Explainability and transparency in the realm of digital humanities: toward a historian XAI
The recent advancements in the field of Artificial Intelligence (AI) translated to an increased adoption of AI technology in the humanities, which is often challenged by the limited amount of annotated data, as well as its heterogeneity. Despite the scarcity of data it has become common practice to...
Saved in:
Published in | International journal of digital humanities Vol. 5; no. 2-3; pp. 299 - 331 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2524-7840 2524-7840 |
DOI | 10.1007/s42803-023-00070-1 |
Cover
Abstract | The recent advancements in the field of Artificial Intelligence (AI) translated to an increased adoption of AI technology in the humanities, which is often challenged by the limited amount of annotated data, as well as its heterogeneity. Despite the scarcity of data it has become common practice to design increasingly complex AI models, usually at the expense of human readability, explainability, and trust. This in turn has led to an increased need for tools to help humanities scholars better explain and validate their models as well as their hypotheses. In this paper, we discuss the importance of employing Explainable AI (XAI) methods within the humanities to gain insights into historical processes as well as ensure model reproducibility and a trustworthy scientific result. To drive our point, we present several representative case studies from the
Sphaera
project where we analyze a large, well-curated corpus of early modern textbooks using an AI model, and rely on the XAI explanatory outputs to generate historical insights concerning their visual content. More specifically, we show that XAI can be used as a partner when investigating debated subjects in the history of science, such as what strategies were used in the early modern period to showcase mathematical instruments and machines. |
---|---|
AbstractList | The recent advancements in the field of Artificial Intelligence (AI) translated to an increased adoption of AI technology in the humanities, which is often challenged by the limited amount of annotated data, as well as its heterogeneity. Despite the scarcity of data it has become common practice to design increasingly complex AI models, usually at the expense of human readability, explainability, and trust. This in turn has led to an increased need for tools to help humanities scholars better explain and validate their models as well as their hypotheses. In this paper, we discuss the importance of employing Explainable AI (XAI) methods within the humanities to gain insights into historical processes as well as ensure model reproducibility and a trustworthy scientific result. To drive our point, we present several representative case studies from the
Sphaera
project where we analyze a large, well-curated corpus of early modern textbooks using an AI model, and rely on the XAI explanatory outputs to generate historical insights concerning their visual content. More specifically, we show that XAI can be used as a partner when investigating debated subjects in the history of science, such as what strategies were used in the early modern period to showcase mathematical instruments and machines. |
Author | Martinetz, Julius Müller, Klaus-Robert El-Hajj, Hassan Shlomi, Noga Eberle, Oliver Valleriani, Matteo Siebold, Anna Merklein, Anika Montavon, Grégoire Büttner, Jochen |
Author_xml | – sequence: 1 givenname: Hassan surname: El-Hajj fullname: El-Hajj, Hassan email: hhajj@mpiwg-berlin.mpg.de organization: Max Planck Institute for the History of Science, BIFOLD – Berlin Institute for the Foundations of Learning and Data – sequence: 2 givenname: Oliver surname: Eberle fullname: Eberle, Oliver organization: BIFOLD – Berlin Institute for the Foundations of Learning and Data, Machine Learning Group, Technische Universität Berlin – sequence: 3 givenname: Anika surname: Merklein fullname: Merklein, Anika organization: Max Planck Institute for the History of Science – sequence: 4 givenname: Anna surname: Siebold fullname: Siebold, Anna organization: Max Planck Institute for the History of Science, German Center for Art History Paris (DFK Paris) – sequence: 5 givenname: Noga surname: Shlomi fullname: Shlomi, Noga organization: Max Planck Institute for the History of Science, The Cohn Institute for the History and Philosophy of Science and Ideas, Faculty of Humanities, Tel-Aviv University – sequence: 6 givenname: Jochen surname: Büttner fullname: Büttner, Jochen organization: Max Planck Institute for the History of Science – sequence: 7 givenname: Julius surname: Martinetz fullname: Martinetz, Julius organization: Max Planck Institute for the History of Science, BIFOLD – Berlin Institute for the Foundations of Learning and Data, Machine Learning Group, Technische Universität Berlin – sequence: 8 givenname: Klaus-Robert surname: Müller fullname: Müller, Klaus-Robert organization: BIFOLD – Berlin Institute for the Foundations of Learning and Data, Machine Learning Group, Technische Universität Berlin, Department of Artificial Intelligence, Korea University, Max Planck Institute for Informatics – sequence: 9 givenname: Grégoire surname: Montavon fullname: Montavon, Grégoire organization: BIFOLD – Berlin Institute for the Foundations of Learning and Data, Machine Learning Group, Technische Universität Berlin, Department of Mathematics and Computer Science, Freie Universität Berlin – sequence: 10 givenname: Matteo surname: Valleriani fullname: Valleriani, Matteo email: valleriani@mpiwg-berlin.mpg.de organization: Max Planck Institute for the History of Science, BIFOLD – Berlin Institute for the Foundations of Learning and Data, The Cohn Institute for the History and Philosophy of Science and Ideas, Faculty of Humanities, Tel-Aviv University, Institute of History and Philosophy of Science, Technology, and Literature, Faculty I, Technische Universität Berlin |
BookMark | eNp9kM9KAzEQh4NUsNa-gKe8wGqS3bhZb6VULRS8KIiXMJs_bco2W5IU3bc3Wg_ioYcwGZhvht93iUa-9waha0puKCH1bayYIGVBWH65JwU9Q2PGWVXUoiKjP_8LNI1xm4dYTQkT5Ri9Lz73HTgPretcGjB4jVMAH_cQjFcDdh6njcHBQLfDvcXarV2CDm8OO_AuORPvceo_IGgMeONi6oMDj99myyt0bqGLZvpbJ-j1YfEyfypWz4_L-WxVKCoILbhi3BBFy5o3GrjiitZgSqotbQWphQVuGsEI0w1tlW0beyeI5qxWlaEaWDlB7LhXhT7GYKzcB7eDMEhK5LcgeRQksyD5I0jSDIl_kMqxkut9Tu-602h5RGO-49cmyG1_CD5HPEV9Ae6EfOA |
CitedBy_id | crossref_primary_10_1145_3699963 crossref_primary_10_1007_s42803_023_00083_w crossref_primary_10_1126_sciadv_adj1719 crossref_primary_10_1021_acs_jctc_4c01424 crossref_primary_10_1007_s42803_023_00078_7 |
