A many-objective surrogate optimization model driven by hybrid pilot-test data, molecular reconstruction, and crude oil direct cracking reaction mechanism
The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis. [Display omitted] •A novel optimization model includi...
Saved in:
| Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 507; p. 160389 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1385-8947 |
| DOI | 10.1016/j.cej.2025.160389 |
Cover
| Abstract | The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis.
[Display omitted]
•A novel optimization model including pilot-test data and cracking mechanism is proposed.•The molecular-level cracking model combined with lumped cracking model is employed.•The many-objective optimization algorithm MOEA/D is applied in the optimization.•The gasoline-oriented process shows better economic & environmental character.
A computationally efficient surrogate model leveraging deep learning and molecular reconstruction has garnered significant attention for addressing complex, large-scale optimization challenges. This study presents a deep residual network-based surrogate model that integrates deep learning with molecular reconstruction and cracking reaction mechanisms to handle many-objective optimization problems. The model focuses on optimizing across various dimensions—economic, societal, livelihood, and environmental—in the catalytic cracking process of crude oil. Initially, a hybrid database combining extensive process data and molecular reaction mechanisms is created. The study then examines the interactions between cracking reaction mechanisms and key operational variables, leading to the development of a hybrid model that merges deep learning with mechanistic insights. To manage the many-objective optimization challenges, the MODE/A algorithm is employed. Two scenarios were evaluated from a lifecycle perspective: creating GDP orientation (CGO and maximizing chemical orientation (MCO). The results indicate that the CGO process utilizes 29 tons of crude oil and generates 46.77 tons CO2 less than the MCO process for every USD 1 million of GDP produced. This research framework offers a comprehensive strategy for enhancing the efficiency and effectiveness of direct catalytic cracking processes. |
|---|---|
| AbstractList | The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis.
[Display omitted]
•A novel optimization model including pilot-test data and cracking mechanism is proposed.•The molecular-level cracking model combined with lumped cracking model is employed.•The many-objective optimization algorithm MOEA/D is applied in the optimization.•The gasoline-oriented process shows better economic & environmental character.
A computationally efficient surrogate model leveraging deep learning and molecular reconstruction has garnered significant attention for addressing complex, large-scale optimization challenges. This study presents a deep residual network-based surrogate model that integrates deep learning with molecular reconstruction and cracking reaction mechanisms to handle many-objective optimization problems. The model focuses on optimizing across various dimensions—economic, societal, livelihood, and environmental—in the catalytic cracking process of crude oil. Initially, a hybrid database combining extensive process data and molecular reaction mechanisms is created. The study then examines the interactions between cracking reaction mechanisms and key operational variables, leading to the development of a hybrid model that merges deep learning with mechanistic insights. To manage the many-objective optimization challenges, the MODE/A algorithm is employed. Two scenarios were evaluated from a lifecycle perspective: creating GDP orientation (CGO and maximizing chemical orientation (MCO). The results indicate that the CGO process utilizes 29 tons of crude oil and generates 46.77 tons CO2 less than the MCO process for every USD 1 million of GDP produced. This research framework offers a comprehensive strategy for enhancing the efficiency and effectiveness of direct catalytic cracking processes. |
| ArticleNumber | 160389 |
| Author | Wang, Changyuan Wu, Lianying Liu, Yibin Zhao, Hui Yan, Hao Zhou, Xin Zhang, Zhibo Chen, Xiaobo Yang, Chaohe |
