T9H TUS WHG YXE ZCG |
ID | FETCH-LOGICAL-c181t-3e82ccb3f62e0cae52bccac8bc91c34d57c8fed641041e31c6039fc667a659453 |
ISSN | 0036-1429 |
IngestDate | Thu Apr 24 22:52:17 EDT 2025 Wed Oct 01 03:44:38 EDT 2025 Fri Jun 20 01:19:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c181t-3e82ccb3f62e0cae52bccac8bc91c34d57c8fed641041e31c6039fc667a659453 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1137_130948641 crossref_citationtrail_10_1137_130948641 jstor_primary_24512184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140101 2014-01-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 1 year: 2014 text: 20140101 day: 1 |
PublicationDecade | 2010 |
PublicationTitle | SIAM journal on numerical analysis |
PublicationYear | 2014 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | atypb9 atypb8 Engwer C. (atypb27) 2012 Dziuk G. (atypb17) 1988 atypb26 Shewchuk J. R. (atypb39) 1996 Dziuk G. (atypb18) 2007; 25 atypb28 atypb29 atypb22 atypb23 atypb24 atypb25 atypb20 atypb21 Dziuk G. (atypb19) 2007; 25 atypb15 atypb16 atypb38 atypb11 atypb33 atypb12 atypb34 atypb13 atypb14 atypb36 atypb30 atypb31 atypb2 atypb10 atypb32 atypb5 atypb4 atypb7 atypb6 |
References_xml | – ident: atypb24 doi: 10.1016/j.jcp.2008.07.023 – ident: atypb21 doi: 10.1007/s00791-008-0122-0 – start-page: 203 year: 1996 ident: atypb39 publication-title: Berlin – ident: atypb10 doi: 10.1007/s00791-007-0081-x – ident: atypb5 doi: 10.1007/s10884-004-7834-8 – ident: atypb31 doi: 10.1016/S0045-7825(02)00524-8 – ident: atypb12 doi: 10.1093/imanum/drn049 – ident: atypb32 doi: 10.1016/j.jcp.2007.05.025 – ident: atypb6 doi: 10.1007/s00607-008-0003-x – ident: atypb36 doi: 10.1137/120895433 – ident: atypb7 doi: 10.1007/s00607-008-0004-9 – ident: atypb20 doi: 10.4171/IFB/182 – start-page: 142 year: 1988 ident: atypb17 publication-title: Berlin – ident: atypb26 doi: 10.1098/rsif.2012.0276 – ident: atypb30 doi: 10.1016/j.jcp.2005.11.031 – volume: 25 start-page: 385 year: 2007 ident: atypb18 publication-title: IMA J. Numer. Anal. – ident: atypb23 doi: 10.1090/S0025-5718-2012-02601-9 – ident: atypb25 doi: 10.1137/090779917 – ident: atypb9 doi: 10.1006/jcph.2001.6937 – ident: atypb2 doi: 10.1007/s00285-011-0401-0 – ident: atypb4 doi: 10.1093/imanum/4.3.309 – start-page: 89 year: 2012 ident: atypb27 publication-title: Berlin – ident: atypb29 doi: 10.1016/j.jcp.2008.12.035 – ident: atypb38 doi: 10.1073/pnas.0504953102 – ident: atypb28 doi: 10.1016/j.actamat.2012.07.059 – volume: 25 start-page: 385 year: 2007 ident: atypb19 publication-title: J. Comput. Math. – ident: atypb8 doi: 10.1002/nme.2631 – ident: atypb13 doi: 10.1007/s00607-010-0110-3 – ident: atypb16 doi: 10.1137/110842235 – ident: atypb14 doi: 10.1137/070708135 – ident: atypb33 doi: 10.1007/s00211-009-0260-4 – ident: atypb11 doi: 10.1515/rnam-2013-0007 – ident: atypb15 doi: 10.1137/050642873 – ident: atypb34 doi: 10.1137/080717602 – ident: atypb22 doi: 10.1137/110828642 |
SSID | ssj0003813 |
Score | 2.2475412 |
Snippet | In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk... |
SourceID | crossref jstor |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2137 |
SubjectTerms | Approximation Degrees of freedom Elliptic equations Error analysis Finite element method Hypersurfaces Mathematical surfaces Numerical methods Partial differential equations Triangulation |
Title | UNFITTED FINITE ELEMENT METHODS USING BULK MESHES FOR SURFACE PARTIAL DIFFERENTIAL EQUATIONS |
URI | https://www.jstor.org/stable/24512184 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-7170 dateEnd: 20140531 omitProxy: true ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: BENPR dateStart: 19660101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1095-7170 dateEnd: 20140531 omitProxy: true ssIdentifier: ssj0003813 issn: 0036-1429 databaseCode: 8FG dateStart: 19640101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4EDPwYTg4EsxAEp8oh_Jj1uqNME6jTBKu2AVNmOo01UAdbkwv75vcSuk7IdBpe0seJIyfvy_D37-XsIvadGskJTTVypJRHSWZLnhpEi5SJTqixl2c53zE7U8Vx8Ppfno9H1cHdJbfbtnzv3lfyPVaEN7Nrukv0Hy8abQgP8B_vCESwMx3vZeF6Vl3VLGY8uW-qYTH0ueDLrykKvEp8PcNgsf0DT6sJ12gvgK65KDZ_zaXvHzuv5GindyfR3M5jDC6z1G8T7vcZElVSNX-dpZQa8pknkww68wrIK5dm_LHXTc_Y-OySs8Sez_X6ZaV0CbJCxFCYjqBhMRgQHyxWhIkxiOO9TgcURiBrTodOVbAAuseFBvQhMGI0Z9c76tqf3WgEcwtNcee2sTTXtv0a5mHvYRT08W8SuD9AWA1iyMdo6nJ6cfo0DOZCZqNncPlMQpoLOH2PnDTozzGjt-MnZU_Q4BBb4wKPkGRq5ahs9CUEGDi58tY0ezaJQ7-o5-r6GEPYQwgFCOEAIdxDCLYSwhxAGCOEAIRwghIcQwhFCL9D8aHr26ZiEghvEAtGrCXc5s9bwUjGXWu0kM_CB29zYCbVcFDKzeekKeOxUUMepVSmflFapTCs5EZLvoHH1s3IvEc4s0xJGD_gtBDfaaC2BXEM8QJkrWLqLPqzf28IGNfq2KMpyccs-u-hdvPSXl2C566Kd7uXHK5gAKktz8eo-vV-jhz2a99C4vmrcGyCbtXkbQHED3tt-jg |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unfitted+Finite+Element+Methods+Using+Bulk+Meshes+for+Surface+Partial+Differential+Equations&rft.jtitle=SIAM+journal+on+numerical+analysis&rft.au=Deckelnick%2C+Klaus&rft.au=Elliott%2C+Charles+M.&rft.au=Ranner%2C+Thomas&rft.date=2014-01-01&rft.issn=0036-1429&rft.eissn=1095-7170&rft.volume=52&rft.issue=4&rft.spage=2137&rft.epage=2162&rft_id=info:doi/10.1137%2F130948641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_130948641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1429&client=summon |