Assessing systematic weaknesses of DNNs using counterfactuals

With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses ca...

Full description

Saved in:
Bibliographic Details
Published inAi and ethics (Online) Vol. 4; no. 1; pp. 27 - 35
Main Authors Gannamaneni, Sujan Sai, Mock, Michael, Akila, Maram
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Subjects
Online AccessGet full text
ISSN2730-5953
2730-5961
2730-5961
DOI10.1007/s43681-023-00407-0

Cover

Abstract With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses can take on the form of (semantically coherent) subsets or areas in the input space where a DNN performs systematically worse than its expected average. However, it is non-trivial to attribute the reason for such observed low performances to the specific semantic features that describe the subset. For instance, inhomogeneities within the data w.r.t. other (non-considered) attributes might distort results. However, taking into account all (available) attributes and their interaction is often computationally highly expensive. Inspired by counterfactual explanations, we propose an effective and computationally cheap algorithm to validate the semantic attribution of existing subsets, i.e., to check whether the identified attribute is likely to have caused the degraded performance. We demonstrate this approach on an example from the autonomous driving domain using highly annotated simulated data, where we show for a semantic segmentation model that (i) performance differences among the different pedestrian assets exist, but (ii) only in some cases is the asset type itself the reason for this reduction in the performance.
AbstractList With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses can take on the form of (semantically coherent) subsets or areas in the input space where a DNN performs systematically worse than its expected average. However, it is non-trivial to attribute the reason for such observed low performances to the specific semantic features that describe the subset. For instance, inhomogeneities within the data w.r.t. other (non-considered) attributes might distort results. However, taking into account all (available) attributes and their interaction is often computationally highly expensive. Inspired by counterfactual explanations, we propose an effective and computationally cheap algorithm to validate the semantic attribution of existing subsets, i.e., to check whether the identified attribute is likely to have caused the degraded performance. We demonstrate this approach on an example from the autonomous driving domain using highly annotated simulated data, where we show for a semantic segmentation model that (i) performance differences among the different pedestrian assets exist, but (ii) only in some cases is the asset type itself the reason for this reduction in the performance.
Author Gannamaneni, Sujan Sai
Akila, Maram
Mock, Michael
Author_xml – sequence: 1
  givenname: Sujan Sai
  surname: Gannamaneni
  fullname: Gannamaneni, Sujan Sai
  email: sujan.sai.gannamaneni@iais.fraunhofer.de
  organization: Fraunhofer IAIS
– sequence: 2
  givenname: Michael
  surname: Mock
  fullname: Mock, Michael
  organization: Fraunhofer IAIS
– sequence: 3
  givenname: Maram
  surname: Akila
  fullname: Akila, Maram
  organization: Fraunhofer IAIS
BookMark eNqNkMlOwzAQhi1UJAr0BTjlBQzjJduBQ1VWqSoXOFuOY1cpqVN5ElV9e9xFHDhUnGZk_5_H812Tke-8JeSOwT0DyB9QiqxgFLigABJyChdkzHMBNC0zNvrtU3FFJogrAOA5A87lmDxOES1i45cJ7rC3a903Jtla_e3t_ibpXPK0WGAyHDKmG3xvg9OmH3SLt-TSxWInp3pDvl6eP2dvdP7x-j6bzqlhBQCtOU-NszVUzDFbSsN4nYLgUsuMSVODLCzEw8pxlzFeVsaKStdllXNwIsvEDRHHdwe_0butblu1Cc1ah51ioPYS1FGCihLUQYKCSBVHyoQOMVinTNPH_TrfB92051H-B_3XvNMvMYb90ga16obgo5hz1A-OtIK3
CitedBy_id crossref_primary_10_1016_j_cpsurg_2025_101743
Cites_doi 10.1007/s10278-019-00227-x
10.1002/widm.1144
10.1145/3241036
10.1109/TPAMI.2017.2699184
10.1016/j.neucom.2018.05.083
10.1109/ACCESS.2018.2807385
10.1007/s10115-010-0356-2
10.1109/CVPRW.2018.00101
10.24963/ijcai.2020/395
10.1109/ICCVW54120.2021.00117
10.1109/CVPR.2016.350
10.1007/978-3-031-01233-4
10.1145/3385958.3430479
10.1109/CVPRW53098.2021.00013
10.1145/3287560.3287566
10.1145/3531146.3533240
10.1109/ICDE.2019.00139
10.1145/3442188.3445899
10.1007/978-3-030-58112-1_31
10.1109/CVPR42600.2020.00894
10.1145/3351095.3372850
10.1145/2939672.2939778
10.1145/3448016.3457323
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1007/s43681-023-00407-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2730-5961
EndPage 35
ExternalDocumentID oai:publica.fraunhofer.de:publica/481668
10_1007_s43681_023_00407_0
GrantInformation_xml – fundername: Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS (1050)
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJNI
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
C6C
DPUIP
EBLON
EBS
FIGPU
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1800-d225cfed0b1f1e94c12d50324a4614cd048e0c12bf2f6129bce3bad9b720f3663
IEDL.DBID C6C
ISSN 2730-5953
2730-5961
IngestDate Thu Aug 28 11:27:07 EDT 2025
Wed Oct 01 04:39:37 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Fri Feb 21 02:42:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Artifical intelligence
Trustworthy AI
Autonomous driving
Testing DNNs
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1800-d225cfed0b1f1e94c12d50324a4614cd048e0c12bf2f6129bce3bad9b720f3663
OpenAccessLink https://doi.org/10.1007/s43681-023-00407-0
PageCount 9
ParticipantIDs unpaywall_primary_10_1007_s43681_023_00407_0
crossref_citationtrail_10_1007_s43681_023_00407_0
crossref_primary_10_1007_s43681_023_00407_0
springer_journals_10_1007_s43681_023_00407_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Ai and ethics (Online)
PublicationTitleAbbrev AI Ethics
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Wachter, Mittelstadt, Russell (CR41) 2017; 31
Wang, Deng (CR42) 2018; 312
CR18
CR17
CR39
CR16
Herrera, Carmona, González, Del Jesus (CR19) 2011; 29
CR38
CR15
CR37
CR14
Hesamian, Jia, He, Kennedy (CR20) 2019; 32
CR36
Atzmueller (CR2) 2015; 5
CR13
CR35
CR12
CR34
CR11
CR10
CR32
CR31
CR30
Akhtar, Mian (CR1) 2018; 6
Pearl (CR33) 2019; 62
CR4
CR3
CR6
CR8
CR7
CR29
CR28
CR9
CR27
CR26
CR25
CR24
CR23
CR22
CR21
CR43
Chen, Papandreou, Kokkinos, Murphy, Yuille (CR5) 2017; 40
CR40
M Wang (407_CR42) 2018; 312
407_CR17
407_CR39
407_CR16
407_CR38
N Akhtar (407_CR1) 2018; 6
407_CR18
407_CR13
407_CR35
407_CR12
407_CR34
407_CR15
407_CR37
407_CR14
407_CR36
407_CR31
407_CR30
407_CR11
407_CR10
407_CR32
F Herrera (407_CR19) 2011; 29
MH Hesamian (407_CR20) 2019; 32
407_CR28
407_CR27
407_CR29
407_CR24
407_CR23
407_CR26
407_CR25
407_CR22
407_CR21
407_CR43
407_CR40
M Atzmueller (407_CR2) 2015; 5
J Pearl (407_CR33) 2019; 62
407_CR9
407_CR8
L-C Chen (407_CR5) 2017; 40
407_CR7
407_CR6
407_CR4
S Wachter (407_CR41) 2017; 31
407_CR3
References_xml – ident: CR22
– ident: CR18
– ident: CR43
– volume: 32
  start-page: 582
  issue: 4
  year: 2019
  end-page: 596
  ident: CR20
  article-title: Deep learning techniques for medical image segmentation: achievements and challenges
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00227-x
– ident: CR4
– ident: CR14
– ident: CR39
– ident: CR16
– ident: CR37
– volume: 31
  start-page: 841
  year: 2017
  ident: CR41
  article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR
  publication-title: Harv. JL & Tech.
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR35
– ident: CR6
– ident: CR29
– ident: CR8
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 5
  start-page: 35
  issue: 1
  year: 2015
  end-page: 49
  ident: CR2
  article-title: Subgroup discovery
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1144
– ident: CR21
– volume: 62
  start-page: 54
  issue: 3
  year: 2019
  end-page: 60
  ident: CR33
  article-title: The seven tools of causal inference, with reflections on machine learning
  publication-title: Communications of the ACM
  doi: 10.1145/3241036
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  end-page: 848
  ident: CR5
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: CR17
– ident: CR31
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: CR42
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– ident: CR13
– ident: CR11
– ident: CR9
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: CR1
  article-title: Threat of adversarial attacks on deep learning in computer vision: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– volume: 29
  start-page: 495
  issue: 3
  year: 2011
  end-page: 525
  ident: CR19
  article-title: An overview on subgroup discovery: foundations and applications
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-010-0356-2
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: 407_CR37
  doi: 10.1109/CVPRW.2018.00101
– ident: 407_CR28
– ident: 407_CR34
– ident: 407_CR11
– ident: 407_CR23
  doi: 10.24963/ijcai.2020/395
– ident: 407_CR26
– ident: 407_CR30
– volume: 29
  start-page: 495
  issue: 3
  year: 2011
  ident: 407_CR19
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-010-0356-2
– ident: 407_CR32
– ident: 407_CR15
  doi: 10.1109/ICCVW54120.2021.00117
– volume: 6
  start-page: 14410
  year: 2018
  ident: 407_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– ident: 407_CR18
– ident: 407_CR4
– ident: 407_CR7
  doi: 10.1109/CVPR.2016.350
– volume: 62
  start-page: 54
  issue: 3
  year: 2019
  ident: 407_CR33
  publication-title: Communications of the ACM
  doi: 10.1145/3241036
– ident: 407_CR16
– ident: 407_CR22
– ident: 407_CR14
  doi: 10.1007/978-3-031-01233-4
– ident: 407_CR24
– ident: 407_CR38
  doi: 10.1145/3385958.3430479
– ident: 407_CR12
– ident: 407_CR29
  doi: 10.1109/CVPRW53098.2021.00013
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 407_CR5
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 407_CR39
  doi: 10.1145/3287560.3287566
– ident: 407_CR10
  doi: 10.1145/3531146.3533240
– ident: 407_CR27
– ident: 407_CR9
– ident: 407_CR6
  doi: 10.1109/ICDE.2019.00139
– ident: 407_CR25
  doi: 10.1145/3442188.3445899
– ident: 407_CR8
  doi: 10.1007/978-3-030-58112-1_31
– ident: 407_CR3
– ident: 407_CR43
  doi: 10.1109/CVPR42600.2020.00894
– volume: 5
  start-page: 35
  issue: 1
  year: 2015
  ident: 407_CR2
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1144
– ident: 407_CR17
– ident: 407_CR21
– ident: 407_CR31
  doi: 10.1145/3351095.3372850
– ident: 407_CR35
  doi: 10.1145/2939672.2939778
– ident: 407_CR40
– ident: 407_CR13
– volume: 312
  start-page: 135
  year: 2018
  ident: 407_CR42
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– ident: 407_CR36
  doi: 10.1145/3448016.3457323
– volume: 31
  start-page: 841
  year: 2017
  ident: 407_CR41
  publication-title: Harv. JL & Tech.
– volume: 32
  start-page: 582
  issue: 4
  year: 2019
  ident: 407_CR20
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00227-x
SSID ssj0002710224
Score 2.248313
Snippet With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the...
SourceID unpaywall
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms Artificial Intelligence
Computer Science
Ethics
Original Research
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HcSDP1BxotKDN81Mm6Rdj0MdQ7B4cDBPJUmTy0Y3tpUx_3pf2nROD1NvpbyWkO-l70tf3vcQugkCE3a4EZhSFWAWUo2FMbBVYTz2O0TxzNj_kC9J2B-w5yEfukM0thZmI38PgYeE95Xas8AMmP8uaoYcKHcDNQfJa_fdNo4DD8U8LtUm3XXou-KYskTOKqzDhjmg2PprhMn3AFRnP_fRXpFPxWopxuONANM7RL16aNW5klG7WMi2-vih2vjr2I_QgaOYXrfyiWO0o_MT5LK7MArvS7zZW2oxst86PfcmxntMkrlXlDZlCwk9s2UPBTjoKRr0nt4e-ti1TsAKZpjgDJapMjoj0je-jpnyg4wTIE-CQTxWGaxbTeCmNIAVhHypNJUii2UUEEOBhZyhRj7J9TnyGAXECJeEMs2yMIp5JCSwXKM5E9RELeTX85kqpytu21uM07UicolBChikJQYpaaHb9TPTSlVjq_VdDVPqVth8u_kayj-8_eJ_5peosZgV-gqoyEJeO0f8BJ_u1Oc
  priority: 102
  providerName: Unpaywall
Title Assessing systematic weaknesses of DNNs using counterfactuals
URI https://link.springer.com/article/10.1007/s43681-023-00407-0
https://doi.org/10.24406/publica-4144
UnpaywallVersion submittedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2730-5961
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710224
  issn: 2730-5961
  databaseCode: AFBBN
  dateStart: 20210201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQOwADb0R5VB7YwMKJ7aQZ20JVIRExUKlMke3YC1VbNY0q_j2X1AkPoQrGRM4Nn-9ydz7fdwhd-74NOsJKwpj2CQ-YIdJaSFW4iLwO1SK1xTnkUxwMR_xxLMaOJqfohflRv7_LCoZ0SHh9Rgp9Cwmk501wUkFZmA369XmKH5bkaMUsOVBaIiLBXI_M72K--6GqCLqLtvPpXL6v5GTyxc8MDtCeCxBxd72jh2jLTI_QfjV8ATtbPEauXAvy8CcbM14Z-Vb8vEyGZxbfx3GG83JNORPCLIo-hhw07gSNBg8v_SFxsxCIBsgoScHutDUpVZ71TMS156eCQjQkOThYnYIhGgovlQXwwYcrbZiSaaRCn1oGYcUpakxnU3OGMGewBVQoyrjhaRBGIpQKwlZrBJfMhi3kVcgk2hGFF_MqJklNcVyimQCaSYlmQlvopv5mvqbJ2Lj6tgI8cSaTbV5eb8ofpJ__T_oF2vEhUFnfxL5EjeUiN1cQaCxVGzW7g14vbpeaBk-j-Ln7-gGM88gA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHAYH3ojxzIEbRKR59HFEg2nA1tMm7ValbXJh6qZ11cS_x-na8hCa4Fq5Pny2azupPyN0w5hxfWkU4TxhRLhcE2UMtCpCBo5PE5kaew45CN3eSLyM5biiybGzMD_u7-9zy5AODS_jxPqbR6A93xKO79sg7Lid5jyFeSU5mt0lB05LZCB5NSPzu5rveai-BN1BrSKbqfelmky-5JnuPtqtCkT8sLLoAdrQ2SHaq5cv4CoWj1B1XQv68CcbM15q9WY_XjrHU4MfwzDHRSlT7oTQczvHUIDHHaNR92nY6ZFqFwJJADJKUoi7xOiUxo5xdCASh6WSQjWkBCTYJIVA1BQexgbAhxweJ5rHKg1ij1HDoaw4QZvZNNOnCAsOJqAyplxokbpeID0VQ9lqtBSKG6-NnBqZKKmIwu2-iknUUByXaEaAZlSiGdE2um3ema1oMtZK39WAR1XI5OvFG6P8QfvZ_7Rfo1ZvOOhH_efw9RxtMyhaVn9lX6DNxbzQl1B0LOKr0ts-AI-6x8M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EwcfBt1ife_CmSzf7SJqjtJb6Kh4s9BZ2k92LJS1tQ_HfO5uXFaToNUyG8M1MZvYx3yB0w5j1W9IqwnnMiPC5IcpaWKoIGXotGsvEun3I177fG4inoRwudfHnt92rI8mip8GxNKXz5iSxzbrxzfGmwzKYceK8MCCwaN8QkN3cDIO23653WViQU6a5CXPgykSGkpedM7-r-Zmdqu_YQVtZOlGfCzUaLWWf7j7aLctGfF_Y-QCtmfQQ7VUjGXAZoUeoPMQFffiboxkvjPpwvzQzw2OLO_3-DGe5TD4pwkxdd0MGfniMBt2H93aPlBMSSAxAUpJANMbWJFR71jOhiD2WSAo1khKQduMEwtNQeKgtmAQyu44N1yoJdcCo5VBsnKD1dJyaU4QFB8NQqSkXRiR-EMpAaShmrZFCcRs0kFchE8UlfbibYjGKauLjHM0I0IxyNCPaQLf1O5OCPGOl9F0FeFQG0my1eG2UP2g_-5_2a7T51ulGL4_953O0zaCSKa5qX6D1-TQzl1CJzPVV7mxfDHTQCg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HcSDP1BxotKDN81Mm6Rdj0MdQ7B4cDBPJUmTy0Y3tpUx_3pf2nROD1NvpbyWkO-l70tf3vcQugkCE3a4EZhSFWAWUo2FMbBVYTz2O0TxzNj_kC9J2B-w5yEfukM0thZmI38PgYeE95Xas8AMmP8uaoYcKHcDNQfJa_fdNo4DD8U8LtUm3XXou-KYskTOKqzDhjmg2PprhMn3AFRnP_fRXpFPxWopxuONANM7RL16aNW5klG7WMi2-vih2vjr2I_QgaOYXrfyiWO0o_MT5LK7MArvS7zZW2oxst86PfcmxntMkrlXlDZlCwk9s2UPBTjoKRr0nt4e-ti1TsAKZpjgDJapMjoj0je-jpnyg4wTIE-CQTxWGaxbTeCmNIAVhHypNJUii2UUEEOBhZyhRj7J9TnyGAXECJeEMs2yMIp5JCSwXKM5E9RELeTX85kqpytu21uM07UicolBChikJQYpaaHb9TPTSlVjq_VdDVPqVth8u_kayj-8_eJ_5peosZgV-gqoyEJeO0f8BJ_u1Oc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+systematic+weaknesses+of+DNNs+using+counterfactuals&rft.jtitle=Ai+and+ethics+%28Online%29&rft.au=Gannamaneni%2C+Sujan+Sai&rft.au=Mock%2C+Michael&rft.au=Akila%2C+Maram&rft.date=2024-02-01&rft.pub=Springer+International+Publishing&rft.issn=2730-5953&rft.eissn=2730-5961&rft.volume=4&rft.issue=1&rft.spage=27&rft.epage=35&rft_id=info:doi/10.1007%2Fs43681-023-00407-0&rft.externalDocID=10_1007_s43681_023_00407_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-5953&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-5953&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-5953&client=summon