| Author_xml | – sequence: 1 givenname: Xin surname: Zhou fullname: Zhou, Xin organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China – sequence: 2 givenname: Zhibo surname: Zhang fullname: Zhang, Zhibo organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China – sequence: 3 givenname: Changyuan surname: Wang fullname: Wang, Changyuan organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China – sequence: 4 givenname: Lianying surname: Wu fullname: Wu, Lianying email: wulianying@ouc.edu.cn organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China – sequence: 5 givenname: Hao surname: Yan fullname: Yan, Hao organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China – sequence: 6 givenname: Hui surname: Zhao fullname: Zhao, Hui organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China – sequence: 7 givenname: Yibin orcidid: 0000-0003-2623-3868 surname: Liu fullname: Liu, Yibin organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China – sequence: 8 givenname: Xiaobo orcidid: 0000-0001-9180-0190 surname: Chen fullname: Chen, Xiaobo organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China – sequence: 9 givenname: Chaohe orcidid: 0000-0001-6995-9170 surname: Yang fullname: Yang, Chaohe email: yangch@upc.edu.cn organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China |
| BookMark | eNp9kE1OBCEQhVlooo4ewB0HsEfoH2jiyhj_EhM3uiY0FErbDRNgJhmP4mll0q5dVVL13ldV7wwd-eABoUtK1pRQdj2uNYzrmtTdmjLS9OIIndKm76petPwEnaU0EkKYoOIU_dziWfl9FYYRdHY7wGkbY_hQGXDYZDe7b5Vd8HgOBiZsYpF4POzx536IzuCNm0KuMqSMjcrqqugm0NtJRRxBB59y3OoD4Aorb7COW1PArpBcmefSUPrL-Y-iVnpZBPpTeZfmc3Rs1ZTg4q-u0PvD_dvdU_Xy-vh8d_tSacpFrsA0mnW2HrhRireW1i3rOsttLbjpWzLYgQ-Ei6YbrGVcCWCGsb7lVhsiaN-sEF24OoaUIli5iW5WcS8pkYdA5ShLoPIQqFwCLZ6bxQPlsJ2DKJN24DUsb0kT3D_uX7QXhrE |
| Cites_doi | 10.1016/j.ces.2023.119188 10.1039/c1cs15008a 10.1038/nature18307 10.1039/C6EE00383D 10.1007/s10845-018-1433-8 10.1007/s10311-023-01617-y 10.1016/j.cherd.2020.01.013 10.1016/j.eng.2020.12.022 10.1016/j.jece.2023.109555 10.1016/j.eng.2021.03.019 10.1016/j.jclepro.2021.127283 10.1126/science.aav3506 10.1038/s41586-021-03213-y 10.1016/j.cej.2021.131285 10.1021/acs.chemrev.9b00723 10.1016/j.cej.2018.09.083 10.1007/s00500-019-03842-6 10.1016/j.jclepro.2023.137354 10.3390/pr8050508 10.1021/acs.chemrev.7b00435 10.1016/j.ces.2022.117469 10.1038/s42256-019-0120-6 10.1016/j.scs.2022.104322 10.1016/j.ces.2023.119031 10.1016/j.apenergy.2021.118148 10.1016/j.psep.2022.04.013 10.1016/j.psep.2022.04.058 10.1016/j.cej.2022.136684 10.1016/j.enconman.2021.115149 10.1016/j.jclepro.2022.135475 10.1007/s10462-022-10219-z 10.1016/j.psep.2023.07.057 10.1039/C7EE02342A 10.1016/j.pecs.2020.100849 10.1016/j.cej.2022.139997 10.1016/j.jclepro.2022.134793 10.1002/aic.17609 10.1016/j.energy.2021.121530 10.1016/j.ces.2023.118984 10.1146/annurev-chembioeng-101220-102232 10.1016/j.ces.2021.116515 10.1016/j.ces.2023.119244 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2025.160389 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2025_160389 S1385894725011945 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACLOT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- ~HD AAYXX ABXDB AFFNX ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 |
| ID | FETCH-LOGICAL-c179t-ed3c65f2b7daa74f124655f7f297d840bfb7b07935bff67a9e6d66847fcd09183 |
| IEDL.DBID | .~1 |
| ISSN | 1385-8947 |
| IngestDate | Thu Oct 09 00:33:28 EDT 2025 Sat Oct 25 16:51:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | LPG Surrogate model BTX DRT GHG IRR RRCT2 RRCT1 DMCD DDO Deep learning GDP NPV RRT SFR SBO PHFT CGO Many-objective optimization LCA MOO Molecular reconstruction MOEA/D PED Cracking reaction mechanisms MCO RRT2 POSS NSGA RRT1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c179t-ed3c65f2b7daa74f124655f7f297d840bfb7b07935bff67a9e6d66847fcd09183 |
| ORCID | 0000-0001-6995-9170 0000-0003-2623-3868 0000-0001-9180-0190 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2025_160389 elsevier_sciencedirect_doi_10_1016_j_cej_2025_160389 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sharma, Liu (b0160) 2022; 68 Zhou, Li, Wang, Zhang, Zhang, Wu, Chen, Feng, Liu, Zhao, Yan, Yang (b0215) 2022; 253 Ullah, Khan, Naqvi, Khan, Farooq, Anjum, Yaqub, AlMohamadi, Almomani (b0175) 2022; 162 Jiang, Nie, Guo, Song, Chen (b0005) 2020; 120 Artz, Müller, Thenert, Kleinekorte, Meys, Sternberg, Bardow, Leitner (b0025) 2018; 118 Xing, Jiang, Wang, Pinfield, Xuan (b0180) 2023; 454 Wang, Ji, Li (b0110) 2020; 10 Ahmed, Mahadzir, Rozali, Biswas, Matovu, Ahmed (b0230) 2021; 47 Zhou, Gani, Sundmacher (b0170) 2021; 7 Wang, Li, Zhang, Xiao, Chen, Zhou, Wang (b0125) 2023; 282 Friedlingstein, O'sullivan, Jones, Andrew, Hauck, Olsen, Peters, Peters, Pongratz, Sitch (b0015) 2020; 2020 Li, Pan, Suvarna, Wang (b0140) 2021; 426 Valera, Martins, Codolo (b0115) 2022; 4172021 Maddikunta, Pham, Prabadevi, Deepa, Dev, Gadekallu, Ruby, Liyanage (b0085) 2022; 26 Xu, Peng, Xi, Yuan, Zhong (b0120) 2023; 282 Mehrani, Bagherzadeh, Zheng, Kowal, Sobotka, Mąkinia (b0190) 2022; 162 Ashraf, Joshi, Beck, Pfaendtner (b0090) 2021; 12 Liu, Wu, Lei, Wu, Man, Luo, Xiong (b0185) 2023; 383 Oztemel, Gursev (b0080) 2020; 31 Li, Li, Chang, Gu (b0225) 2021; 48 Zhou, Sun, Yan, Feng, Zhao, Liu, Chen, Yang (b0220) 2021; 308 Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett (b0055) 2018; 11 Rangaiah, Feng, Hoadley (b0235) 2020; 8 Thebelt, Wiebe, Kronqvist, Tsay, Misener (b0105) 2022; 252 Lipu, Hannan, Karim, Hussain, Saad, Ayob, Miah, Mahlia (b0070) 2021; 292 Chen, Chen, Zhang, Liu, Osman, Farghali, Hua, Al-Fatesh, Ihara, Rooney (b0040) 2023; 21 Al Ani, Gujarathi, Al-Muhtaseb (b0240) 2023; 56 Zhou, Yang, Yang, Yan, Feng, Liu, Zhao, Wang, Chen, Chen, Yang (b0205) 2022; 444 Robu, Flynn, Andoni, Mokhtar (b0075) 2019; 1 Tanabe, Ishibuchi (b0245) 2019; 23 Ren, Liao, Sun, Jiang, Wang, Yang, Wu (b0200) 2019; 357 Zhu, Zhang, Goh, Wang, Ahmad, Mao, Liu, Zhao, Wu (b0045) 2023; 89 Yin, Liu, Dai, Li, Zhong, Jiao, Cui, Zhu, Wang, Lei (b0145) 2023; 177 Wang, Wang, Ma, Gong (b0010) 2011; 40 De Luna, Hahn, Higgins, Jaffer, Jaramillo, Sargent (b0050) 2019; 364 Huang, Yuan, Li, Yan, Yang, Wang, Chen, Liang, Gao, Wu (b0130) 2023; 280 Younas, Rezakazemi, Daud, Wazir, Ahmad, Ullah, Ramakrishna (b0030) 2020; 80 Heo, Ko, Kim, Jeong, Hwangbo, Yoo (b0095) 2022; 379 Shen, Zhao, Wang, Du, Qian (b0155) 2022; 307 Qing (b0035) 2020; 22 Rogelj, Den Elzen, Höhne, Fransen, Fekete, Winkler, Schaeffer, Sha, Riahi, Meinshausen (b0020) 2016; 534 Chang, Wang, Gong (b0060) 2016; 9 Saravanan, Vo, Jeevanantham, Bhuvaneswari, Narayanan, Yaashikaa, Swetha, Reshma (b0065) 2021; 236 Yang, Dai, Tang, Xuan, Cao (b0165) 2020; 155 Zhao, Gou, Yuan, Lin, Yan, Zhou, Yang (b0210) 2023; 411 Chandana, Karka, Gujral, Kamesh, Roy (b0150) 2023; 11 Zhou, Yan, Sun, Feng, Zhao, Liu, Chen, Yang (b0250) 2021; 237 Chen, Liu, Guo, Zhao, Jiang, Wu, Fang, Gao, Chen, Peng (b0195) 2023; 280 Dobbelaere, Plehiers, Van de Vijver, Stevens, Van Geem (b0100) 2021; 7 Shields, Stevens, Li, Parasram, Damani, Alvarado, Janey, Adams, Doyle (b0135) 2021; 590 Rogelj (10.1016/j.cej.2025.160389_b0020) 2016; 534 Jiang (10.1016/j.cej.2025.160389_b0005) 2020; 120 Liu (10.1016/j.cej.2025.160389_b0185) 2023; 383 Zhou (10.1016/j.cej.2025.160389_b0205) 2022; 444 De Luna (10.1016/j.cej.2025.160389_b0050) 2019; 364 Xing (10.1016/j.cej.2025.160389_b0180) 2023; 454 Artz (10.1016/j.cej.2025.160389_b0025) 2018; 118 Chen (10.1016/j.cej.2025.160389_b0195) 2023; 280 Lipu (10.1016/j.cej.2025.160389_b0070) 2021; 292 Zhou (10.1016/j.cej.2025.160389_b0220) 2021; 308 Sharma (10.1016/j.cej.2025.160389_b0160) 2022; 68 Li (10.1016/j.cej.2025.160389_b0140) 2021; 426 Huang (10.1016/j.cej.2025.160389_b0130) 2023; 280 Saravanan (10.1016/j.cej.2025.160389_b0065) 2021; 236 Zhou (10.1016/j.cej.2025.160389_b0250) 2021; 237 Rangaiah (10.1016/j.cej.2025.160389_b0235) 2020; 8 Chen (10.1016/j.cej.2025.160389_b0040) 2023; 21 Mehrani (10.1016/j.cej.2025.160389_b0190) 2022; 162 Wang (10.1016/j.cej.2025.160389_b0125) 2023; 282 Valera (10.1016/j.cej.2025.160389_b0115) 2022; 4172021 Ashraf (10.1016/j.cej.2025.160389_b0090) 2021; 12 Heo (10.1016/j.cej.2025.160389_b0095) 2022; 379 Qing (10.1016/j.cej.2025.160389_b0035) 2020; 22 Zhao (10.1016/j.cej.2025.160389_b0210) 2023; 411 Robu (10.1016/j.cej.2025.160389_b0075) 2019; 1 Xu (10.1016/j.cej.2025.160389_b0120) 2023; 282 Wang (10.1016/j.cej.2025.160389_b0010) 2011; 40 Maddikunta (10.1016/j.cej.2025.160389_b0085) 2022; 26 Bui (10.1016/j.cej.2025.160389_b0055) 2018; 11 Li (10.1016/j.cej.2025.160389_b0225) 2021; 48 Zhou (10.1016/j.cej.2025.160389_b0170) 2021; 7 Chang (10.1016/j.cej.2025.160389_b0060) 2016; 9 Shen (10.1016/j.cej.2025.160389_b0155) 2022; 307 Ren (10.1016/j.cej.2025.160389_b0200) 2019; 357 Wang (10.1016/j.cej.2025.160389_b0110) 2020; 10 Dobbelaere (10.1016/j.cej.2025.160389_b0100) 2021; 7 Zhou (10.1016/j.cej.2025.160389_b0215) 2022; 253 Yin (10.1016/j.cej.2025.160389_b0145) 2023; 177 Chandana (10.1016/j.cej.2025.160389_b0150) 2023; 11 Al Ani (10.1016/j.cej.2025.160389_b0240) 2023; 56 Friedlingstein (10.1016/j.cej.2025.160389_b0015) 2020; 2020 Yang (10.1016/j.cej.2025.160389_b0165) 2020; 155 Tanabe (10.1016/j.cej.2025.160389_b0245) 2019; 23 Shields (10.1016/j.cej.2025.160389_b0135) 2021; 590 Ullah (10.1016/j.cej.2025.160389_b0175) 2022; 162 Ahmed (10.1016/j.cej.2025.160389_b0230) 2021; 47 Zhu (10.1016/j.cej.2025.160389_b0045) 2023; 89 Thebelt (10.1016/j.cej.2025.160389_b0105) 2022; 252 Oztemel (10.1016/j.cej.2025.160389_b0080) 2020; 31 Younas (10.1016/j.cej.2025.160389_b0030) 2020; 80 |
