A many-objective surrogate optimization model driven by hybrid pilot-test data, molecular reconstruction, and crude oil direct cracking reaction mechanism

The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis. [Display omitted] •A novel optimization model includi...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 507; p. 160389
Main Authors Zhou, Xin, Zhang, Zhibo, Wang, Changyuan, Wu, Lianying, Yan, Hao, Zhao, Hui, Liu, Yibin, Chen, Xiaobo, Yang, Chaohe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN1385-8947
DOI10.1016/j.cej.2025.160389

Cover

Abstract The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis. [Display omitted] •A novel optimization model including pilot-test data and cracking mechanism is proposed.•The molecular-level cracking model combined with lumped cracking model is employed.•The many-objective optimization algorithm MOEA/D is applied in the optimization.•The gasoline-oriented process shows better economic & environmental character. A computationally efficient surrogate model leveraging deep learning and molecular reconstruction has garnered significant attention for addressing complex, large-scale optimization challenges. This study presents a deep residual network-based surrogate model that integrates deep learning with molecular reconstruction and cracking reaction mechanisms to handle many-objective optimization problems. The model focuses on optimizing across various dimensions—economic, societal, livelihood, and environmental—in the catalytic cracking process of crude oil. Initially, a hybrid database combining extensive process data and molecular reaction mechanisms is created. The study then examines the interactions between cracking reaction mechanisms and key operational variables, leading to the development of a hybrid model that merges deep learning with mechanistic insights. To manage the many-objective optimization challenges, the MODE/A algorithm is employed. Two scenarios were evaluated from a lifecycle perspective: creating GDP orientation (CGO and maximizing chemical orientation (MCO). The results indicate that the CGO process utilizes 29 tons of crude oil and generates 46.77 tons CO2 less than the MCO process for every USD 1 million of GDP produced. This research framework offers a comprehensive strategy for enhancing the efficiency and effectiveness of direct catalytic cracking processes.
AbstractList The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and molecular reaction mechanism for many-objective optimization of crude oil catalytic pyrolysis. [Display omitted] •A novel optimization model including pilot-test data and cracking mechanism is proposed.•The molecular-level cracking model combined with lumped cracking model is employed.•The many-objective optimization algorithm MOEA/D is applied in the optimization.•The gasoline-oriented process shows better economic & environmental character. A computationally efficient surrogate model leveraging deep learning and molecular reconstruction has garnered significant attention for addressing complex, large-scale optimization challenges. This study presents a deep residual network-based surrogate model that integrates deep learning with molecular reconstruction and cracking reaction mechanisms to handle many-objective optimization problems. The model focuses on optimizing across various dimensions—economic, societal, livelihood, and environmental—in the catalytic cracking process of crude oil. Initially, a hybrid database combining extensive process data and molecular reaction mechanisms is created. The study then examines the interactions between cracking reaction mechanisms and key operational variables, leading to the development of a hybrid model that merges deep learning with mechanistic insights. To manage the many-objective optimization challenges, the MODE/A algorithm is employed. Two scenarios were evaluated from a lifecycle perspective: creating GDP orientation (CGO and maximizing chemical orientation (MCO). The results indicate that the CGO process utilizes 29 tons of crude oil and generates 46.77 tons CO2 less than the MCO process for every USD 1 million of GDP produced. This research framework offers a comprehensive strategy for enhancing the efficiency and effectiveness of direct catalytic cracking processes.
ArticleNumber 160389
Author Wang, Changyuan
Wu, Lianying
Liu, Yibin
Zhao, Hui
Yan, Hao
Zhou, Xin
Zhang, Zhibo
Chen, Xiaobo
Yang, Chaohe
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
– sequence: 2
  givenname: Zhibo
  surname: Zhang
  fullname: Zhang, Zhibo
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
– sequence: 3
  givenname: Changyuan
  surname: Wang
  fullname: Wang, Changyuan
  organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
– sequence: 4
  givenname: Lianying
  surname: Wu
  fullname: Wu, Lianying
  email: wulianying@ouc.edu.cn
  organization: College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
– sequence: 5
  givenname: Hao
  surname: Yan
  fullname: Yan, Hao
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
– sequence: 6
  givenname: Hui
  surname: Zhao
  fullname: Zhao, Hui
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
– sequence: 7
  givenname: Yibin
  orcidid: 0000-0003-2623-3868
  surname: Liu
  fullname: Liu, Yibin
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
– sequence: 8
  givenname: Xiaobo
  orcidid: 0000-0001-9180-0190
  surname: Chen
  fullname: Chen, Xiaobo
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
– sequence: 9
  givenname: Chaohe
  orcidid: 0000-0001-6995-9170
  surname: Yang
  fullname: Yang, Chaohe
  email: yangch@upc.edu.cn
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, Shandong 266580, People's Republic of China
BookMark eNp9kE1OBCEQhVlooo4ewB0HsEfoH2jiyhj_EhM3uiY0FErbDRNgJhmP4mll0q5dVVL13ldV7wwd-eABoUtK1pRQdj2uNYzrmtTdmjLS9OIIndKm76petPwEnaU0EkKYoOIU_dziWfl9FYYRdHY7wGkbY_hQGXDYZDe7b5Vd8HgOBiZsYpF4POzx536IzuCNm0KuMqSMjcrqqugm0NtJRRxBB59y3OoD4Aorb7COW1PArpBcmefSUPrL-Y-iVnpZBPpTeZfmc3Rs1ZTg4q-u0PvD_dvdU_Xy-vh8d_tSacpFrsA0mnW2HrhRireW1i3rOsttLbjpWzLYgQ-Ei6YbrGVcCWCGsb7lVhsiaN-sEF24OoaUIli5iW5WcS8pkYdA5ShLoPIQqFwCLZ6bxQPlsJ2DKJN24DUsb0kT3D_uX7QXhrE
Cites_doi 10.1016/j.ces.2023.119188
10.1039/c1cs15008a
10.1038/nature18307
10.1039/C6EE00383D
10.1007/s10845-018-1433-8
10.1007/s10311-023-01617-y
10.1016/j.cherd.2020.01.013
10.1016/j.eng.2020.12.022
10.1016/j.jece.2023.109555
10.1016/j.eng.2021.03.019
10.1016/j.jclepro.2021.127283
10.1126/science.aav3506
10.1038/s41586-021-03213-y
10.1016/j.cej.2021.131285
10.1021/acs.chemrev.9b00723
10.1016/j.cej.2018.09.083
10.1007/s00500-019-03842-6
10.1016/j.jclepro.2023.137354
10.3390/pr8050508
10.1021/acs.chemrev.7b00435
10.1016/j.ces.2022.117469
10.1038/s42256-019-0120-6
10.1016/j.scs.2022.104322
10.1016/j.ces.2023.119031
10.1016/j.apenergy.2021.118148
10.1016/j.psep.2022.04.013
10.1016/j.psep.2022.04.058
10.1016/j.cej.2022.136684
10.1016/j.enconman.2021.115149
10.1016/j.jclepro.2022.135475
10.1007/s10462-022-10219-z
10.1016/j.psep.2023.07.057
10.1039/C7EE02342A
10.1016/j.pecs.2020.100849
10.1016/j.cej.2022.139997
10.1016/j.jclepro.2022.134793
10.1002/aic.17609
10.1016/j.energy.2021.121530
10.1016/j.ces.2023.118984
10.1146/annurev-chembioeng-101220-102232
10.1016/j.ces.2021.116515
10.1016/j.ces.2023.119244
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.160389
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_160389
S1385894725011945
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
~HD
AAYXX
ABXDB
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
ZY4
ID FETCH-LOGICAL-c179t-ed3c65f2b7daa74f124655f7f297d840bfb7b07935bff67a9e6d66847fcd09183
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Oct 09 00:33:28 EDT 2025
Sat Oct 25 16:51:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords LPG
Surrogate model
BTX
DRT
GHG
IRR
RRCT2
RRCT1
DMCD
DDO
Deep learning
GDP
NPV
RRT
SFR
SBO
PHFT
CGO
Many-objective optimization
LCA
MOO
Molecular reconstruction
MOEA/D
PED
Cracking reaction mechanisms
MCO
RRT2
POSS
NSGA
RRT1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c179t-ed3c65f2b7daa74f124655f7f297d840bfb7b07935bff67a9e6d66847fcd09183
ORCID 0000-0001-6995-9170
0000-0003-2623-3868
0000-0001-9180-0190
ParticipantIDs crossref_primary_10_1016_j_cej_2025_160389
elsevier_sciencedirect_doi_10_1016_j_cej_2025_160389
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sharma, Liu (b0160) 2022; 68
Zhou, Li, Wang, Zhang, Zhang, Wu, Chen, Feng, Liu, Zhao, Yan, Yang (b0215) 2022; 253
Ullah, Khan, Naqvi, Khan, Farooq, Anjum, Yaqub, AlMohamadi, Almomani (b0175) 2022; 162
Jiang, Nie, Guo, Song, Chen (b0005) 2020; 120
Artz, Müller, Thenert, Kleinekorte, Meys, Sternberg, Bardow, Leitner (b0025) 2018; 118
Xing, Jiang, Wang, Pinfield, Xuan (b0180) 2023; 454
Wang, Ji, Li (b0110) 2020; 10
Ahmed, Mahadzir, Rozali, Biswas, Matovu, Ahmed (b0230) 2021; 47
Zhou, Gani, Sundmacher (b0170) 2021; 7
Wang, Li, Zhang, Xiao, Chen, Zhou, Wang (b0125) 2023; 282
Friedlingstein, O'sullivan, Jones, Andrew, Hauck, Olsen, Peters, Peters, Pongratz, Sitch (b0015) 2020; 2020
Li, Pan, Suvarna, Wang (b0140) 2021; 426
Valera, Martins, Codolo (b0115) 2022; 4172021
Maddikunta, Pham, Prabadevi, Deepa, Dev, Gadekallu, Ruby, Liyanage (b0085) 2022; 26
Xu, Peng, Xi, Yuan, Zhong (b0120) 2023; 282
Mehrani, Bagherzadeh, Zheng, Kowal, Sobotka, Mąkinia (b0190) 2022; 162
Ashraf, Joshi, Beck, Pfaendtner (b0090) 2021; 12
Liu, Wu, Lei, Wu, Man, Luo, Xiong (b0185) 2023; 383
Oztemel, Gursev (b0080) 2020; 31
Li, Li, Chang, Gu (b0225) 2021; 48
Zhou, Sun, Yan, Feng, Zhao, Liu, Chen, Yang (b0220) 2021; 308
Bui, Adjiman, Bardow, Anthony, Boston, Brown, Fennell, Fuss, Galindo, Hackett (b0055) 2018; 11
Rangaiah, Feng, Hoadley (b0235) 2020; 8
Thebelt, Wiebe, Kronqvist, Tsay, Misener (b0105) 2022; 252
Lipu, Hannan, Karim, Hussain, Saad, Ayob, Miah, Mahlia (b0070) 2021; 292
Chen, Chen, Zhang, Liu, Osman, Farghali, Hua, Al-Fatesh, Ihara, Rooney (b0040) 2023; 21
Al Ani, Gujarathi, Al-Muhtaseb (b0240) 2023; 56
Zhou, Yang, Yang, Yan, Feng, Liu, Zhao, Wang, Chen, Chen, Yang (b0205) 2022; 444
Robu, Flynn, Andoni, Mokhtar (b0075) 2019; 1
Tanabe, Ishibuchi (b0245) 2019; 23
Ren, Liao, Sun, Jiang, Wang, Yang, Wu (b0200) 2019; 357
Zhu, Zhang, Goh, Wang, Ahmad, Mao, Liu, Zhao, Wu (b0045) 2023; 89
Yin, Liu, Dai, Li, Zhong, Jiao, Cui, Zhu, Wang, Lei (b0145) 2023; 177
Wang, Wang, Ma, Gong (b0010) 2011; 40
De Luna, Hahn, Higgins, Jaffer, Jaramillo, Sargent (b0050) 2019; 364
Huang, Yuan, Li, Yan, Yang, Wang, Chen, Liang, Gao, Wu (b0130) 2023; 280
Younas, Rezakazemi, Daud, Wazir, Ahmad, Ullah, Ramakrishna (b0030) 2020; 80
Heo, Ko, Kim, Jeong, Hwangbo, Yoo (b0095) 2022; 379
Shen, Zhao, Wang, Du, Qian (b0155) 2022; 307
Qing (b0035) 2020; 22
Rogelj, Den Elzen, Höhne, Fransen, Fekete, Winkler, Schaeffer, Sha, Riahi, Meinshausen (b0020) 2016; 534
Chang, Wang, Gong (b0060) 2016; 9
Saravanan, Vo, Jeevanantham, Bhuvaneswari, Narayanan, Yaashikaa, Swetha, Reshma (b0065) 2021; 236
Yang, Dai, Tang, Xuan, Cao (b0165) 2020; 155
Zhao, Gou, Yuan, Lin, Yan, Zhou, Yang (b0210) 2023; 411
Chandana, Karka, Gujral, Kamesh, Roy (b0150) 2023; 11
Zhou, Yan, Sun, Feng, Zhao, Liu, Chen, Yang (b0250) 2021; 237
Chen, Liu, Guo, Zhao, Jiang, Wu, Fang, Gao, Chen, Peng (b0195) 2023; 280
Dobbelaere, Plehiers, Van de Vijver, Stevens, Van Geem (b0100) 2021; 7
Shields, Stevens, Li, Parasram, Damani, Alvarado, Janey, Adams, Doyle (b0135) 2021; 590
Rogelj (10.1016/j.cej.2025.160389_b0020) 2016; 534
Jiang (10.1016/j.cej.2025.160389_b0005) 2020; 120
Liu (10.1016/j.cej.2025.160389_b0185) 2023; 383
Zhou (10.1016/j.cej.2025.160389_b0205) 2022; 444
De Luna (10.1016/j.cej.2025.160389_b0050) 2019; 364
Xing (10.1016/j.cej.2025.160389_b0180) 2023; 454
Artz (10.1016/j.cej.2025.160389_b0025) 2018; 118
Chen (10.1016/j.cej.2025.160389_b0195) 2023; 280
Lipu (10.1016/j.cej.2025.160389_b0070) 2021; 292
Zhou (10.1016/j.cej.2025.160389_b0220) 2021; 308
Sharma (10.1016/j.cej.2025.160389_b0160) 2022; 68
Li (10.1016/j.cej.2025.160389_b0140) 2021; 426
Huang (10.1016/j.cej.2025.160389_b0130) 2023; 280
Saravanan (10.1016/j.cej.2025.160389_b0065) 2021; 236
Zhou (10.1016/j.cej.2025.160389_b0250) 2021; 237
Rangaiah (10.1016/j.cej.2025.160389_b0235) 2020; 8
Chen (10.1016/j.cej.2025.160389_b0040) 2023; 21
Mehrani (10.1016/j.cej.2025.160389_b0190) 2022; 162
Wang (10.1016/j.cej.2025.160389_b0125) 2023; 282
Valera (10.1016/j.cej.2025.160389_b0115) 2022; 4172021
Ashraf (10.1016/j.cej.2025.160389_b0090) 2021; 12
Heo (10.1016/j.cej.2025.160389_b0095) 2022; 379
Qing (10.1016/j.cej.2025.160389_b0035) 2020; 22
Zhao (10.1016/j.cej.2025.160389_b0210) 2023; 411
Robu (10.1016/j.cej.2025.160389_b0075) 2019; 1
Xu (10.1016/j.cej.2025.160389_b0120) 2023; 282
Wang (10.1016/j.cej.2025.160389_b0010) 2011; 40
Maddikunta (10.1016/j.cej.2025.160389_b0085) 2022; 26
Bui (10.1016/j.cej.2025.160389_b0055) 2018; 11
Li (10.1016/j.cej.2025.160389_b0225) 2021; 48
Zhou (10.1016/j.cej.2025.160389_b0170) 2021; 7
Chang (10.1016/j.cej.2025.160389_b0060) 2016; 9
Shen (10.1016/j.cej.2025.160389_b0155) 2022; 307
Ren (10.1016/j.cej.2025.160389_b0200) 2019; 357
Wang (10.1016/j.cej.2025.160389_b0110) 2020; 10
Dobbelaere (10.1016/j.cej.2025.160389_b0100) 2021; 7
Zhou (10.1016/j.cej.2025.160389_b0215) 2022; 253
Yin (10.1016/j.cej.2025.160389_b0145) 2023; 177
Chandana (10.1016/j.cej.2025.160389_b0150) 2023; 11
Al Ani (10.1016/j.cej.2025.160389_b0240) 2023; 56
Friedlingstein (10.1016/j.cej.2025.160389_b0015) 2020; 2020
Yang (10.1016/j.cej.2025.160389_b0165) 2020; 155
Tanabe (10.1016/j.cej.2025.160389_b0245) 2019; 23
Shields (10.1016/j.cej.2025.160389_b0135) 2021; 590
Ullah (10.1016/j.cej.2025.160389_b0175) 2022; 162
Ahmed (10.1016/j.cej.2025.160389_b0230) 2021; 47
Zhu (10.1016/j.cej.2025.160389_b0045) 2023; 89
Thebelt (10.1016/j.cej.2025.160389_b0105) 2022; 252
Oztemel (10.1016/j.cej.2025.160389_b0080) 2020; 31
Younas (10.1016/j.cej.2025.160389_b0030) 2020; 80
References_xml – volume: 253
  year: 2022
  ident: b0215
  article-title: Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment
  publication-title: Energ. Conver. Manage.
– volume: 12
  start-page: 15
  year: 2021
  end-page: 37
  ident: b0090
  article-title: Data science in chemical engineering: applications to molecular science
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 8
  start-page: 508
  year: 2020
  ident: b0235
  article-title: Multi-objective optimization applications in chemical process engineering: Tutorial and review
  publication-title: Processes
– volume: 252
  year: 2022
  ident: b0105
  article-title: Maximizing information from chemical engineering data sets: Applications to machine learning
  publication-title: Chem. Eng. Sci.
– volume: 237
  year: 2021
  ident: b0250
  article-title: Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment
  publication-title: Energy
– volume: 280
  year: 2023
  ident: b0130
  article-title: Machine learning and molecular fingerprint screening of high-performance 2D/3D MOF membranes for Kr/Xe separation
  publication-title: Chem. Eng. Sci.
– volume: 68
  year: 2022
  ident: b0160
  article-title: A hybrid science‐guided machine learning approach for modeling chemical processes: A review
  publication-title: AIChE J
– volume: 236
  year: 2021
  ident: b0065
  article-title: A comprehensive review on different approaches for CO2 utilization and conversion pathways
  publication-title: Chem. Eng. Sci.
– volume: 120
  start-page: 7984
  year: 2020
  end-page: 8034
  ident: b0005
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 155
  start-page: 202
  year: 2020
  end-page: 210
  ident: b0165
  article-title: A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance
  publication-title: Chem. Eng. Res. Des.
– volume: 282
  year: 2023
  ident: b0125
  article-title: Modeling and optimization of the self-embrittle corrosive bifunctional detergent for corrosive deep decontamination of stainless steel surface by RAFT one-pot method based on machine learning and response surface methodology
  publication-title: Chem. Eng. Sci.
– volume: 534
  start-page: 631
  year: 2016
  end-page: 639
  ident: b0020
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C
  publication-title: Nature
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 3
  ident: b0015
  article-title: Global carbon budget 2020
  publication-title: Earth Syst. Sci. Data Discuss.
– volume: 11
  year: 2023
  ident: b0150
  article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins
  publication-title: J. Environ. Chem. Eng.
– volume: 21
  start-page: 2525
  year: 2023
  end-page: 2557
  ident: b0040
  article-title: Artificial intelligence-based solutions for climate change: a review
  publication-title: Environ. Chem. Lett.
– volume: 10
  start-page: e1421
  year: 2020
  ident: b0110
  article-title: Simulation and design of energy materials accelerated by machine learning
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 383
  year: 2023
  ident: b0185
  article-title: Data-driven surrogate optimized and intensified extractive distillation process for clean separation of isopropanol from water: a sustainable alternative
  publication-title: J. Clean. Prod.
– volume: 31
  start-page: 127
  year: 2020
  end-page: 182
  ident: b0080
  article-title: Literature review of Industry 4.0 and related technologies
  publication-title: J. Intell. Manuf.
– volume: 80
  year: 2020
  ident: b0030
  article-title: Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)
  publication-title: Prog. Energy Combust. Sci.
– volume: 47
  year: 2021
  ident: b0230
  article-title: Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review
  publication-title: Sustainable Energy Technol. Assess.
– volume: 411
  year: 2023
  ident: b0210
  article-title: Jumped chemical output of crude oil via one-step leaping over regular routes, an integrated molecular-level process modeling strategy and a many-objective optimization framework
  publication-title: J. Clean. Prod.
– volume: 1
  start-page: 548
  year: 2019
  end-page: 550
  ident: b0075
  article-title: Consider ethical and social challenges in smart grid research
  publication-title: Nat. Mach. Intell.
– volume: 292
  year: 2021
  ident: b0070
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook
  publication-title: J. Clean. Prod.
– volume: 4172021
  year: 2022
  ident: b0115
  article-title: Experimental Evaluation and Neural Networks Modeling of Removal Efficiency and Volumetric Mass Transfer Coefficient for Gas Desulfurization in Spray Tower
  publication-title: Available at SSRN
– volume: 280
  year: 2023
  ident: b0195
  article-title: Physical–chemical coupling machine learning approach to exploring reactive solvents for absorption capture of carbonyl sulfide
  publication-title: Chem. Eng. Sci.
– volume: 9
  start-page: 2177
  year: 2016
  end-page: 2196
  ident: b0060
  article-title: CO 2 photo-reduction: insights into CO 2 activation and reaction on surfaces of photocatalysts
  publication-title: Energ. Environ. Sci.
– volume: 364
  year: 2019
  ident: b0050
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
– volume: 7
  start-page: 1201
  year: 2021
  end-page: 1211
  ident: b0100
  article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats
  publication-title: Engineering
– volume: 89
  year: 2023
  ident: b0045
  article-title: Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction
  publication-title: Sustain. Cities Soc.
– volume: 307
  year: 2022
  ident: b0155
  article-title: Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty
  publication-title: Appl. Energy
– volume: 162
  start-page: 337
  year: 2022
  end-page: 345
  ident: b0175
  article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis
  publication-title: Process Saf. Environ. Prot.
– volume: 177
  start-page: 711
  year: 2023
  end-page: 724
  ident: b0145
  article-title: A new correlation model of entrainer properties and process economics for ternary azeotrope separation by extractive distillation
  publication-title: Process Saf. Environ. Prot.
– volume: 26
  year: 2022
  ident: b0085
  article-title: Industry 5.0: A survey on enabling technologies and potential applications
  publication-title: J. Ind. Inf. Integr.
– volume: 357
  start-page: 761
  year: 2019
  end-page: 775
  ident: b0200
  article-title: Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions
  publication-title: Chem. Eng. J.
– volume: 444
  year: 2022
  ident: b0205
  article-title: One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 1
  year: 2021
  end-page: 13
  ident: b0225
  article-title: Survey of constrained evolutionary algorithms and their applications
  publication-title: Computer Science
– volume: 308
  year: 2021
  ident: b0220
  article-title: Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment
  publication-title: J. Clean. Prod.
– volume: 590
  start-page: 89
  year: 2021
  end-page: 96
  ident: b0135
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
– volume: 118
  start-page: 434
  year: 2018
  end-page: 504
  ident: b0025
  article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment
  publication-title: Chem. Rev.
– volume: 282
  year: 2023
  ident: b0120
  article-title: Predicting organic structures directing agents for zeolites with conditional deep learning generative model
  publication-title: Chem. Eng. Sci.
– volume: 379
  year: 2022
  ident: b0095
  article-title: Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy
  publication-title: J. Clean. Prod.
– volume: 7
  start-page: 1231
  year: 2021
  end-page: 1238
  ident: b0170
  article-title: Hybrid data-driven and mechanistic modeling approaches for multiscale material and process design
  publication-title: Engineering
– volume: 23
  start-page: 12843
  year: 2019
  end-page: 12857
  ident: b0245
  article-title: Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE
  publication-title: Soft. Comput.
– volume: 11
  start-page: 1062
  year: 2018
  end-page: 1176
  ident: b0055
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energ. Environ. Sci.
– volume: 426
  year: 2021
  ident: b0140
  article-title: Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening
  publication-title: Chem. Eng. J.
– volume: 454
  year: 2023
  ident: b0180
  article-title: Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 2435
  year: 2023
  end-page: 2496
  ident: b0240
  article-title: A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors
  publication-title: Artif. Intell. Rev.
– volume: 22
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0035
  article-title: Study on technology clusters for direct utilization of CO
  publication-title: Chin. Pet. Process Pe. Technol.
– volume: 40
  start-page: 3703
  year: 2011
  end-page: 3727
  ident: b0010
  article-title: Recent advances in catalytic hydrogenation of carbon dioxide
  publication-title: Chem. Soc. Rev.
– volume: 162
  start-page: 1015
  year: 2022
  end-page: 1024
  ident: b0190
  article-title: Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
  publication-title: Process Saf. Environ. Prot.
– volume: 282
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0120
  article-title: Predicting organic structures directing agents for zeolites with conditional deep learning generative model
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119188
– volume: 40
  start-page: 3703
  issue: 7
  year: 2011
  ident: 10.1016/j.cej.2025.160389_b0010
  article-title: Recent advances in catalytic hydrogenation of carbon dioxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15008a
– volume: 534
  start-page: 631
  issue: 7609
  year: 2016
  ident: 10.1016/j.cej.2025.160389_b0020
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C
  publication-title: Nature
  doi: 10.1038/nature18307
– volume: 9
  start-page: 2177
  issue: 7
  year: 2016
  ident: 10.1016/j.cej.2025.160389_b0060
  article-title: CO 2 photo-reduction: insights into CO 2 activation and reaction on surfaces of photocatalysts
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C6EE00383D
– volume: 22
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0035
  article-title: Study on technology clusters for direct utilization of CO2-rich natural gas and construction of hybrid system for energy and chemicals production
  publication-title: Chin. Pet. Process Pe. Technol.
– volume: 31
  start-page: 127
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0080
  article-title: Literature review of Industry 4.0 and related technologies
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1433-8
– volume: 21
  start-page: 2525
  issue: 5
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0040
  article-title: Artificial intelligence-based solutions for climate change: a review
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-023-01617-y
– volume: 155
  start-page: 202
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0165
  article-title: A hybrid deep learning and mechanistic kinetics model for the prediction of fluid catalytic cracking performance
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.01.013
– volume: 7
  start-page: 1231
  issue: 9
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0170
  article-title: Hybrid data-driven and mechanistic modeling approaches for multiscale material and process design
  publication-title: Engineering
  doi: 10.1016/j.eng.2020.12.022
– volume: 11
  issue: 2
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0150
  article-title: Machine learning aided catalyst activity modelling and design for direct conversion of CO2 to lower olefins
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.109555
– volume: 7
  start-page: 1201
  issue: 9
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0100
  article-title: Machine learning in chemical engineering: strengths, weaknesses, opportunities, and threats
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.03.019
– volume: 308
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0220
  article-title: Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127283
– volume: 364
  issue: 6438
  year: 2019
  ident: 10.1016/j.cej.2025.160389_b0050
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
  doi: 10.1126/science.aav3506
– volume: 590
  start-page: 89
  issue: 7844
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0135
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03213-y
– volume: 426
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0140
  article-title: Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131285
– volume: 120
  start-page: 7984
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0005
  article-title: Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00723
– volume: 47
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0230
  article-title: Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review
  publication-title: Sustainable Energy Technol. Assess.
– volume: 357
  start-page: 761
  year: 2019
  ident: 10.1016/j.cej.2025.160389_b0200
  article-title: Molecular reconstruction: Recent progress toward composition modeling of petroleum fractions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.083
– volume: 23
  start-page: 12843
  issue: 23
  year: 2019
  ident: 10.1016/j.cej.2025.160389_b0245
  article-title: Review and analysis of three components of the differential evolution mutation operator in MOEA/D-DE
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-03842-6
– volume: 411
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0210
  article-title: Jumped chemical output of crude oil via one-step leaping over regular routes, an integrated molecular-level process modeling strategy and a many-objective optimization framework
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.137354
– volume: 8
  start-page: 508
  issue: 5
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0235
  article-title: Multi-objective optimization applications in chemical process engineering: Tutorial and review
  publication-title: Processes
  doi: 10.3390/pr8050508
– volume: 118
  start-page: 434
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2025.160389_b0025
  article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00435
– volume: 252
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0105
  article-title: Maximizing information from chemical engineering data sets: Applications to machine learning
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117469
– volume: 4172021
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0115
  article-title: Experimental Evaluation and Neural Networks Modeling of Removal Efficiency and Volumetric Mass Transfer Coefficient for Gas Desulfurization in Spray Tower
  publication-title: Available at SSRN
– volume: 292
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0070
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook
  publication-title: J. Clean. Prod.
– volume: 1
  start-page: 548
  issue: 12
  year: 2019
  ident: 10.1016/j.cej.2025.160389_b0075
  article-title: Consider ethical and social challenges in smart grid research
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0120-6
– volume: 89
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0045
  article-title: Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104322
– volume: 280
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0130
  article-title: Machine learning and molecular fingerprint screening of high-performance 2D/3D MOF membranes for Kr/Xe separation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119031
– volume: 307
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0155
  article-title: Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118148
– volume: 162
  start-page: 337
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0175
  article-title: An integrated framework of data-driven, metaheuristic, and mechanistic modeling approach for biomass pyrolysis
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.04.013
– volume: 162
  start-page: 1015
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0190
  article-title: Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.04.058
– volume: 444
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0205
  article-title: One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136684
– volume: 253
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0215
  article-title: Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2021.115149
– volume: 48
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0225
  article-title: Survey of constrained evolutionary algorithms and their applications
  publication-title: Computer Science
– volume: 383
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0185
  article-title: Data-driven surrogate optimized and intensified extractive distillation process for clean separation of isopropanol from water: a sustainable alternative
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.135475
– volume: 56
  start-page: 2435
  issue: 3
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0240
  article-title: A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10219-z
– volume: 177
  start-page: 711
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0145
  article-title: A new correlation model of entrainer properties and process economics for ternary azeotrope separation by extractive distillation
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.07.057
– volume: 11
  start-page: 1062
  issue: 5
  year: 2018
  ident: 10.1016/j.cej.2025.160389_b0055
  article-title: Carbon capture and storage (CCS): the way forward
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C7EE02342A
– volume: 80
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0030
  article-title: Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2020.100849
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0015
  article-title: Global carbon budget 2020
  publication-title: Earth Syst. Sci. Data Discuss.
– volume: 454
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0180
  article-title: Data-driven surrogate modelling and multi-variable optimization of trickle bed and packed bubble column reactors for CO2 capture via enhanced weathering
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139997
– volume: 379
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0095
  article-title: Explainable AI-driven net-zero carbon roadmap for petrochemical industry considering stochastic scenarios of remotely sensed offshore wind energy
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.134793
– volume: 68
  issue: 5
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0160
  article-title: A hybrid science‐guided machine learning approach for modeling chemical processes: A review
  publication-title: AIChE J
  doi: 10.1002/aic.17609
– volume: 237
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0250
  article-title: Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121530
– volume: 280
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0195
  article-title: Physical–chemical coupling machine learning approach to exploring reactive solvents for absorption capture of carbonyl sulfide
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.118984
– volume: 12
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0090
  article-title: Data science in chemical engineering: applications to molecular science
  publication-title: Annu. Rev. Chem. Biomol. Eng.
  doi: 10.1146/annurev-chembioeng-101220-102232
– volume: 26
  year: 2022
  ident: 10.1016/j.cej.2025.160389_b0085
  article-title: Industry 5.0: A survey on enabling technologies and potential applications
  publication-title: J. Ind. Inf. Integr.
– volume: 236
  year: 2021
  ident: 10.1016/j.cej.2025.160389_b0065
  article-title: A comprehensive review on different approaches for CO2 utilization and conversion pathways
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116515
– volume: 282
  year: 2023
  ident: 10.1016/j.cej.2025.160389_b0125
  article-title: Modeling and optimization of the self-embrittle corrosive bifunctional detergent for corrosive deep decontamination of stainless steel surface by RAFT one-pot method based on machine learning and response surface methodology
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119244
– volume: 10
  start-page: e1421
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2025.160389_b0110
  article-title: Simulation and design of energy materials accelerated by machine learning
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
SSID ssj0006919
Score 2.4622529
Snippet The Graphic Abstract illustrates a surrogate model using a deep residual network (or other deep learning networks) driven by hybrid pilot-test data and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 160389
SubjectTerms Cracking reaction mechanisms
Deep learning
Many-objective optimization
Molecular reconstruction
Surrogate model
Title A many-objective surrogate optimization model driven by hybrid pilot-test data, molecular reconstruction, and crude oil direct cracking reaction mechanism
URI https://dx.doi.org/10.1016/j.cej.2025.160389
Volume 507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1385-8947
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1385-8947
  databaseCode: .~1
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1385-8947
  databaseCode: ACRLP
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  issn: 1385-8947
  databaseCode: AIKHN
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1385-8947
  databaseCode: AKRWK
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006919
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR25TsMw1KpggQFxirPywIQwbRof6VhVoEIFA4foFtmxLVLRpuoxdOFD-Frey8EhwcIU2Xq2ovfsd_kdhJwGMgo5qKJMgD7BeCIDpqURLHSJVVHYtDwPorm9k70nfjMQgxrpVrkwGFZZ8v6Cp-fcupxplNhsTNK08RDgm1abKxDiAZjimGjOYQRn-uLtK8xDtvPmHgjMELp62cxjvBI3BBOxJdDHEmKn999k0zd5c7VJNkpFkXaKf9kiNTfeJuvfygfukPcOHcFdZpkZFmyLzhbTaYaOMZoBKxiVOZY0b3dD7RQ5GzVL-rLEPC06SV-zOQNdc04xUPQc4MpeuTS3kz9ry55TPbY0mS4sbJzCTjnOYEIn6GkH6CI9go4cJhKns9Euebq6fOz2WNlrgSVwJefM2TCRwreMslor7kHsSyG88q22smAEGm-UwWJ6wngvlW47aaUE0eYTCypHFO6RlXE2dvuEiiAy2L6s5SPJNZeR8twGodNCN63V_oCcVViOJ0VJjbiKNRvGQJIYSRIXJDkgvKJD_ONcxMDy_152-L9lR2QNR0WM2TFZATS7E1A65qaen6o6We1c93t3-O3fP_c_AGG22pk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDMCAeIo3HpgQpiTxIx1RBSpQWGilbpEd2yIVbapSBhZ-CL-Wuzx4SLCwOmcrurPvYX93R8hxIOOIgyvKBPgTjKcyYFoawSKXWhVH55YXIJq7e9np85uBGDRIu86FQVhlpftLnV5o62qkWXGzOcmy5kOAb1otrsCIBxCKizmywEWoMAI7e_vCechW0d0DqRmS10-bBcgrdUOIEUOBlywRtnr_zTh9MzhXq2Sl8hTpRfkza6Thxutk-Vv9wA3yfkFHcJhZboal3qLPL9NpjjdjNAddMKqSLGnR74baKao2al7p4ysmatFJ9pTPGDibM4pI0VOgq5rl0iJQ_iwue0r12NJ0-mJh4QxWKpgGAzrFq3agLvMj6MhhJnH2PNok_avLXrvDqmYLLIUzOWPORqkUPjTKaq24B7svhfDKhy1lIQo03iiD1fSE8V4q3XLSSgm2zacWfI442iLz43zstgkVQWywf1noY8k1l7Hy3AaR00KfW6v9DjmpuZxMypoaSQ02GyYgkgRFkpQi2SG8lkPyY2MkoPP_nrb7v2lHZLHTu-sm3ev72z2yhF9KwNk-mQeWuwPwQGbmsNhhH7o32os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+many-objective+surrogate+optimization+model+driven+by+hybrid+pilot-test+data%2C+molecular+reconstruction%2C+and+crude+oil+direct+cracking+reaction+mechanism&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhou%2C+Xin&rft.au=Zhang%2C+Zhibo&rft.au=Wang%2C+Changyuan&rft.au=Wu%2C+Lianying&rft.date=2025-03-01&rft.issn=1385-8947&rft.volume=507&rft.spage=160389&rft_id=info:doi/10.1016%2Fj.cej.2025.160389&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_160389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon