Assessing systematic weaknesses of DNNs using counterfactuals
With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses ca...
Saved in:
| Published in | Ai and ethics (Online) Vol. 4; no. 1; pp. 27 - 35 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2730-5953 2730-5961 2730-5961 |
| DOI | 10.1007/s43681-023-00407-0 |
Cover
| Abstract | With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses can take on the form of (semantically coherent) subsets or areas in the input space where a DNN performs systematically worse than its expected average. However, it is non-trivial to attribute the reason for such observed low performances to the specific semantic features that describe the subset. For instance, inhomogeneities within the data w.r.t. other (non-considered) attributes might distort results. However, taking into account all (available) attributes and their interaction is often computationally highly expensive. Inspired by counterfactual explanations, we propose an effective and computationally cheap algorithm to validate the semantic attribution of existing subsets, i.e., to check whether the identified attribute is likely to have caused the degraded performance. We demonstrate this approach on an example from the autonomous driving domain using highly annotated simulated data, where we show for a semantic segmentation model that (i) performance differences among the different pedestrian assets exist, but (ii) only in some cases is the asset type itself the reason for this reduction in the performance. |
|---|---|
| AbstractList | With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the search for and identification of systematic weaknesses that put safety assumptions based on average performance values at risk. Such weaknesses can take on the form of (semantically coherent) subsets or areas in the input space where a DNN performs systematically worse than its expected average. However, it is non-trivial to attribute the reason for such observed low performances to the specific semantic features that describe the subset. For instance, inhomogeneities within the data w.r.t. other (non-considered) attributes might distort results. However, taking into account all (available) attributes and their interaction is often computationally highly expensive. Inspired by counterfactual explanations, we propose an effective and computationally cheap algorithm to validate the semantic attribution of existing subsets, i.e., to check whether the identified attribute is likely to have caused the degraded performance. We demonstrate this approach on an example from the autonomous driving domain using highly annotated simulated data, where we show for a semantic segmentation model that (i) performance differences among the different pedestrian assets exist, but (ii) only in some cases is the asset type itself the reason for this reduction in the performance. |
| Author | Gannamaneni, Sujan Sai Akila, Maram Mock, Michael |
| Author_xml | – sequence: 1 givenname: Sujan Sai surname: Gannamaneni fullname: Gannamaneni, Sujan Sai email: sujan.sai.gannamaneni@iais.fraunhofer.de organization: Fraunhofer IAIS – sequence: 2 givenname: Michael surname: Mock fullname: Mock, Michael organization: Fraunhofer IAIS – sequence: 3 givenname: Maram surname: Akila fullname: Akila, Maram organization: Fraunhofer IAIS |
| BookMark | eNqNkMlOwzAQhi1UJAr0BTjlBQzjJduBQ1VWqSoXOFuOY1cpqVN5ElV9e9xFHDhUnGZk_5_H812Tke-8JeSOwT0DyB9QiqxgFLigABJyChdkzHMBNC0zNvrtU3FFJogrAOA5A87lmDxOES1i45cJ7rC3a903Jtla_e3t_ibpXPK0WGAyHDKmG3xvg9OmH3SLt-TSxWInp3pDvl6eP2dvdP7x-j6bzqlhBQCtOU-NszVUzDFbSsN4nYLgUsuMSVODLCzEw8pxlzFeVsaKStdllXNwIsvEDRHHdwe_0butblu1Cc1ah51ioPYS1FGCihLUQYKCSBVHyoQOMVinTNPH_TrfB92051H-B_3XvNMvMYb90ga16obgo5hz1A-OtIK3 |
| CitedBy_id | crossref_primary_10_1016_j_cpsurg_2025_101743 |
| Cites_doi | 10.1007/s10278-019-00227-x 10.1002/widm.1144 10.1145/3241036 10.1109/TPAMI.2017.2699184 10.1016/j.neucom.2018.05.083 10.1109/ACCESS.2018.2807385 10.1007/s10115-010-0356-2 10.1109/CVPRW.2018.00101 10.24963/ijcai.2020/395 10.1109/ICCVW54120.2021.00117 10.1109/CVPR.2016.350 10.1007/978-3-031-01233-4 10.1145/3385958.3430479 10.1109/CVPRW53098.2021.00013 10.1145/3287560.3287566 10.1145/3531146.3533240 10.1109/ICDE.2019.00139 10.1145/3442188.3445899 10.1007/978-3-030-58112-1_31 10.1109/CVPR42600.2020.00894 10.1145/3351095.3372850 10.1145/2939672.2939778 10.1145/3448016.3457323 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 |
| Copyright_xml | – notice: The Author(s) 2024 |
| DBID | C6C AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1007/s43681-023-00407-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2730-5961 |
| EndPage | 35 |
| ExternalDocumentID | oai:publica.fraunhofer.de:publica/481668 10_1007_s43681_023_00407_0 |
| GrantInformation_xml | – fundername: Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme IAIS (1050) |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABJNI ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACPIV ACZOJ ADTPH AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH C6C DPUIP EBLON EBS FIGPU IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1800-d225cfed0b1f1e94c12d50324a4614cd048e0c12bf2f6129bce3bad9b720f3663 |
| IEDL.DBID | C6C |
| ISSN | 2730-5953 2730-5961 |
| IngestDate | Thu Aug 28 11:27:07 EDT 2025 Wed Oct 01 04:39:37 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Fri Feb 21 02:42:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Artifical intelligence Trustworthy AI Autonomous driving Testing DNNs Machine learning |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1800-d225cfed0b1f1e94c12d50324a4614cd048e0c12bf2f6129bce3bad9b720f3663 |
| OpenAccessLink | https://doi.org/10.1007/s43681-023-00407-0 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1007_s43681_023_00407_0 crossref_citationtrail_10_1007_s43681_023_00407_0 crossref_primary_10_1007_s43681_023_00407_0 springer_journals_10_1007_s43681_023_00407_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Ai and ethics (Online) |
| PublicationTitleAbbrev | AI Ethics |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Wachter, Mittelstadt, Russell (CR41) 2017; 31 Wang, Deng (CR42) 2018; 312 CR18 CR17 CR39 CR16 Herrera, Carmona, González, Del Jesus (CR19) 2011; 29 CR38 CR15 CR37 CR14 Hesamian, Jia, He, Kennedy (CR20) 2019; 32 CR36 Atzmueller (CR2) 2015; 5 CR13 CR35 CR12 CR34 CR11 CR10 CR32 CR31 CR30 Akhtar, Mian (CR1) 2018; 6 Pearl (CR33) 2019; 62 CR4 CR3 CR6 CR8 CR7 CR29 CR28 CR9 CR27 CR26 CR25 CR24 CR23 CR22 CR21 CR43 Chen, Papandreou, Kokkinos, Murphy, Yuille (CR5) 2017; 40 CR40 M Wang (407_CR42) 2018; 312 407_CR17 407_CR39 407_CR16 407_CR38 N Akhtar (407_CR1) 2018; 6 407_CR18 407_CR13 407_CR35 407_CR12 407_CR34 407_CR15 407_CR37 407_CR14 407_CR36 407_CR31 407_CR30 407_CR11 407_CR10 407_CR32 F Herrera (407_CR19) 2011; 29 MH Hesamian (407_CR20) 2019; 32 407_CR28 407_CR27 407_CR29 407_CR24 407_CR23 407_CR26 407_CR25 407_CR22 407_CR21 407_CR43 407_CR40 M Atzmueller (407_CR2) 2015; 5 J Pearl (407_CR33) 2019; 62 407_CR9 407_CR8 L-C Chen (407_CR5) 2017; 40 407_CR7 407_CR6 407_CR4 S Wachter (407_CR41) 2017; 31 407_CR3 |
| References_xml | – ident: CR22 – ident: CR18 – ident: CR43 – volume: 32 start-page: 582 issue: 4 year: 2019 end-page: 596 ident: CR20 article-title: Deep learning techniques for medical image segmentation: achievements and challenges publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00227-x – ident: CR4 – ident: CR14 – ident: CR39 – ident: CR16 – ident: CR37 – volume: 31 start-page: 841 year: 2017 ident: CR41 article-title: Counterfactual explanations without opening the black box: Automated decisions and the GDPR publication-title: Harv. JL & Tech. – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR35 – ident: CR6 – ident: CR29 – ident: CR8 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 5 start-page: 35 issue: 1 year: 2015 end-page: 49 ident: CR2 article-title: Subgroup discovery publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1144 – ident: CR21 – volume: 62 start-page: 54 issue: 3 year: 2019 end-page: 60 ident: CR33 article-title: The seven tools of causal inference, with reflections on machine learning publication-title: Communications of the ACM doi: 10.1145/3241036 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 40 start-page: 834 issue: 4 year: 2017 end-page: 848 ident: CR5 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: CR17 – ident: CR31 – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: CR42 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – ident: CR13 – ident: CR11 – ident: CR9 – volume: 6 start-page: 14410 year: 2018 end-page: 14430 ident: CR1 article-title: Threat of adversarial attacks on deep learning in computer vision: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – volume: 29 start-page: 495 issue: 3 year: 2011 end-page: 525 ident: CR19 article-title: An overview on subgroup discovery: foundations and applications publication-title: Knowl. Inform. Syst. doi: 10.1007/s10115-010-0356-2 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR7 – ident: CR28 – ident: CR26 – ident: CR24 – ident: 407_CR37 doi: 10.1109/CVPRW.2018.00101 – ident: 407_CR28 – ident: 407_CR34 – ident: 407_CR11 – ident: 407_CR23 doi: 10.24963/ijcai.2020/395 – ident: 407_CR26 – ident: 407_CR30 – volume: 29 start-page: 495 issue: 3 year: 2011 ident: 407_CR19 publication-title: Knowl. Inform. Syst. doi: 10.1007/s10115-010-0356-2 – ident: 407_CR32 – ident: 407_CR15 doi: 10.1109/ICCVW54120.2021.00117 – volume: 6 start-page: 14410 year: 2018 ident: 407_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2807385 – ident: 407_CR18 – ident: 407_CR4 – ident: 407_CR7 doi: 10.1109/CVPR.2016.350 – volume: 62 start-page: 54 issue: 3 year: 2019 ident: 407_CR33 publication-title: Communications of the ACM doi: 10.1145/3241036 – ident: 407_CR16 – ident: 407_CR22 – ident: 407_CR14 doi: 10.1007/978-3-031-01233-4 – ident: 407_CR24 – ident: 407_CR38 doi: 10.1145/3385958.3430479 – ident: 407_CR12 – ident: 407_CR29 doi: 10.1109/CVPRW53098.2021.00013 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 407_CR5 publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: 407_CR39 doi: 10.1145/3287560.3287566 – ident: 407_CR10 doi: 10.1145/3531146.3533240 – ident: 407_CR27 – ident: 407_CR9 – ident: 407_CR6 doi: 10.1109/ICDE.2019.00139 – ident: 407_CR25 doi: 10.1145/3442188.3445899 – ident: 407_CR8 doi: 10.1007/978-3-030-58112-1_31 – ident: 407_CR3 – ident: 407_CR43 doi: 10.1109/CVPR42600.2020.00894 – volume: 5 start-page: 35 issue: 1 year: 2015 ident: 407_CR2 publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1144 – ident: 407_CR17 – ident: 407_CR21 – ident: 407_CR31 doi: 10.1145/3351095.3372850 – ident: 407_CR35 doi: 10.1145/2939672.2939778 – ident: 407_CR40 – ident: 407_CR13 – volume: 312 start-page: 135 year: 2018 ident: 407_CR42 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – ident: 407_CR36 doi: 10.1145/3448016.3457323 – volume: 31 start-page: 841 year: 2017 ident: 407_CR41 publication-title: Harv. JL & Tech. – volume: 32 start-page: 582 issue: 4 year: 2019 ident: 407_CR20 publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00227-x |
| SSID | ssj0002710224 |
| Score | 2.248313 |
| Snippet | With the advancement of DNNs into safety-critical applications, testing approaches for such models have gained more attention. A current direction is the... |
| SourceID | unpaywall crossref springer |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 27 |
| SubjectTerms | Artificial Intelligence Computer Science Ethics Original Research |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HcSDP1BxotKDN81Mm6Rdj0MdQ7B4cDBPJUmTy0Y3tpUx_3pf2nROD1NvpbyWkO-l70tf3vcQugkCE3a4EZhSFWAWUo2FMbBVYTz2O0TxzNj_kC9J2B-w5yEfukM0thZmI38PgYeE95Xas8AMmP8uaoYcKHcDNQfJa_fdNo4DD8U8LtUm3XXou-KYskTOKqzDhjmg2PprhMn3AFRnP_fRXpFPxWopxuONANM7RL16aNW5klG7WMi2-vih2vjr2I_QgaOYXrfyiWO0o_MT5LK7MArvS7zZW2oxst86PfcmxntMkrlXlDZlCwk9s2UPBTjoKRr0nt4e-ti1TsAKZpjgDJapMjoj0je-jpnyg4wTIE-CQTxWGaxbTeCmNIAVhHypNJUii2UUEEOBhZyhRj7J9TnyGAXECJeEMs2yMIp5JCSwXKM5E9RELeTX85kqpytu21uM07UicolBChikJQYpaaHb9TPTSlVjq_VdDVPqVth8u_kayj-8_eJ_5peosZgV-gqoyEJeO0f8BJ_u1Oc priority: 102 providerName: Unpaywall |
| Title | Assessing systematic weaknesses of DNNs using counterfactuals |
| URI | https://link.springer.com/article/10.1007/s43681-023-00407-0 https://doi.org/10.24406/publica-4144 |
| UnpaywallVersion | submittedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2730-5961 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710224 issn: 2730-5961 databaseCode: AFBBN dateStart: 20210201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQOwADb0R5VB7YwMKJ7aQZ20JVIRExUKlMke3YC1VbNY0q_j2X1AkPoQrGRM4Nn-9ydz7fdwhd-74NOsJKwpj2CQ-YIdJaSFW4iLwO1SK1xTnkUxwMR_xxLMaOJqfohflRv7_LCoZ0SHh9Rgp9Cwmk501wUkFZmA369XmKH5bkaMUsOVBaIiLBXI_M72K--6GqCLqLtvPpXL6v5GTyxc8MDtCeCxBxd72jh2jLTI_QfjV8ATtbPEauXAvy8CcbM14Z-Vb8vEyGZxbfx3GG83JNORPCLIo-hhw07gSNBg8v_SFxsxCIBsgoScHutDUpVZ71TMS156eCQjQkOThYnYIhGgovlQXwwYcrbZiSaaRCn1oGYcUpakxnU3OGMGewBVQoyrjhaRBGIpQKwlZrBJfMhi3kVcgk2hGFF_MqJklNcVyimQCaSYlmQlvopv5mvqbJ2Lj6tgI8cSaTbV5eb8ofpJ__T_oF2vEhUFnfxL5EjeUiN1cQaCxVGzW7g14vbpeaBk-j-Ln7-gGM88gA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHAYH3ojxzIEbRKR59HFEg2nA1tMm7ValbXJh6qZ11cS_x-na8hCa4Fq5Pny2azupPyN0w5hxfWkU4TxhRLhcE2UMtCpCBo5PE5kaew45CN3eSLyM5biiybGzMD_u7-9zy5AODS_jxPqbR6A93xKO79sg7Lid5jyFeSU5mt0lB05LZCB5NSPzu5rveai-BN1BrSKbqfelmky-5JnuPtqtCkT8sLLoAdrQ2SHaq5cv4CoWj1B1XQv68CcbM15q9WY_XjrHU4MfwzDHRSlT7oTQczvHUIDHHaNR92nY6ZFqFwJJADJKUoi7xOiUxo5xdCASh6WSQjWkBCTYJIVA1BQexgbAhxweJ5rHKg1ij1HDoaw4QZvZNNOnCAsOJqAyplxokbpeID0VQ9lqtBSKG6-NnBqZKKmIwu2-iknUUByXaEaAZlSiGdE2um3ema1oMtZK39WAR1XI5OvFG6P8QfvZ_7Rfo1ZvOOhH_efw9RxtMyhaVn9lX6DNxbzQl1B0LOKr0ts-AI-6x8M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EwcfBt1ife_CmSzf7SJqjtJb6Kh4s9BZ2k92LJS1tQ_HfO5uXFaToNUyG8M1MZvYx3yB0w5j1W9IqwnnMiPC5IcpaWKoIGXotGsvEun3I177fG4inoRwudfHnt92rI8mip8GxNKXz5iSxzbrxzfGmwzKYceK8MCCwaN8QkN3cDIO23653WViQU6a5CXPgykSGkpedM7-r-Zmdqu_YQVtZOlGfCzUaLWWf7j7aLctGfF_Y-QCtmfQQ7VUjGXAZoUeoPMQFffiboxkvjPpwvzQzw2OLO_3-DGe5TD4pwkxdd0MGfniMBt2H93aPlBMSSAxAUpJANMbWJFR71jOhiD2WSAo1khKQduMEwtNQeKgtmAQyu44N1yoJdcCo5VBsnKD1dJyaU4QFB8NQqSkXRiR-EMpAaShmrZFCcRs0kFchE8UlfbibYjGKauLjHM0I0IxyNCPaQLf1O5OCPGOl9F0FeFQG0my1eG2UP2g_-5_2a7T51ulGL4_953O0zaCSKa5qX6D1-TQzl1CJzPVV7mxfDHTQCg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HcSDP1BxotKDN81Mm6Rdj0MdQ7B4cDBPJUmTy0Y3tpUx_3pf2nROD1NvpbyWkO-l70tf3vcQugkCE3a4EZhSFWAWUo2FMbBVYTz2O0TxzNj_kC9J2B-w5yEfukM0thZmI38PgYeE95Xas8AMmP8uaoYcKHcDNQfJa_fdNo4DD8U8LtUm3XXou-KYskTOKqzDhjmg2PprhMn3AFRnP_fRXpFPxWopxuONANM7RL16aNW5klG7WMi2-vih2vjr2I_QgaOYXrfyiWO0o_MT5LK7MArvS7zZW2oxst86PfcmxntMkrlXlDZlCwk9s2UPBTjoKRr0nt4e-ti1TsAKZpjgDJapMjoj0je-jpnyg4wTIE-CQTxWGaxbTeCmNIAVhHypNJUii2UUEEOBhZyhRj7J9TnyGAXECJeEMs2yMIp5JCSwXKM5E9RELeTX85kqpytu21uM07UicolBChikJQYpaaHb9TPTSlVjq_VdDVPqVth8u_kayj-8_eJ_5peosZgV-gqoyEJeO0f8BJ_u1Oc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+systematic+weaknesses+of+DNNs+using+counterfactuals&rft.jtitle=Ai+and+ethics+%28Online%29&rft.au=Gannamaneni%2C+Sujan+Sai&rft.au=Mock%2C+Michael&rft.au=Akila%2C+Maram&rft.date=2024-02-01&rft.pub=Springer+International+Publishing&rft.issn=2730-5953&rft.eissn=2730-5961&rft.volume=4&rft.issue=1&rft.spage=27&rft.epage=35&rft_id=info:doi/10.1007%2Fs43681-023-00407-0&rft.externalDocID=10_1007_s43681_023_00407_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-5953&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-5953&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-5953&client=summon |