| References_xml | – volume: 253 year: 2022 ident: b0215 article-title: Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment publication-title: Energ. Conver. Manage. – volume: 12 start-page: 15 year: 2021 end-page: 37 ident: b0090 article-title: Data science in chemical engineering: applications to molecular science publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 8 start-page: 508 year: 2020 ident: b0235 article-title: Multi-objective optimization applications in chemical process engineering: Tutorial and review publication-title: Processes – volume: 252 year: 2022 ident: b0105 article-title: Maximizing information from chemical engineering data sets: Applications to machine learning publication-title: Chem. Eng. Sci. – volume: 237 year: 2021 ident: b0250 article-title: Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment publication-title: Energy – volume: 280 year: 2023 ident: b0130 article-title: Machine learning and molecular fingerprint screening of high-performance 2D/3D MOF membranes for Kr/Xe separation publication-title: Chem. Eng. Sci. – volume: 68 year: 2022 ident: b0160 article-title: A hybrid science‐guided machine learning approach for modeling chemical processes: A review publication-title: AIChE J – volume: 236 year: 2021 ident: b0065 article-title: A comprehensive review on different approaches for CO2 utilization and conversion pathways publication-title: Chem. Eng. Sci. – volume: 120 start-page: 7984 year: 2020 end-page: 8034 ident: b0005 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. – volume: 155 start-page: 202 year: 2020 end-page: 210 ident: b0165 article-title: A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance publication-title: Chem. Eng. Res. Des. – volume: 282 year: 2023 ident: b0125 article-title: Modeling and optimization of the self-embrittle corrosive bifunctional detergent for corrosive deep decontamination of stainless steel surface by RAFT one-pot method based on machine learning and response surface methodology publication-title: Chem. Eng. Sci. – volume: 534 start-page: 631 year: 2016 end-page: 639 ident: b0020 article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C publication-title: Nature – volume: 2020 start-page: 1 year: 2020 end-page: 3 ident: b0015 article-title: Global carbon budget 2020 publication-title: Earth Syst. Sci. Data Discuss. – volume: 11 year: 2023 ident: b0150 article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins publication-title: J. Environ. Chem. Eng. – volume: 21 start-page: 2525 year: 2023 end-page: 2557 ident: b0040 article-title: Artificial intelligence-based solutions for climate change: a review publication-title: Environ. Chem. Lett. – volume: 10 start-page: e1421 year: 2020 ident: b0110 article-title: Simulation and design of energy materials accelerated by machine learning publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 383 year: 2023 ident: b0185 article-title: Data-driven surrogate optimized and intensified extractive distillation process for clean separation of isopropanol from water: a sustainable alternative publication-title: J. Clean. Prod. – volume: 31 start-page: 127 year: 2020 end-page: 182 ident: b0080 article-title: Literature review of Industry 4.0 and related technologies publication-title: J. Intell. Manuf. – volume: 80 year: 2020 ident: b0030 article-title: Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs) publication-title: Prog. Energy Combust. Sci. – volume: 47 year: 2021 ident: b0230 article-title: Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review publication-title: Sustainable Energy Technol. Assess. – volume: 411 year: 2023 ident: b0210 article-title: Jumped chemical output of crude oil via one-step leaping over regular routes, an integrated molecular-level process modeling strategy and a many-objective optimization framework publication-title: J. Clean. Prod. – volume: 1 start-page: 548 year: 2019 end-page: 550 ident: b0075 article-title: Consider ethical and social challenges in smart grid research publication-title: Nat. Mach. Intell. – volume: 292 year: 2021 ident: b0070 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook publication-title: J. Clean. Prod. – volume: 4172021 year: 2022 ident: b0115 article-title: Experimental Evaluation and Neural Networks Modeling of Removal Efficiency and Volumetric Mass Transfer Coefficient for Gas Desulfurization in Spray Tower publication-title: Available at SSRN – volume: 280 year: 2023 ident: b0195 article-title: Physical–chemical coupling machine learning approach to exploring reactive solvents for absorption capture of carbonyl sulfide publication-title: Chem. Eng. Sci. – volume: 9 start-page: 2177 year: 2016 end-page: 2196 ident: b0060 article-title: CO 2 photo-reduction: insights into CO 2 activation and reaction on surfaces of photocatalysts publication-title: Energ. Environ. Sci. – volume: 364 year: 2019 ident: b0050 article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes? publication-title: Science – volume: 7 start-page: 1201 year: 2021 end-page: 1211 ident: b0100 article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats publication-title: Engineering – volume: 89 year: 2023 ident: b0045 article-title: Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction publication-title: Sustain. Cities Soc. – volume: 307 year: 2022 ident: b0155 article-title: Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty publication-title: Appl. Energy – volume: 162 start-page: 337 year: 2022 end-page: 345 ident: b0175 article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis publication-title: Process Saf. Environ. Prot. – volume: 177 start-page: 711 year: 2023 end-page: 724 ident: b0145 article-title: A new correlation model of entrainer properties and process economics for ternary azeotrope separation by extractive distillation publication-title: Process Saf. Environ. Prot. – volume: 26 year: 2022 ident: b0085 article-title: Industry 5.0: A survey on enabling technologies and potential applications publication-title: J. Ind. Inf. Integr. – volume: 357 start-page: 761 year: 2019 end-page: 775 ident: b0200 article-title: Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions publication-title: Chem. Eng. J. – volume: 444 year: 2022 ident: b0205 article-title: One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy publication-title: Chem. Eng. J. – volume: 48 start-page: 1 year: 2021 end-page: 13 ident: b0225 article-title: Survey of constrained evolutionary algorithms and their applications publication-title: Computer Science – volume: 308 year: 2021 ident: b0220 article-title: Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment publication-title: J. Clean. Prod. – volume: 590 start-page: 89 year: 2021 end-page: 96 ident: b0135 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature – volume: 118 start-page: 434 year: 2018 end-page: 504 ident: b0025 article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment publication-title: Chem. Rev. – volume: 282 year: 2023 ident: b0120 article-title: Predicting organic structures directing agents for zeolites with conditional deep learning generative model publication-title: Chem. Eng. Sci. – volume: 379 year: 2022 ident: b0095 article-title: Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy publication-title: J. Clean. Prod. – volume: 7 start-page: 1231 year: 2021 end-page: 1238 ident: b0170 article-title: Hybrid data-driven and mechanistic modeling approaches for multiscale material and process design publication-title: Engineering – volume: 23 start-page: 12843 year: 2019 end-page: 12857 ident: b0245 article-title: Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE publication-title: Soft. Comput. – volume: 11 start-page: 1062 year: 2018 end-page: 1176 ident: b0055 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energ. Environ. Sci. – volume: 426 year: 2021 ident: b0140 article-title: Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening publication-title: Chem. Eng. J. – volume: 454 year: 2023 ident: b0180 article-title: Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering publication-title: Chem. Eng. J. – volume: 56 start-page: 2435 year: 2023 end-page: 2496 ident: b0240 article-title: A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors publication-title: Artif. Intell. Rev. – volume: 22 start-page: 1 year: 2020 end-page: 9 ident: b0035 article-title: Study on technology clusters for direct utilization of CO publication-title: Chin. Pet. Process Pe. Technol. – volume: 40 start-page: 3703 year: 2011 end-page: 3727 ident: b0010 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. – volume: 