Cites_doi | 10.1109/TNNLS.2016.2599820 10.1145/129617.129621 10.1007/978-3-030-83356-5_1 10.1109/TPAMI.2016.2577031 10.1007/978-981-19-1018-0_23 10.1016/B978-0-32-396098-4.00008-9 10.1038/s41586-022-04448-z 10.1007/s11229-012-0176-x 10.18653/v1/2021.emnlp-main.384 10.1038/s42256-020-00236-4 10.1109/TPAMI.2020.3020738 10.1073/pnas.2003794117 10.1093/llc/fqx047 10.1007/978-3-030-28954-6_10 10.1016/j.dsp.2017.10.011 10.1038/s41467-019-08987-4 10.1007/978-3-030-28954-6_17 10.1109/ICDAR.2017.223 10.1016/j.dss.2010.12.003 10.1186/s40494-021-00618-w 10.1016/j.artint.2018.07.007 10.1109/CVPR.2016.91 10.1038/s42256-021-00303-4 10.1145/3503161.3548112 10.1109/JPROC.2021.3060483 10.1007/978-3-030-28954-6_18 10.1016/j.patcog.2016.11.008 10.1145/3386392.3399276 10.3390/app12199423 10.1016/j.neuroimage.2022.119504 10.1175/BAMS-D-20-0097.1 10.1109/ICDAR.2017.231 10.1142/9789811203244_0005 10.1016/j.jas.2021.105375 10.1371/journal.pone.0130140 10.1007/s11263-019-01228-7 10.1016/j.media.2022.102470 10.1145/3476887.3476893 10.1109/ICDAR.2019.00245 10.1007/978-3-031-04083-2_1 10.1175/BAMS-D-18-0195.1 10.1109/ICDAR.2017.111 10.24963/ijcai.2018/147 10.1109/ICDAR.2017.20 10.1109/ACCESS.2021.3110082 10.1007/s42454-020-00021-z 10.4324/9781003106531-1 10.1109/SIBGRAPI51738.2020.00016 10.1007/978-3-030-11012-3_54 10.1109/ICFHR2020.2020.00027 10.1162/coli_a_00481 10.1002/widm.1312 10.1016/j.semcancer.2018.07.001. 10.1093/oso/9780198823520.001.0001 10.26225/FDZH-X261 10.1093/llc/fqw045 10.1007/978-3-030-28954-6 10.3390/jimaging7120260 10.18653/v1/D19-1668 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-86334-0_8 10.1109/TPAMI.2021.3115452 10.1086/663607 10.1007/s11263-015-0823-z 10.1515/opar-2020-0136 10.1109/BCI57258.2023.10078502 10.1038/s42256-019-0052-1 10.1007/s13222-022-00414-1 10.3390/jimaging8100285 10.1007/s13347-022-00558-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s42803-023-00070-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2524-7840 |
EndPage | 331 |
ExternalDocumentID | 10_1007_s42803_023_00070_1 |
GrantInformation_xml | – fundername: Max Planck Institute for the History of Science (MPIWG) (2) – fundername: Institute of Information and Communications Technology Planning and Evaluation (IITP) grants funded by the Korea Government grantid: 2019-0-00079 – fundername: The Rotenstreich fund – fundername: Berlin Institute for the Foundation of Learning and Data grantid: 01IS18037A – fundername: Max Planck Institute for the History of Science |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA C6C DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI H13 IKXTQ IWAJR JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c1801-5c25e0c13759da5c5c17ae31df1b8078fa5e98202d91bcfb9f680d527c4e1da23 |
IEDL.DBID | C6C |
ISSN | 2524-7840 |
IngestDate | Tue Jul 01 03:42:24 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 21 02:41:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2-3 |
Keywords | Computational humanities Explainable AI Digital humanities Sphaera Early modern printing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1801-5c25e0c13759da5c5c17ae31df1b8078fa5e98202d91bcfb9f680d527c4e1da23 |
OpenAccessLink | https://doi.org/10.1007/s42803-023-00070-1 |
PageCount | 33 |
ParticipantIDs | crossref_primary_10_1007_s42803_023_00070_1 crossref_citationtrail_10_1007_s42803_023_00070_1 springer_journals_10_1007_s42803_023_00070_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | International journal of digital humanities |
PublicationTitleAbbrev | Int J Digit Humanities |
PublicationYear | 2023 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Díaz-Rodríguez, N., & Pisoni, G. (2020) Accessible cultural heritage through explainable artificial intelligence. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization. UMAP ’20 Adjunct, pp. 317–324. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3386392.3399276 Shlomi, N. (2023). The Evolution of Visual Language in Early Modern Astronomy. Tel-Aviv University, The Cohn Institute for the History and Philosophy of Science and Ideas (in progress) Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation JiFMcMasterMSSchwabSSinghGSmithLNAdhikariSO’DwyerMSayedFIngrisanoAYoderDBolmanESMartinITHinczewskiMSingerKDDiscerning the painter’s hand: machine learning on surface topographyHeritage Science20219115210.1186/s40494-021-00618-w Piccolomini, A. (1553). Editione Tertia. Della Sfera del Mondo di M. Alisandro Piccolomini, Divisa in Libri Quattro, i Quali Non per Via di Traduttione, Ne à Qual si Voglia Particolare Scrittore Obligati, Ma Parte da Migliori Raccogliendo, e Parte di Nuovo Producendo, Contengano in Se Tutto Quel Ch’intorno à Tal Materia si Possa Desiderare, Ridotti a Tanta Agevolezza, et à Cosi Facil Modo di Dimostrare, Che Qual si Voglia Poco Essercitato Ne Gli Studij di Mathematica PotràAgevolißimamente, et Con Prestezza Incenderne Il Tutto. Di Nuovo Ricorretta, et Ampliata. Delle Stelle Fisse. Libro Uno Con Le sue Figure et Con Le sue Tavole, Dove Con Maravigliosa Agevolezza Potrà Ciascuno Conoscere Qualunque Stella delle Quarantaotto Imagini del Cielo Stellato, et Le Favole Loro Integramente, et Sapere in Ogni Tempo Del’anno, à Qual si Voglia Hora di Notte, in Che Parte del Cielo si Truovino, Non Solo Le Dette Imagini, Ma Qualunque Stella di Quelle. Bartolomeo Cesano, Venice. https://hdl.handle.net/21.11103/sphaera.101047 Berry, D. (2021). Explanatory publics: Explainability and democratic thought. In: B. Balaskas & C. Rito (Eds.), Fabricating Publics: The Dissemination of Culture in Post-truth Era (pp. 211–232). Open Humanities Press, Bristol Flanders, J., & Jannidis, F. (2023). Knowledge organization and data modeling in the humanities Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., & Samek, W. (2022). xxai - beyond explainable artificial intelligence. In: A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-R. Müller, & W. Samek (Eds.), xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pp. 3–10. Springer, Cham. https://doi.org/10.1007/978-3-031-04083-2_1 da Firenze, M. (1537). Sphera Volgare Novamente Tradotta Con Molte Notande Additioni di Geometria, Cosmographia, Arte Navigatoria, et Stereometria, Proportioni, et Quantita Delli Elementi, Distanze, Grandeze, et Movimenti di Tutti Li Corpi Celesti, Cose Certamente Rade et Maravigliose. Autore M. Mauro Fiorentino Phonasco et Philopanareto. A Messer Giovan’Orthega Di Carion Burgense Hispano, et Dino Compagni Patritio Fiorentino, Mathematici. Bartolomeo Zanetti, Florence. https://hdl.handle.net/21.11103/sphaera.101009 BinderABockmayrMHägeleMWienertSHeimDHellwegKIshiiMStenzingerAHockeADenkertCMüllerK-RKlauschenFMorphological and molecular breast cancer profiling through explainable machine learningNature Machine Intelligence2021311210.1038/s42256-021-00303-4 Simistira, F., Bouillon, M., Seuret, M., Würsch, M., Alberti, M., Ingold, R., & Liwicki, M. (2017). Icdar2017 competition on layout analysis for challenging medieval manuscripts. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 1361–1370. https://doi.org/10.1109/ICDAR.2017.223 Hofmann S., Beyer F., Lapuschkin S., Goltermann O., Loeffler M., Robert-Müller K., Villringer A., Samek W., & Witter A. (2022). Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain. NeuroImage,261, 119504. https://doi.org/10.1016/j.neuroimage.2022.119504 Clausner, C., Antonacopoulos, A., & Pletschacher, S. (2019). Icdar2019 competition on recognition of documents with complex layouts - rdcl2019. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1521–1526. https://doi.org/10.1109/ICDAR.2019.00245 ZhangZChenPMcGoughMXingFWangCBuiMMXieYSapkotaMCuiLDhillonJAhmadNKhalilFKDickinsonSIShiXLiuFSuHCaiJYangLPathologist-level interpretable whole-slide cancer diagnosis with deep learningNature Machine Intelligence2019123624510.1038/s42256-019-0052-1 Barozzi, F. (1607). Cosmografia in Quattro Libri Divisa, la Quale Con Sommo Ordine, e Maravigliosa Facilitá, e Brevitá Introduce Alla Grande Mathematica Construttione di Tolomeo, & á Tutta l’Astrologia. Composta da Francesco Barozzi Gentil’huomo Venetiano. Con la Prefatione di Esso Autore, nella Quale si Ha Una Perfetta Divisione dell’Astrologia, & Una Narratione de Gli Autori Illustri, e De’ Volumi da Loro in Tutte Le Parti di Essa Composti: & si Mostrano 84 Errori di Gio. de Sacrobosco, & Molt’altri De’ Suoi Espositori, & Settatori, & Con Ragione si Riprendono. Preciede Ancho Alcuni Communi Mathematici, Arithmetici, & Geometrici Principij, Con Alcune Cose di Nuovo dall’Autore Ritrovate: & Alquante Propositioni, delle Quai per Tutta l’Opera si Fá Mentione: & Finalmente Un Indice Ricchissimo delle Cose in Essa Cosmografia Contenute. Grazioso Percacino, Venice. https://hdl.handle.net/21.11103/sphaera.100531 Jiménez-LunaJGrisoniFSchneiderGDrug discovery with explainable artificial intelligenceNature Machine Intelligence202010.1038/s42256-020-00236-4 Sacrobosco, J. d., & Melanchthon, P. (1545). Sphaera Ioannis de Sacrobosco Typis Auctior, Quam Antehac, Atque Ex Diligenti Manu Scriptorum Impressorumque Codicum Collatione Castigatior, Praemissa Philippi Melanchthonis Doctiss. Praefatione, Qua Utilitatem Astrologicae Scientiae, & Christiano Homini Non Negligendam Scite Probat. Jean Loys for Guillaume Richard, Paris. https://hdl.handle.net/21.11103/sphaera.101054 Puigcerver, J. (2017). Are multidimensional recurrent layers really necessary for handwritten text recognition? In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 67–72. https://doi.org/10.1109/ICDAR.2017.20 Bluche, T., & Messina, R. (2017). Gated convolutional recurrent neural networks for multilingual handwriting recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 646–651. https://doi.org/10.1109/ICDAR.2017.111 Dutta, A., Bergel, G., & Zisserman, A. (2021). Visual analysis of chapbooks printed in scotland. In: The 6th International Workshop on Historical Document Imaging and Processing. HIP ’21, pp. 67–72. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3476887.3476893 JaderbergMSimonyanKVedaldiAZissermanAReading text in the wild with convolutional neural networksInternational Journal of Computer Vision20161161120344142210.1007/s11263-015-0823-z Sacrobosco, J. d., & Clavius, C. (1585). Christophori Clavii Bambergensis Ex Societate Iesu in Sphaeram Ioannis de Sacro Bosco Commentarius Nunc Tertio Ab Ipso Auctore Recognitus, & Plerisque in Locis Locupletatus. Permissu Superiorem. Domenico Basa, Rome. https://hdl.handle.net/21.11103/sphaera.101120 EberleOBüttnerJKräutliFMüllerK-RVallerianiMMontavonGBuilding and interpreting deep similarity modelsIEEE Transactions on Pattern Analysis and Machine Intelligence20224431149116110.1109/TPAMI.2020.3020738 MontavonGSamekWMüllerK-RMethods for interpreting and understanding deep neural networksDigital Signal Processing201873115373787010.1016/j.dsp.2017.10.011 Sommerschield, T., Assael, Y., Pavlopoulos, J., Stefanak, V., Senior, A., Dyer, C., Bodel, J., Prag, J., Androutsopoulos, I., & Freitas, N.d. (2023). Machine Learning for Ancient Languages: A Survey. Computational Linguistics, 1–45. https://doi.org/10.1162/coli_a_00481 Bamman, D., & Burns, P.J. (2020). Latin BERT: A contextual language model for classical philology. CoRR abs/2009.10053 arXiv:2009.10053 Kralemann, B., & Lattmann, C. (2023). Models as icons: Modeling models in the semiotic framework of peirce’s theory of signs 190(16), 3397–3420. https://doi.org/10.1007/s11229-012-0176-x. Accessed 15 Feb 2023 BarucciACucciCFranciMLoschiavoMArgentiFA deep learning approach to ancient egyptian hieroglyphs classificationIEEE Access2021912343812344710.1109/ACCESS.2021.3110082 KräutliFVallerianiMCorpusTracer: A CIDOC database for tracing knowledge networksDSH201833233634610.1093/llc/fqx047 Müller, K.-R., & Hofmann, S. M. (2023). Interpreting deep learning models for multi-modal neuroimaging. In: 2023 11th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–4. https://doi.org/10.1109/BCI57258.2023.10078502 Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 arXiv:1810.04805 Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., & Unterthiner, T. (2019). Interpretable deep learning in drug discovery. In: W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 331–345). Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_18 Tsochatzidis, L., Symeonidis, S., Papazoglou, A., & Pratikakis, I. (2021). Htr for greek historical handwritten documents. Journal of Imaging7(12). https://doi.org/10.3390/jimaging7120260 Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In: International Conference on Learning Representations (Poster) Finé, O. (1551). Sphaera Mundi, Sive Cosmographia Quinque Recèns Auctis & Emendatis Absoluta: in Qua Tum Prima Astronomiae Pars, Tum Geographie, Ac Hydrographie Rudimenta Pertractantur. Authore Orontio Finaeo Delphinate, Regio Mathematicarum Lutetiae Professore. Michel Vascosan, Pari 70_CR36 70_CR38 LM Pawlowicz (70_CR66) 2021; 130 S Bach (70_CR3) 2015; 10 M Jaderberg (70_CR43) 2016; 116 70_CR31 70_CR33 70_CR32 70_CR35 70_CR34 RJ Oosterhoff (70_CR65) 2018 W Samek (70_CR83) 2021; 109 T Schnake (70_CR84) 2022; 44 70_CR26 70_CR25 S Lapuschkin (70_CR52) 2019; 10 70_CR29 70_CR20 70_CR22 70_CR21 70_CR24 70_CR23 G Montavon (70_CR61) 2018; 73 O Eberle (70_CR27) 2022; 44 70_CR59 70_CR58 70_CR100 T Miller (70_CR57) 2019; 267 70_CR50 70_CR53 70_CR55 70_CR54 J Jiménez-Luna (70_CR45) 2020 E Fetaya (70_CR30) 2020; 117 BHM van der Velden (70_CR95) 2022; 79 70_CR48 70_CR47 70_CR49 70_CR40 E Holder (70_CR37) 2021; 3 70_CR46 A Binder (70_CR14) 2021; 3 70_CR73 70_CR72 70_CR75 70_CR74 70_CR77 W Samek (70_CR82) 2017; 28 70_CR76 70_CR79 70_CR78 70_CR4 70_CR71 70_CR1 70_CR70 70_CR69 70_CR62 70_CR64 70_CR63 70_CR68 70_CR67 Y Assael (70_CR2) 2022; 603 70_CR15 F Ji (70_CR44) 2021; 9 70_CR17 70_CR16 70_CR19 70_CR18 G Montavon (70_CR60) 2017; 65 70_CR94 70_CR97 GH Subramanian (70_CR93) 1992; 35 70_CR96 70_CR11 70_CR98 70_CR13 70_CR12 A Barucci (70_CR6) 2021; 9 F Kräutli (70_CR51) 2018; 33 70_CR91 70_CR90 70_CR92 I Ebert-Uphoff (70_CR28) 2020; 101 Z Zhang (70_CR99) 2019; 1 70_CR8 70_CR7 A Holzinger (70_CR39) 2019; 9 70_CR86 70_CR5 70_CR85 70_CR88 70_CR87 70_CR9 70_CR89 JA Bennett (70_CR10) 1987 J Huysmans (70_CR42) 2011; 51 A McGovern (70_CR56) 2019; 100 70_CR80 J Huggett (70_CR41) 2021; 7 70_CR81 |
References_xml | – reference: Bamman, D., & Burns, P.J. (2020). Latin BERT: A contextual language model for classical philology. CoRR abs/2009.10053 arXiv:2009.10053 – reference: Ebert-UphoffIHilburnKEvaluation, tuning, and interpretation of neural networks for working with images in meteorological applicationsBulletin of the American Meteorological Society2020101122149217010.1175/BAMS-D-20-0097.1 – reference: KräutliFVallerianiMCorpusTracer: A CIDOC database for tracing knowledge networksDSH201833233634610.1093/llc/fqx047 – reference: JiFMcMasterMSSchwabSSinghGSmithLNAdhikariSO’DwyerMSayedFIngrisanoAYoderDBolmanESMartinITHinczewskiMSingerKDDiscerning the painter’s hand: machine learning on surface topographyHeritage Science20219115210.1186/s40494-021-00618-w – reference: Holzinger, A., Goebel, R., Fong, R., Moon, T., Müller, K.-R., & Samek, W. (2022). xxai - beyond explainable artificial intelligence. In: A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-R. Müller, & W. Samek (Eds.), xxAI - Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, pp. 3–10. Springer, Cham. https://doi.org/10.1007/978-3-031-04083-2_1 – reference: PawlowiczLMDownumCEApplications of deep learning to decorated ceramic typology and classification: A case study using tusayan white ware from northeast arizonaJournal of Archaeological Science202113010.1016/j.jas.2021.105375 – reference: Lazar, K., Saret, B., Yehudai, A., Horowitz, W., Wasserman, N., & Stanovsky, G. (2021). Filling the gaps in Ancient Akkadian texts: A masked language modelling approach. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 4682–4691. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic. https://doi.org/10.18653/v1/2021.emnlp-main.384. https://aclanthology.org/2021.emnlp-main.384 – reference: Bell, P., & Offert, F. (2021). Reflections on connoisseurship and computer vision. Journal of Art Historiography,24 – reference: Sacrobosco, J. d. (1547). Sphaera Iohannis de Sacrobosco. Martinus Nutius I for Jan Waen, Leuven. https://hdl.handle.net/21.11103/sphaera.100125 – reference: McGovernALagerquistRGagneDJJergensenGEElmoreKLHomeyerCRSmithTMaking the black box more transparent: Understanding the physical implications of machine learningBulletin of the American Meteorological Society2019100112175219910.1175/BAMS-D-18-0195.1 – reference: OosterhoffRJMaking Mathematical Culture: University and Print in the Circle of Lefèvre D’Étaples2018Oxford-Warburg StudiesOxford University Press, Oxford, UK10.1093/oso/9780198823520.001.0001 – reference: Zonca, V. (1607). Novo Teatro di Machine et Edificii. Appresso Pietro Bertelli, Padova – reference: Li, M., Lv, T., Cui, L., Lu, Y., Florêncio, D.A.F., Zhang, C., Li, Z., & Wei, F. (2021). Trocr: Transformer-based optical character recognition with pre-trained models. CoRR abs/2109.10282 arXiv:2109.10282 – reference: Clausner, C., Antonacopoulos, A., & Pletschacher, S. (2019). Icdar2019 competition on recognition of documents with complex layouts - rdcl2019. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1521–1526. https://doi.org/10.1109/ICDAR.2019.00245 – reference: Piccolomini, A. (1553). Editione Tertia. Della Sfera del Mondo di M. Alisandro Piccolomini, Divisa in Libri Quattro, i Quali Non per Via di Traduttione, Ne à Qual si Voglia Particolare Scrittore Obligati, Ma Parte da Migliori Raccogliendo, e Parte di Nuovo Producendo, Contengano in Se Tutto Quel Ch’intorno à Tal Materia si Possa Desiderare, Ridotti a Tanta Agevolezza, et à Cosi Facil Modo di Dimostrare, Che Qual si Voglia Poco Essercitato Ne Gli Studij di Mathematica PotràAgevolißimamente, et Con Prestezza Incenderne Il Tutto. Di Nuovo Ricorretta, et Ampliata. Delle Stelle Fisse. Libro Uno Con Le sue Figure et Con Le sue Tavole, Dove Con Maravigliosa Agevolezza Potrà Ciascuno Conoscere Qualunque Stella delle Quarantaotto Imagini del Cielo Stellato, et Le Favole Loro Integramente, et Sapere in Ogni Tempo Del’anno, à Qual si Voglia Hora di Notte, in Che Parte del Cielo si Truovino, Non Solo Le Dette Imagini, Ma Qualunque Stella di Quelle. Bartolomeo Cesano, Venice. https://hdl.handle.net/21.11103/sphaera.101047 – reference: Bennett, J. (2011). Early modern mathematical instruments. Isis,102(4), 697–705. Accessed 11 July 2023 – reference: van der VeldenBHMKuijfHJGilhuijsKGAViergeverMAExplainable artificial intelligence (xai) in deep learning-based medical image analysisMedical Image Analysis20227910.1016/j.media.2022.102470 – reference: Xu, Y., Yin, F., Zhang, Z., Liu, C.-L. (2018). Multi-task layout analysis for historical handwritten documents using fully convolutional networks. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 1057–1063. International Joint Conferences on Artificial Intelligence Organization, Stockholm, Sweden. https://doi.org/10.24963/ijcai.2018/147 – reference: Redmon, J., Divvala, S.K., Girshick, R.B., & Farhadi, A. (2015). You only look once: Unified, real-time object detection. CoRR abs/1506.02640 arXiv:1506.02640 – reference: MillerTExplanation in artificial intelligence: Insights from the social sciencesArtificial Intelligence2019267138387451110.1016/j.artint.2018.07.007 – reference: SchnakeTEberleOLedererJNakajimaSSchüttKTMüllerK-RMontavonGHigher-order explanations of graph neural networks via relevant walksIEEE Transactions on Pattern Analysis and Machine Intelligence202244117581759610.1109/TPAMI.2021.3115452 – reference: SamekWMontavonGLapuschkinSAndersCJMüllerK-RExplaining deep neural networks and beyond: A review of methods and applicationsProceedings of the IEEE2021109324727810.1109/JPROC.2021.3060483 – reference: Yepes, A.J., Zhong, X., & Burdick, D. (2021). ICDAR 2021 Competition on Scientific Literature Parsing – reference: Díaz-Rodríguez, N., & Pisoni, G. (2020) Accessible cultural heritage through explainable artificial intelligence. In: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization. UMAP ’20 Adjunct, pp. 317–324. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3386392.3399276 – reference: Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation – reference: Klauschen, F., Müller, K.-R., Binder, A., Bockmayr, M., Hägele, M., Seegerer, P., Wienert, S., Pruneri, G., de Maria, S., Badve, S., Michiels, S., Nielsen, T.O., Adams, S., Savas, P., Symmans, F., Willis, S., Gruosso, T., Park, M., Haibe-Kains, B., Gallas, B., Thompson, A.M., Cree, I., Sotiriou, C., Solinas, C., Preusser, M., Hewitt, S.M., Rimm, D., Viale, G., Loi, S., Loibl, S., Salgado, R., & Denkert, C. (2018). Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Seminars in Cancer Biology,52, 151–157. https://doi.org/10.1016/j.semcancer.2018.07.001. Immuno-oncological biomarkers – reference: Sacrobosco, J. d., & Glogów, J. o. (1513). Introductorium Compendiosum in Tractatum Spere Materialis Magistri Joannis de Sacrobusto Quem Abbreviavit Ex Almagesti Sapientis Ptholomei Claudi Philosophi Alexandrini Ex Pheludio Progeniti per Magistrum Joannem Glogoviensem Foeliciter Recollectum. Florian Ungler for Jan Haller, Kraków. https://hdl.handle.net/21.11103/sphaera.100913 – reference: Schreckenfuchs, E.O., Regiomontanus, J., Sacrobosco, J.d. (1569). Erasmi Osvvaldi Schreckenfuchsii Commentaria, in Sphaeram Ioannis de Sacrobusto, Accuratissima, Quibus Non Solumea Quae in Autoris Contextu Sunt, Sed Alia Etiam Ad Sphaericam Doctrinam Necessaria, Explicantur: Tabularum Atque Constructio, Ex Suis Principiis per Demonstrationum Seriem Clarem Dilucide Atque Docetur. His Adiecti Sunt Eiusdem Autoris Canones, Quibus Usus Tabularum, Quae Operi Ex Libro Directionum Ioannis Regiomontani, Passim Inseruntur, Ad Pulcherrimas Inquisitiones Astronomicas, Luculentissime Continetur. Reliqua Ad Consummatam Doctrinam Hanc Pertinentia, Ex Illum Primo Mobili, Eadem Forma Edito, Petes. Heinrich Petri, Basel. https://hdl.handle.net/21.11103/sphaera.101080 – reference: Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 arXiv:1810.04805 – reference: Sacrobosco, J. d., & Clavius, C. (1585). Christophori Clavii Bambergensis Ex Societate Iesu in Sphaeram Ioannis de Sacro Bosco Commentarius Nunc Tertio Ab Ipso Auctore Recognitus, & Plerisque in Locis Locupletatus. Permissu Superiorem. Domenico Basa, Rome. https://hdl.handle.net/21.11103/sphaera.101120 – reference: Drucker, J. (2011). Humanities approaches to graphical display. Digital Humanities Quarterly,5(1) – reference: Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks – reference: de Sousa Neto, A.F., Bezerra, B.L.D., Toselli, A.H., & Lima, E.B. (2020). Htr-flor: A deep learning system for offline handwritten text recognition. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 54–61. https://doi.org/10.1109/SIBGRAPI51738.2020.00016 – reference: Berry, D. (2020). The explainability turn: Critical digital humanities and explanation. In: L. Estill, J. Guiliano, & C. Crompton (Eds.), DH2020 Book of Abstracts (pp. 459–461). ADHO, Ottawa – reference: SamekWBinderAMontavonGLapuschkinSMüllerK-REvaluating the visualization of what a deep neural network has learnedIEEE Transactions on Neural Networks and Learning Systems2017281126602673372178210.1109/TNNLS.2016.2599820 – reference: SubramanianGHNosekJRaghunathanSPKanitkarSSA comparison of the decision table and treeCommun. ACM1992351899410.1145/129617.129621 – reference: Assael, Y., Sommerschield, T., & Prag, J. (2019). Restoring ancient text using deep learning: a case study on Greek epigraphy. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP), pp. 6368–6375. Association for Computational Linguistics, Hong Kong, China. https://doi.org/10.18653/v1/D19-1668. https://aclanthology.org/D19-1668 – reference: Ravichandra, S., Siva Sathya, S., & Lourdu Marie Sophie, S. (2022). Deep learning based document layout analysis on historical documents. In R. R. Rout, S. K. Ghosh, P. K. Jana, A. K. Tripathy, J. P. Sahoo, & K.-C. Li (Eds.), Advances in Distributed Computing and Machine Learning (pp. 271–281). Springer, Singapore – reference: Ramelli, A. (1588). Le Diverse et Artificiose Machine del Capitano Agostino Ramelli Dal Ponte Della Tresia Ingegniero del Christianissimo Re di Francia et di Pollonia: Nelle Quali si Contengono Uarij et Industriosi Mouimenti, Degni Digrandißima Speculatione, per Cauarne Beneficio Infinito in Ogni Sorte D’operatione. In casa del Autore, Parigi – reference: Samek, W. (2023). Chapter 2 - explainable deep learning: concepts, methods, and new developments. In: J. Benois-Pineau, R. Bourqui, D. Petkovic, & G. Quénot (Eds.), Explainable Deep Learning AI (pp. 7–33). Academic Press, London. https://doi.org/10.1016/B978-0-32-396098-4.00008-9 – reference: BennettJAThe Divided Circle: A History of Instruments for Astronomy Navigation and Surveying.1987Christie’s collectors libraryPhaidon Press, Michigan, USA – reference: Wick, C., Zöllner, J., & Grüning, T. (2021). Transformer for handwritten text recognition using bidirectional post-decoding. In: J. Lladós, D. Lopresti, & S. Uchida (Eds.), Document Analysis and Recognition - ICDAR 2021 (pp. 112–126). Springer, Cham – reference: Kamath, U., & Liu, J. (2021). Introduction to interpretability and explainability. In: Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning, pp. 1–26. Springer, Cham. https://doi.org/10.1007/978-3-030-83356-5_1 – reference: MontavonGSamekWMüllerK-RMethods for interpreting and understanding deep neural networksDigital Signal Processing201873115373787010.1016/j.dsp.2017.10.011 – reference: ZhangZChenPMcGoughMXingFWangCBuiMMXieYSapkotaMCuiLDhillonJAhmadNKhalilFKDickinsonSIShiXLiuFSuHCaiJYangLPathologist-level interpretable whole-slide cancer diagnosis with deep learningNature Machine Intelligence2019123624510.1038/s42256-019-0052-1 – reference: Hofmann S., Beyer F., Lapuschkin S., Goltermann O., Loeffler M., Robert-Müller K., Villringer A., Samek W., & Witter A. (2022). Towards the interpretability of deep learning models for multi-modal neuroimaging: Finding structural changes of the ageing brain. NeuroImage,261, 119504. https://doi.org/10.1016/j.neuroimage.2022.119504 – reference: Ströbel, P., Clematide, S., Hodel, T., & Volk, M. (2022). Transformer-based htr for historical documents. In: Workshop on Computational Methods in the Humanities 2022 – reference: BarucciACucciCFranciMLoschiavoMArgentiFA deep learning approach to ancient egyptian hieroglyphs classificationIEEE Access2021912343812344710.1109/ACCESS.2021.3110082 – reference: HuggettJAlgorithmic agency and autonomy in archaeological practiceOpen Archaeology202171417434434191410.1515/opar-2020-0136 – reference: Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. In: ICLR – reference: Kralemann, B., & Lattmann, C. (2023). Models as icons: Modeling models in the semiotic framework of peirce’s theory of signs 190(16), 3397–3420. https://doi.org/10.1007/s11229-012-0176-x. Accessed 15 Feb 2023 – reference: MontavonGLapuschkinSBinderASamekWMüllerK-RExplaining nonlinear classification decisions with deep taylor decompositionPattern Recognition20176521122210.1016/j.patcog.2016.11.008 – reference: Branca, G. (1629). Le Machine : Volume Nuovo et di Molto Artificio da Fare Effeta Maravigliosi Tanto Spiritali Quanto di Animale Operatione Arichito di Bellissime Figure Con Le Dichiarationi a Ciascuna di Esse in Lingua Volgare et Latina. Mascardi, Roma – reference: Ciula, A., & Eide, O. (2016). Modelling in digital humanities: Signs in context 32. https://doi.org/10.1093/llc/fqw045 – reference: BachSBinderAMontavonGKlauschenFMüllerK-RSamekWOn pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagationPLOS ONE201510714610.1371/journal.pone.0130140 – reference: Puigcerver, J. (2017). Are multidimensional recurrent layers really necessary for handwritten text recognition? In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 67–72. https://doi.org/10.1109/ICDAR.2017.20 – reference: Flanders, J., & Jannidis, F. (2023). Knowledge organization and data modeling in the humanities – reference: LapuschkinSWäldchenSBinderAMontavonGSamekWMüllerK-RUnmasking Clever Hans predictors and assessing what machines really learnNature Communications201910109610.1038/s41467-019-08987-4 – reference: Müller, K.-R., & Hofmann, S. M. (2023). Interpreting deep learning models for multi-modal neuroimaging. In: 2023 11th International Winter Conference on Brain-Computer Interface (BCI), pp. 1–4. https://doi.org/10.1109/BCI57258.2023.10078502 – reference: Finé, O. (1587). Opere di Orontio Fineo del Delfinato: Divise in Cinque Parti; Arimetica, Geometria, Cosmografia, et Orivoli, Tradotte da Cosimo Bartoli, Gentilhuomo, et Academico Fiorentino: Et Gli Specchi, Tradotti Dal Cavalier Ercole Bottrigaro, Gentilhuomo Bolognese. Nuovamente Poste in Luce. Francesco de Franceschi, Venice. https://hdl.handle.net/21.11103/sphaera.101202 – reference: Huang, Y., Lv, T., Cui, L., Lu, Y., & Wei, F. (2022). Layoutlmv3: Pre-training for document ai with unified text and image masking. In: Proceedings of the 30th ACM international conference on multimedia. MM ’22, pp. 4083–4091. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3503161.3548112 – reference: Sommerschield, T., Assael, Y., Pavlopoulos, J., Stefanak, V., Senior, A., Dyer, C., Bodel, J., Prag, J., Androutsopoulos, I., & Freitas, N.d. (2023). Machine Learning for Ancient Languages: A Survey. Computational Linguistics, 1–45. https://doi.org/10.1162/coli_a_00481 – reference: Cortés, M. (1556). Breve Compendio de la Sphera Y de la Arte de Navegar, Con Nueuos Instrumentos Y Reglas, Exemplificado Con Muy Subtiles Demonstraciones: Compuesto Por Martin Cortes Natural de Burjalaros en el Reyno de Aragon Y de Presente Vezino de la Ciudad de Cadiz: Dirigido al Invictissimo Monarcha Carlo Quinto Rey de las Hespanas Etc. Senor Nuestro. António Alvares, Seville. https://hdl.handle.net/21.11103/sphaera.101394 – reference: El-Hajj, H., Zamani, M., Büttner, J., Martinetz, J., Eberle, O., Shlomi, N., Siebold, A., Montavon, G., Müller, K.-R., Kantz, H., & Valleriani, M. (2022). An ever-expanding humanities knowledge graph: The sphaera corpus at the intersection of humanities, data management, and machine learning. Datenbank-Spektrum: Zeitschrift für Datenbanktechnologien und Information Retrieval. https://doi.org/10.1007/s13222-022-00414-1 – reference: Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., & Unterthiner, T. (2019). Interpretable deep learning in drug discovery. In: W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 331–345). Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_18 – reference: HolzingerALangsGDenkHZatloukalKMüllerHCausability and explainability of artificial intelligence in medicineWIREs Data Mining and Knowledge Discovery201994131210.1002/widm.1312 – reference: HuysmansJDejaegerKMuesCVanthienenJBaesensBAn empirical evaluation of the comprehensibility of decision table, tree and rule based predictive modelsDecision Support Systems201151114115410.1016/j.dss.2010.12.003 – reference: Schütt, K. T., Gastegger, M., Tkatchenko, A., & Müller, K.-R. (2019). Quantum-chemical insights from interpretable atomistic neural networks. In: W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, & K.-R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (pp. 311–330). Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_17 – reference: EberleOBüttnerJKräutliFMüllerK-RVallerianiMMontavonGBuilding and interpreting deep similarity modelsIEEE Transactions on Pattern Analysis and Machine Intelligence20224431149116110.1109/TPAMI.2020.3020738 – reference: Kang, L., Riba, P., Rusiñol, M., Fornés, A., & Villegas, M. (2020). Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition – reference: JaderbergMSimonyanKVedaldiAZissermanAReading text in the wild with convolutional neural networksInternational Journal of Computer Vision20161161120344142210.1007/s11263-015-0823-z – reference: Büttner, J., Martinetz, J., El-Hajj, H., & Valleriani, M. (2022). Cordeep and the sacrobosco dataset: Detection of visual elements in historical documents. Journal of Imaging,8(285). https://doi.org/10.3390/jimaging8100285 – reference: Ratti, E. (2022). Integrating artificial intelligence in scientific practice: Explicable AI as an interface. Philosophy and Technology,35(3). https://doi.org/10.1007/s13347-022-00558-8 – reference: Simistira, F., Bouillon, M., Seuret, M., Würsch, M., Alberti, M., Ingold, R., & Liwicki, M. (2017). Icdar2017 competition on layout analysis for challenging medieval manuscripts. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 1361–1370. https://doi.org/10.1109/ICDAR.2017.223 – reference: Barozzi, F. (1607). Cosmografia in Quattro Libri Divisa, la Quale Con Sommo Ordine, e Maravigliosa Facilitá, e Brevitá Introduce Alla Grande Mathematica Construttione di Tolomeo, & á Tutta l’Astrologia. Composta da Francesco Barozzi Gentil’huomo Venetiano. Con la Prefatione di Esso Autore, nella Quale si Ha Una Perfetta Divisione dell’Astrologia, & Una Narratione de Gli Autori Illustri, e De’ Volumi da Loro in Tutte Le Parti di Essa Composti: & si Mostrano 84 Errori di Gio. de Sacrobosco, & Molt’altri De’ Suoi Espositori, & Settatori, & Con Ragione si Riprendono. Preciede Ancho Alcuni Communi Mathematici, Arithmetici, & Geometrici Principij, Con Alcune Cose di Nuovo dall’Autore Ritrovate: & Alquante Propositioni, delle Quai per Tutta l’Opera si Fá Mentione: & Finalmente Un Indice Ricchissimo delle Cose in Essa Cosmografia Contenute. Grazioso Percacino, Venice. https://hdl.handle.net/21.11103/sphaera.100531 – reference: Fischer, A. (2020). Automatic handwriting recognition in historical documents. In: A. Fischer, M. Liwicki, & R. Ingold (Eds.), Handwritten Historical Document Analysis, Recognition, and Retrieval - State of the Art and Future Trends (pp. 67–80). World Scientific, Friboug, Switzerland – reference: Besson, J. (1595). Theatrum Oder Schawbuch Allerley Werckzeug und Rüstungen. Foillet, Mümbelgart – reference: Dutta, A., Bergel, G., & Zisserman, A. (2021). Visual analysis of chapbooks printed in scotland. In: The 6th International Workshop on Historical Document Imaging and Processing. HIP ’21, pp. 67–72. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3476887.3476893 – reference: Offert, F. (2018). Images of image machines. visual interpretability in computer vision for art. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops – reference: Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In: International Conference on Learning Representations (Poster) – reference: Sacrobosco, J. d., & Melanchthon, P. (1545). Sphaera Ioannis de Sacrobosco Typis Auctior, Quam Antehac, Atque Ex Diligenti Manu Scriptorum Impressorumque Codicum Collatione Castigatior, Praemissa Philippi Melanchthonis Doctiss. Praefatione, Qua Utilitatem Astrologicae Scientiae, & Christiano Homini Non Negligendam Scite Probat. Jean Loys for Guillaume Richard, Paris. https://hdl.handle.net/21.11103/sphaera.101054 – reference: Jiménez-LunaJGrisoniFSchneiderGDrug discovery with explainable artificial intelligenceNature Machine Intelligence202010.1038/s42256-020-00236-4 – reference: Bluche, T., & Messina, R. (2017). Gated convolutional recurrent neural networks for multilingual handwriting recognition. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 646–651. https://doi.org/10.1109/ICDAR.2017.111 – reference: Gao, L., Yi, X., Jiang, Z., Hao, L., & Tang, Z. (2017). Icdar2017 competition on page object detection. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 01, pp. 1417–1422. https://doi.org/10.1109/ICDAR.2017.231 – reference: Tsochatzidis, L., Symeonidis, S., Papazoglou, A., & Pratikakis, I. (2021). Htr for greek historical handwritten documents. Journal of Imaging7(12). https://doi.org/10.3390/jimaging7120260 – reference: FetayaELifshitzYAaronEGordinSRestoration of fragmentary babylonian texts using recurrent neural networksProceedings of the National Academy of Sciences202011737227432275110.1073/pnas.2003794117 – reference: Bekiari, C., Bruseke, G., Doerr, M., Ore, C.-E., Stead, S., & Velios, A. (2021). Definition of the cidoc conceptual reference model v7.1.1. The CIDOC Conceptual Reference Model Special Interest Group. https://doi.org/10.26225/FDZH-X261 – reference: BinderABockmayrMHägeleMWienertSHeimDHellwegKIshiiMStenzingerAHockeADenkertCMüllerK-RKlauschenFMorphological and molecular breast cancer profiling through explainable machine learningNature Machine Intelligence2021311210.1038/s42256-021-00303-4 – reference: Monnier, T., & Aubry, M. (2020). docExtractor: An off-the-shelf historical document element extraction. In: ICFHR – reference: Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2020). Grad-cam: Visual explanations from deep networks via gradient-based localization 128, 336–359. https://doi.org/10.1007/s11263-019-01228-7 – reference: da Firenze, M. (1537). Sphera Volgare Novamente Tradotta Con Molte Notande Additioni di Geometria, Cosmographia, Arte Navigatoria, et Stereometria, Proportioni, et Quantita Delli Elementi, Distanze, Grandeze, et Movimenti di Tutti Li Corpi Celesti, Cose Certamente Rade et Maravigliose. Autore M. Mauro Fiorentino Phonasco et Philopanareto. A Messer Giovan’Orthega Di Carion Burgense Hispano, et Dino Compagni Patritio Fiorentino, Mathematici. Bartolomeo Zanetti, Florence. https://hdl.handle.net/21.11103/sphaera.101009 – reference: Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K.-R. (2019). Layer-wise relevance propagation: An overview. In: Explainable AI, pp. 193–209. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_10 – reference: Finé, O. (1551). Sphaera Mundi, Sive Cosmographia Quinque Recèns Auctis & Emendatis Absoluta: in Qua Tum Prima Astronomiae Pars, Tum Geographie, Ac Hydrographie Rudimenta Pertractantur. Authore Orontio Finaeo Delphinate, Regio Mathematicarum Lutetiae Professore. Michel Vascosan, Paris. https://hdl.handle.net/21.11103/sphaera.101206 – reference: HolderEWangNExplainable artificial intelligence (xai) interactively working with humans as a junior cyber analystHuman-Intelligent Systems Integration2021313915310.1007/s42454-020-00021-z – reference: Narayanan, M., Chen, E., He, J., Kim, B., Gershman, S., & Doshi-Velez, F. (2018). How do humans understand explanations from machine learning systems? An evaluation of the human-interpretability of explanation – reference: Shlomi, N. (2023). The Evolution of Visual Language in Early Modern Astronomy. Tel-Aviv University, The Cohn Institute for the History and Philosophy of Science and Ideas (in progress) – reference: Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K.-R. (Eds.) (2019). Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Lecture Notes in Computer Science, Vol. 11700. Springer, Cham – reference: Berry, D. (2021). Explanatory publics: Explainability and democratic thought. In: B. Balaskas & C. Rito (Eds.), Fabricating Publics: The Dissemination of Culture in Post-truth Era (pp. 211–232). Open Humanities Press, Bristol – reference: AssaelYSommerschieldTSchillingfordBBodbarMPavlopoulosJChatzipanangiotouMAndroutsopulosIPragJde FreitasNRestoring and attributing ancient texts using deep neural networksNature202260328028310.1038/s41586-022-04448-z – reference: Lopes, P., Silve, E., Barga, C., Oliveira, T., & Rosado, L. (2023). Xai systems evaluation: A review of human nad computer-centered methods. Applied Science,12(19) – volume: 28 start-page: 2660 issue: 11 year: 2017 ident: 70_CR82 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2599820 – ident: 70_CR23 – volume: 35 start-page: 89 issue: 1 year: 1992 ident: 70_CR93 publication-title: Commun. ACM doi: 10.1145/129617.129621 – ident: 70_CR4 – ident: 70_CR46 doi: 10.1007/978-3-030-83356-5_1 – ident: 70_CR74 doi: 10.1109/TPAMI.2016.2577031 – ident: 70_CR20 – ident: 70_CR72 doi: 10.1007/978-981-19-1018-0_23 – ident: 70_CR80 doi: 10.1016/B978-0-32-396098-4.00008-9 – ident: 70_CR78 – volume: 603 start-page: 280 year: 2022 ident: 70_CR2 publication-title: Nature doi: 10.1038/s41586-022-04448-z – ident: 70_CR50 doi: 10.1007/s11229-012-0176-x – ident: 70_CR53 doi: 10.18653/v1/2021.emnlp-main.384 – year: 2020 ident: 70_CR45 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-020-00236-4 – volume: 44 start-page: 1149 issue: 3 year: 2022 ident: 70_CR27 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.3020738 – volume: 117 start-page: 22743 issue: 37 year: 2020 ident: 70_CR30 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2003794117 – volume: 33 start-page: 336 issue: 2 year: 2018 ident: 70_CR51 publication-title: DSH doi: 10.1093/llc/fqx047 – ident: 70_CR12 – ident: 70_CR59 doi: 10.1007/978-3-030-28954-6_10 – ident: 70_CR92 – volume: 73 start-page: 1 year: 2018 ident: 70_CR61 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2017.10.011 – volume: 10 start-page: 1096 year: 2019 ident: 70_CR52 publication-title: Nature Communications doi: 10.1038/s41467-019-08987-4 – ident: 70_CR77 – ident: 70_CR54 – ident: 70_CR86 doi: 10.1007/978-3-030-28954-6_17 – ident: 70_CR89 doi: 10.1109/ICDAR.2017.223 – volume: 51 start-page: 141 issue: 1 year: 2011 ident: 70_CR42 publication-title: Decision Support Systems doi: 10.1016/j.dss.2010.12.003 – volume: 9 start-page: 152 issue: 1 year: 2021 ident: 70_CR44 publication-title: Heritage Science doi: 10.1186/s40494-021-00618-w – volume: 267 start-page: 1 year: 2019 ident: 70_CR57 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.07.007 – ident: 70_CR73 doi: 10.1109/CVPR.2016.91 – volume: 3 start-page: 1 year: 2021 ident: 70_CR14 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-021-00303-4 – ident: 70_CR40 doi: 10.1145/3503161.3548112 – volume: 109 start-page: 247 issue: 3 year: 2021 ident: 70_CR83 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2021.3060483 – ident: 70_CR68 doi: 10.1007/978-3-030-28954-6_18 – ident: 70_CR32 – volume: 65 start-page: 211 year: 2017 ident: 70_CR60 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.008 – ident: 70_CR24 doi: 10.1145/3386392.3399276 – ident: 70_CR5 – ident: 70_CR100 – ident: 70_CR55 doi: 10.3390/app12199423 – ident: 70_CR88 – ident: 70_CR36 doi: 10.1016/j.neuroimage.2022.119504 – volume: 101 start-page: 2149 issue: 12 year: 2020 ident: 70_CR28 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-D-20-0097.1 – ident: 70_CR63 – ident: 70_CR21 – ident: 70_CR35 doi: 10.1109/ICDAR.2017.231 – ident: 70_CR33 doi: 10.1142/9789811203244_0005 – volume: 130 year: 2021 ident: 70_CR66 publication-title: Journal of Archaeological Science doi: 10.1016/j.jas.2021.105375 – volume: 10 start-page: 1 issue: 7 year: 2015 ident: 70_CR3 publication-title: PLOS ONE doi: 10.1371/journal.pone.0130140 – ident: 70_CR87 doi: 10.1007/s11263-019-01228-7 – volume: 79 year: 2022 ident: 70_CR95 publication-title: Medical Image Analysis doi: 10.1016/j.media.2022.102470 – ident: 70_CR26 doi: 10.1145/3476887.3476893 – ident: 70_CR19 doi: 10.1109/ICDAR.2019.00245 – ident: 70_CR38 doi: 10.1007/978-3-031-04083-2_1 – ident: 70_CR8 – ident: 70_CR85 – volume-title: The Divided Circle: A History of Instruments for Astronomy Navigation and Surveying. year: 1987 ident: 70_CR10 – ident: 70_CR13 – volume: 100 start-page: 2175 issue: 11 year: 2019 ident: 70_CR56 publication-title: Bulletin of the American Meteorological Society doi: 10.1175/BAMS-D-18-0195.1 – ident: 70_CR15 doi: 10.1109/ICDAR.2017.111 – ident: 70_CR76 – ident: 70_CR47 – ident: 70_CR97 doi: 10.24963/ijcai.2018/147 – ident: 70_CR69 doi: 10.1109/ICDAR.2017.20 – ident: 70_CR16 – volume: 9 start-page: 123438 year: 2021 ident: 70_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3110082 – volume: 3 start-page: 139 year: 2021 ident: 70_CR37 publication-title: Human-Intelligent Systems Integration doi: 10.1007/s42454-020-00021-z – ident: 70_CR25 doi: 10.4324/9781003106531-1 – ident: 70_CR22 doi: 10.1109/SIBGRAPI51738.2020.00016 – ident: 70_CR64 doi: 10.1007/978-3-030-11012-3_54 – ident: 70_CR58 doi: 10.1109/ICFHR2020.2020.00027 – ident: 70_CR79 – ident: 70_CR91 doi: 10.1162/coli_a_00481 – volume: 9 start-page: 1312 issue: 4 year: 2019 ident: 70_CR39 publication-title: WIREs Data Mining and Knowledge Discovery doi: 10.1002/widm.1312 – ident: 70_CR49 doi: 10.1016/j.semcancer.2018.07.001. – volume-title: Making Mathematical Culture: University and Print in the Circle of Lefèvre D’Étaples year: 2018 ident: 70_CR65 doi: 10.1093/oso/9780198823520.001.0001 – ident: 70_CR31 – ident: 70_CR7 doi: 10.26225/FDZH-X261 – ident: 70_CR48 – ident: 70_CR18 doi: 10.1093/llc/fqw045 – ident: 70_CR67 – ident: 70_CR81 doi: 10.1007/978-3-030-28954-6 – ident: 70_CR94 doi: 10.3390/jimaging7120260 – ident: 70_CR34 – ident: 70_CR70 – ident: 70_CR1 doi: 10.18653/v1/D19-1668 – ident: 70_CR75 doi: 10.1007/978-3-319-24574-4_28 – ident: 70_CR96 doi: 10.1007/978-3-030-86334-0_8 – volume: 44 start-page: 7581 issue: 11 year: 2022 ident: 70_CR84 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2021.3115452 – ident: 70_CR11 – ident: 70_CR9 doi: 10.1086/663607 – volume: 116 start-page: 1 issue: 1 year: 2016 ident: 70_CR43 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0823-z – ident: 70_CR90 – volume: 7 start-page: 417 issue: 1 year: 2021 ident: 70_CR41 publication-title: Open Archaeology doi: 10.1515/opar-2020-0136 – ident: 70_CR62 doi: 10.1109/BCI57258.2023.10078502 – volume: 1 start-page: 236 year: 2019 ident: 70_CR99 publication-title: Nature Machine Intelligence doi: 10.1038/s42256-019-0052-1 – ident: 70_CR29 doi: 10.1007/s13222-022-00414-1 – ident: 70_CR17 doi: 10.3390/jimaging8100285 – ident: 70_CR71 doi: 10.1007/s13347-022-00558-8 – ident: 70_CR98 |
SSID | ssj0002710283 |
Score | 2.2405527 |
Snippet | The recent advancements in the field of Artificial Intelligence (AI) translated to an increased adoption of AI technology in the humanities, which is often... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 299 |
SubjectTerms | Applied Statistics Computational Linguistics Cultural Studies Digital/New Media Mathematics and Statistics Natural Language Processing (NLP) Original Paper Statistics |
Title | Explainability and transparency in the realm of digital humanities: toward a historian XAI |
URI | https://link.springer.com/article/10.1007/s42803-023-00070-1 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQu3RBfIryUXlgA4s4ie2ara2oChKdqFSxRPEXVCopomHov-fspJWKUCX2c4bLxe8u9nsPoWsBmJQLJ4lRMKumThrSTXJNYu5o1yaKR8G15HnMR5P0acqmtUyO58L8Or-_W6bePokAsnj-s4gITDpNBhuvr-YBH2z-p8QVVNa8mL-XbmPP9sFnwJPhAdqvG0Hcq97cIdqzxRFq-d6vkk4-Rq_-flwgN_n7qysMMz8ugxa5J3DpFZ4VGNo3DG3f_AMvHDazN28Bgt8rUQuYge9xGa7F4hxXwsJQDHjaezxBk-HDy2BEaisEoilgCGE6ZjbSNBFMmpxppiHFNqHGUeUV413OrAQwj42kSjslHe9GhsVCp5aaPE5OUaNYFPYM4dRBi8qdTACXUhFxKZhRIoKoBB7CVRvRdZIyXeuEe7uKebZROA6JzSCxWUhsRtvoZrPms1LJ2Bl9u859Vn8xyx3h5_8Lv0Atbwlf8QUvUaP8-rZX0DiUqoOavWG_P-6EyvkBPua6Og |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0YPMjF-Bnxcw_edGO37XZZb4RIQIETJMRL0_1SEixG6oF_7-y2kGAMiffZHqbbvDedmfcQuuWASRm3gmgJtWpshSbNKFMkTCxtmkgmgXctGQyT7jh-nrBJJZPjdmF-9e8fFrGzTyKALG7_mQcEKp1d17l0OvntpL3-nxKWUFntxfx9dBN7NhufHk86B2i_IoK4Vb65Q7Rj8iNUd9yvlE4-Rq9uPs4vN7n51SWGmh8XXovcLXCpJZ7mGOgbBto3-8Bzi_X0zVmA4PdS1AJq4Edc-LFYnOFSWBguA560eido3HkatbukskIgigKGEKZCZgJFI86EzphiClJsIqotlU4x3mbMCADzUAsqlZXCJs1As5Cr2FCdhdEpquXz3JwhHFugqIkVEeBSzINEcKYlDyAqgocksoHoKkmpqnTCnV3FLF0rHPvEppDY1Cc2pQ10tz7zWapkbI2-X-U-rb6YxZbw8_-F36C97mjQT_u94csFqjt7-HJ38BLViq9vcwUkopDX_vb8AEkFu60 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA0yQfYiXnFe8-CbhjVtky6-jenYvAwfHAxfSpuLDmY3tD7s3_sl6YYDGfj-pQ9fU85J851zELpMAJOyxAiicjirxkYo0ooySUJuaEtHOQ9casnTgPeG8f2IjX6p-N20--JK0msarEtTUTZnyjSXwrfYhioRwBurik4CAuefTevVZYf6Oryz_MsSegCt1DJ_L11FpNXrUIcy3R20XdFD3Pbvcxdt6GIP1S0j9IbK--jVTs05yZOdap3jrFC4dA7lVtYl53hcYCB1GMjg5ANPDVbjNxsMgt-91QWcjG9w6YZlcYa93TBsETxq9w_QsHv30umRKiCBSArIQpgMmQ4kjRImVMYkk9B4HVFlaG595E3GtACID5WguTS5MLwVKBYmMtZUZWF0iGrFtNBHCMcGiCs3IgK0ipOAi4SpPAmgKoKH8LyB6KJJqazcw22IxSRd-h67xqbQ2NQ1NqUNdLVcM_PeGWurrxe9T6vv6GtN-fH_yi_Q1vNtN33sDx5OUN1mxntB4SmqlZ_f-gyYRZmfu83zA0eow_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explainability+and+transparency+in+the+realm+of+digital+humanities%3A+toward+a+historian+XAI&rft.jtitle=International+journal+of+digital+humanities&rft.au=El-Hajj%2C+Hassan&rft.au=Eberle%2C+Oliver&rft.au=Merklein%2C+Anika&rft.au=Siebold%2C+Anna&rft.date=2023-11-01&rft.issn=2524-7840&rft.eissn=2524-7840&rft.volume=5&rft.issue=2-3&rft.spage=299&rft.epage=331&rft_id=info:doi/10.1007%2Fs42803-023-00070-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42803_023_00070_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-7840&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-7840&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-7840&client=summon |