162 start-page: 1015 year: 2022 end-page: 1024 ident: b0190 article-title: Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor publication-title: Process Saf. Environ. Prot. – volume: 282 year: 2023 ident: 10.1016/j.cej.2025.160389_b0120 article-title: Predicting organic structures directing agents for zeolites with conditional deep learning generative model publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119188 – volume: 40 start-page: 3703 issue: 7 year: 2011 ident: 10.1016/j.cej.2025.160389_b0010 article-title: Recent advances in catalytic hydrogenation of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15008a – volume: 534 start-page: 631 issue: 7609 year: 2016 ident: 10.1016/j.cej.2025.160389_b0020 article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C publication-title: Nature doi: 10.1038/nature18307 – volume: 9 start-page: 2177 issue: 7 year: 2016 ident: 10.1016/j.cej.2025.160389_b0060 article-title: CO 2 photo-reduction: insights into CO 2 activation and reaction on surfaces of photocatalysts publication-title: Energ. Environ. Sci. doi: 10.1039/C6EE00383D – volume: 22 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.cej.2025.160389_b0035 article-title: Study on technology clusters for direct utilization of CO2-rich natural gas and construction of hybrid system for energy and chemicals production publication-title: Chin. Pet. Process Pe. Technol. – volume: 31 start-page: 127 issue: 1 year: 2020 ident: 10.1016/j.cej.2025.160389_b0080 article-title: Literature review of Industry 4.0 and related technologies publication-title: J. Intell. Manuf. doi: 10.1007/s10845-018-1433-8 – volume: 21 start-page: 2525 issue: 5 year: 2023 ident: 10.1016/j.cej.2025.160389_b0040 article-title: Artificial intelligence-based solutions for climate change: a review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-023-01617-y – volume: 155 start-page: 202 year: 2020 ident: 10.1016/j.cej.2025.160389_b0165 article-title: A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2020.01.013 – volume: 7 start-page: 1231 issue: 9 year: 2021 ident: 10.1016/j.cej.2025.160389_b0170 article-title: Hybrid data-driven and mechanistic modeling approaches for multiscale material and process design publication-title: Engineering doi: 10.1016/j.eng.2020.12.022 – volume: 11 issue: 2 year: 2023 ident: 10.1016/j.cej.2025.160389_b0150 article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.109555 – volume: 7 start-page: 1201 issue: 9 year: 2021 ident: 10.1016/j.cej.2025.160389_b0100 article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats publication-title: Engineering doi: 10.1016/j.eng.2021.03.019 – volume: 308 year: 2021 ident: 10.1016/j.cej.2025.160389_b0220 article-title: Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127283 – volume: 364 issue: 6438 year: 2019 ident: 10.1016/j.cej.2025.160389_b0050 article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes? publication-title: Science doi: 10.1126/science.aav3506 – volume: 590 start-page: 89 issue: 7844 year: 2021 ident: 10.1016/j.cej.2025.160389_b0135 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature doi: 10.1038/s41586-021-03213-y – volume: 426 year: 2021 ident: 10.1016/j.cej.2025.160389_b0140 article-title: Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131285 – volume: 120 start-page: 7984 issue: 15 year: 2020 ident: 10.1016/j.cej.2025.160389_b0005 article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00723 – volume: 47 year: 2021 ident: 10.1016/j.cej.2025.160389_b0230 article-title: Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review publication-title: Sustainable Energy Technol. Assess. – volume: 357 start-page: 761 year: 2019 ident: 10.1016/j.cej.2025.160389_b0200 article-title: Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.083 – volume: 23 start-page: 12843 issue: 23 year: 2019 ident: 10.1016/j.cej.2025.160389_b0245 article-title: Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE publication-title: Soft. Comput. doi: 10.1007/s00500-019-03842-6 – volume: 411 year: 2023 ident: 10.1016/j.cej.2025.160389_b0210 article-title: Jumped chemical output of crude oil via one-step leaping over regular routes, an integrated molecular-level process modeling strategy and a many-objective optimization framework publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.137354 – volume: 8 start-page: 508 issue: 5 year: 2020 ident: 10.1016/j.cej.2025.160389_b0235 article-title: Multi-objective optimization applications in chemical process engineering: Tutorial and review publication-title: Processes doi: 10.3390/pr8050508 – volume: 118 start-page: 434 issue: 2 year: 2018 ident: 10.1016/j.cej.2025.160389_b0025 article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00435 – volume: 252 year: 2022 ident: 10.1016/j.cej.2025.160389_b0105 article-title: Maximizing information from chemical engineering data sets: Applications to machine learning publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117469 – volume: 4172021 year: 2022 ident: 10.1016/j.cej.2025.160389_b0115 article-title: Experimental Evaluation and Neural Networks Modeling of Removal Efficiency and Volumetric Mass Transfer Coefficient for Gas Desulfurization in Spray Tower publication-title: Available at SSRN – volume: 292 year: 2021 ident: 10.1016/j.cej.2025.160389_b0070 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook publication-title: J. Clean. Prod. – volume: 1 start-page: 548 issue: 12 year: 2019 ident: 10.1016/j.cej.2025.160389_b0075 article-title: Consider ethical and social challenges in smart grid research publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0120-6 – volume: 89 year: 2023 ident: 10.1016/j.cej.2025.160389_b0045 article-title: Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.104322 – volume: 280 year: 2023 ident: 10.1016/j.cej.2025.160389_b0130 article-title: Machine learning and molecular fingerprint screening of high-performance 2D/3D MOF membranes for Kr/Xe separation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119031 – volume: 307 year: 2022 ident: 10.1016/j.cej.2025.160389_b0155 article-title: Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118148 – volume: 162 start-page: 337 year: 2022 ident: 10.1016/j.cej.2025.160389_b0175 article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.013 – volume: 162 start-page: 1015 year: 2022 ident: 10.1016/j.cej.2025.160389_b0190 article-title: Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.058 – volume: 444 year: 2022 ident: 10.1016/j.cej.2025.160389_b0205 article-title: One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136684 – volume: 253 year: 2022 ident: 10.1016/j.cej.2025.160389_b0215 article-title: Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2021.115149 – volume: 48 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.cej.2025.160389_b0225 article-title: Survey of constrained evolutionary algorithms and their applications publication-title: Computer Science – volume: 383 year: 2023 ident: 10.1016/j.cej.2025.160389_b0185 article-title: Data-driven surrogate optimized and intensified extractive distillation process for clean separation of isopropanol from water: a sustainable alternative publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.135475 – volume: 56 start-page: 2435 issue: 3 year: 2023 ident: 10.1016/j.cej.2025.160389_b0240 article-title: A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10219-z – volume: 177 start-page: 711 year: 2023 ident: 10.1016/j.cej.2025.160389_b0145 article-title: A new correlation model of entrainer properties and process economics for ternary azeotrope separation by extractive distillation publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.07.057 – volume: 11 start-page: 1062 issue: 5 year: 2018 ident: 10.1016/j.cej.2025.160389_b0055 article-title: Carbon capture and storage (CCS): the way forward publication-title: Energ. Environ. Sci. doi: 10.1039/C7EE02342A – volume: 80 year: 2020 ident: 10.1016/j.cej.2025.160389_b0030 article-title: Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs) publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2020.100849 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.cej.2025.160389_b0015 article-title: Global carbon budget 2020 publication-title: Earth Syst. Sci. Data Discuss. – volume: 454 year: 2023 ident: 10.1016/j.cej.2025.160389_b0180 article-title: Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139997 – volume: 379 year: 2022 ident: 10.1016/j.cej.2025.160389_b0095 article-title: Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.134793 – volume: 68 issue: 5 year: 2022 ident: 10.1016/j.cej.2025.160389_b0160 article-title: A hybrid science‐guided machine learning approach for modeling chemical processes: A review publication-title: AIChE J doi: 10.1002/aic.17609 – volume: 237 year: 2021 ident: 10.1016/j.cej.2025.160389_b0250 article-title: Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment publication-title: Energy doi: 10.1016/j.energy.2021.121530 – volume: 280 year: 2023 ident: 10.1016/j.cej.2025.160389_b0195 article-title: Physical–chemical coupling machine learning approach to exploring reactive solvents for absorption capture of carbonyl sulfide publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118984 – volume: 12 start-page: 15 issue: 1 year: 2021 ident: 10.1016/j.cej.2025.160389_b0090 article-title: Data science in chemical engineering: applications to molecular science publication-title: Annu. Rev. Chem. Biomol. Eng. doi: 10.1146/annurev-chembioeng-101220-102232 – volume: 26 year: 2022 ident: 10.1016/j.cej.2025.160389_b0085 article-title: Industry 5.0: A survey on enabling technologies and potential applications publication-title: J. Ind. Inf. Integr. – volume: 236 year: 2021 ident: 10.1016/j.cej.2025.160389_b0065 article-title: A comprehensive review on different approaches for CO2 utilization and conversion pathways publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.116515 – volume: 282 year: 2023 ident: 10.1016/j.cej.2025.160389_b0125 article-title: Modeling and optimization of the self-embrittle corrosive bifunctional detergent for corrosive deep decontamination of stainless steel surface by RAFT one-pot method based on machine learning and response surface methodology publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.119244 – volume: 10 start-page: e1421 issue: 1 year: 2020 ident: 10.1016/j.cej.2025.160389_b0110 article-title: Simulation and design of energy materials accelerated by machine learning publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. |
| SSID | ssj0006919 |
| Score | 2.4622529 |
| Snippet | The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 160389 |
| SubjectTerms | Cracking reaction mechanisms Deep learning Many-objective optimization Molecular reconstruction Surrogate model |
| Title | A many-objective surrogate optimization model driven by hybrid pilot-test data, molecular reconstruction, and crude oil direct cracking reaction mechanism |
| URI | https://dx.doi.org/10.1016/j.cej.2025.160389 |
| Volume | 507 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1385-8947 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1385-8947 databaseCode: .~1 dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1385-8947 databaseCode: ACRLP dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals issn: 1385-8947 databaseCode: AIKHN dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006919 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1385-8947 databaseCode: AKRWK dateStart: 19970115 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006919 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR25TsMw1KpggQFxirPywIQwbRof6VhVoEIFA4foFtmxLVLRpuoxdOFD-Frey8EhwcIU2Xq2ovfsd_kdhJwGMgo5qKJMgD7BeCIDpqURLHSJVVHYtDwPorm9k70nfjMQgxrpVrkwGFZZ8v6Cp-fcupxplNhsTNK08RDgm1abKxDiAZjimGjOYQRn-uLtK8xDtvPmHgjMELp62cxjvBI3BBOxJdDHEmKn999k0zd5c7VJNkpFkXaKf9kiNTfeJuvfygfukPcOHcFdZpkZFmyLzhbTaYaOMZoBKxiVOZY0b3dD7RQ5GzVL-rLEPC06SV-zOQNdc04xUPQc4MpeuTS3kz9ry55TPbY0mS4sbJzCTjnOYEIn6GkH6CI9go4cJhKns9Euebq6fOz2WNlrgSVwJefM2TCRwreMslor7kHsSyG88q22smAEGm-UwWJ6wngvlW47aaUE0eYTCypHFO6RlXE2dvuEiiAy2L6s5SPJNZeR8twGodNCN63V_oCcVViOJ0VJjbiKNRvGQJIYSRIXJDkgvKJD_ONcxMDy_152-L9lR2QNR0WM2TFZATS7E1A65qaen6o6We1c93t3-O3fP_c_AGG22pk |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3HpgQpiTxIx1RBSpQWGilbpEd2yIVbapSBhZ-CL-Wuzx4SLCwOmcrurPvYX93R8hxIOOIgyvKBPgTjKcyYFoawSKXWhVH55YXIJq7e9np85uBGDRIu86FQVhlpftLnV5o62qkWXGzOcmy5kOAb1otrsCIBxCKizmywEWoMAI7e_vCechW0d0DqRmS10-bBcgrdUOIEUOBlywRtnr_zTh9MzhXq2Sl8hTpRfkza6Thxutk-Vv9wA3yfkFHcJhZboal3qLPL9NpjjdjNAddMKqSLGnR74baKao2al7p4ysmatFJ9pTPGDibM4pI0VOgq5rl0iJQ_iwue0r12NJ0-mJh4QxWKpgGAzrFq3agLvMj6MhhJnH2PNok_avLXrvDqmYLLIUzOWPORqkUPjTKaq24B7svhfDKhy1lIQo03iiD1fSE8V4q3XLSSgm2zacWfI442iLz43zstgkVQWywf1noY8k1l7Hy3AaR00KfW6v9DjmpuZxMypoaSQ02GyYgkgRFkpQi2SG8lkPyY2MkoPP_nrb7v2lHZLHTu-sm3ev72z2yhF9KwNk-mQeWuwPwQGbmsNhhH7o32os |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+many-objective+surrogate+optimization+model+driven+by+hybrid+pilot-test+data%2C+molecular+reconstruction%2C+and+crude+oil+direct+cracking+reaction+mechanism&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhou%2C+Xin&rft.au=Zhang%2C+Zhibo&rft.au=Wang%2C+Changyuan&rft.au=Wu%2C+Lianying&rft.date=2025-03-01&rft.issn=1385-8947&rft.volume=507&rft.spage=160389&rft_id=info:doi/10.1016%2Fj.cej.2025.160389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_160389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |