Operator splitting method for the stochastic production–inventory model equation
Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal met...
Saved in:
| Published in | Computers & industrial engineering Vol. 174; p. 108712 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-8352 1879-0550 |
| DOI | 10.1016/j.cie.2022.108712 |
Cover
| Abstract | Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal method to obtain the analytic solution is to give the conjecture that its solution takes the given form (quadratic). Then we solve the ordinary differential equation with initial or terminal conditions. There are two drawbacks for such method: (1) We do not know the solution curve tendency with respect to the time t; (2) Solve the ODE system directly is complicated computing. Instead we apply the operator splitting method after Cole–Hopf transformation for the initial equation. Split the partial differential equation into two parts, each part can be solved with an analytical solution. Numerical application of the method will be presented to verify the result.
•Analysis the production–inventory model equation from mathematical view.•Extend the equation to the general Kardar–Parisi–Zhang (KPZ) form equation.•Apply operator splitting method to solve the equation system numerically.•Give some other alternative numerical methods existing in the appendix. |
|---|---|
| AbstractList | Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal method to obtain the analytic solution is to give the conjecture that its solution takes the given form (quadratic). Then we solve the ordinary differential equation with initial or terminal conditions. There are two drawbacks for such method: (1) We do not know the solution curve tendency with respect to the time t; (2) Solve the ODE system directly is complicated computing. Instead we apply the operator splitting method after Cole–Hopf transformation for the initial equation. Split the partial differential equation into two parts, each part can be solved with an analytical solution. Numerical application of the method will be presented to verify the result.
•Analysis the production–inventory model equation from mathematical view.•Extend the equation to the general Kardar–Parisi–Zhang (KPZ) form equation.•Apply operator splitting method to solve the equation system numerically.•Give some other alternative numerical methods existing in the appendix. |
| ArticleNumber | 108712 |
| Author | Gao, Yijin |
| Author_xml | – sequence: 1 givenname: Yijin surname: Gao fullname: Gao, Yijin email: 2022024@shisu.edu.cn organization: School of Economics and Finance, Shanghai International Studies University, Shanghai, 201620, PR China |
| BookMark | eNp9kM1KAzEQx4NUsFYfwFteYGuS3Ww3eJLiFxQKoueQj4lNaZM1SQu9-Q6-oU_ilnr2NMz85zcMv0s0CjEAQjeUTCmh7e16ajxMGWFs6LsZZWdoTLuZqAjnZITGpG5J1dWcXaDLnNeEkIYLOkavyx6SKjHh3G98KT584C2UVbTYDcOyApxLNCuVize4T9HuTPEx_Hx9-7CHMJAHvI0WNhg-d-oYXaFzpzYZrv_qBL0_PrzNn6vF8ullfr-oDJ2JUoGlSndamabR1NRKU0e1cE4zrQUXirUNcZYCmKZtreC87VzXcCa0MzV3rJ4gerprUsw5gZN98luVDpISeZQi13KQIo9S5EnKwNydGBge23tIMg8rwYD1CUyRNvp_6F8INW-l |
| Cites_doi | 10.1016/j.jksus.2012.01.004 10.1016/S0305-0548(00)00016-2 10.1017/S0269964802162024 10.1016/j.camwa.2006.12.070 10.1080/00207543.2013.848486 10.1162/qjec.122.3.1103 10.4171/owr/2006/14 10.1090/qam/42889 10.1016/S0925-5273(99)00034-1 10.1016/S0045-7825(99)00018-3 10.1007/s00222-014-0505-4 10.1007/s10915-020-01386-8 10.1016/j.jksus.2011.08.001 10.1016/j.jcp.2015.09.005 10.1016/j.jcp.2009.02.001 10.1016/0377-2217(94)90270-4 10.1016/j.ejor.2003.02.004 10.1016/j.apm.2012.01.013 10.1080/00207543.2014.961206 10.1016/j.cie.2006.07.012 10.1214/154957805100000195 10.1016/S0377-2217(03)00221-2 10.1137/S0036144595293534 10.1016/j.jcp.2004.09.004 10.1080/00207543.2014.961201 10.1016/j.jcp.2011.04.009 10.1002/cpa.3160030302 10.1016/j.mcm.2009.05.037 10.1103/PhysRevLett.56.889 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2022.108712 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2022_108712 S0360835222007008 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c179t-ed1ab8bac44b1c3ab1f1b9ffb2bb959a2640fd1eec466d95568f84529bfc35f23 |
| IEDL.DBID | .~1 |
| ISSN | 0360-8352 |
| IngestDate | Thu Oct 09 00:29:47 EDT 2025 Fri Feb 23 02:41:51 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deteriorating items Stochastic production–inventory Operator splitting methods Partial differential equation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c179t-ed1ab8bac44b1c3ab1f1b9ffb2bb959a2640fd1eec466d95568f84529bfc35f23 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2022_108712 elsevier_sciencedirect_doi_10_1016_j_cie_2022_108712 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ropp, Shadid (b29) 2005; 203 Yang (b33) 2004; 157 Albeverio, Höegh-Krohn, Mazzucchi (b1) 1976 Geiser (b13) 2009 Li, Zhang, Tang (b21) 2015; 53 Nik, Effati, Shirazian (b25) 2012; 36 Kardar, Parisi, Zhang (b19) 1986; 56 Ouyang, Wu, Yang (b26) 2006; 51 Bukhari, El-Gohary (b7) 2012; 24 Chung, Tsai (b9) 2001; 28 He (b16) 1999; 178 Cheng, Kurganov, Qu, Tang (b8) 2015; 303 Hopf (b17) 1950; 3 Alshamrani (b2) 2013; 25 Shen (b31) 1994; 73 Pan, Li (b27) 2015; 53 Benhadid, Tadj, Bounkhel (b3) 2008; 8 Delgado (b11) 1997; 39 Luttmer (b23) 2007; 122 Hairer (b14) 2014; 198 Cole (b10) 1951; 9 Benkherouf, Aggoun (b4) 2002; 16 Ganji, Tari, Jooybari (b12) 2007; 54 Luttmer (b24) 2012 Pham (b28) 2005; 2 Zhao, Ovadia, Liu, Zhang, Nie (b35) 2011; 230 Zhai, Weng, Feng, He (b34) 2021; 86 Li (b20) 2014; 52 Ropp, Shadid (b30) 2009; 228 Benkherouf, Johnson (b5) 2009; 50 Xu, Han, Wu (b32) 2006; 1 Bhattacharya (b6) 2005; 162 Lie (b22) 1970 Horowitz (b18) 2000; 65 Hairer, Hochbruck, Iserles, Lubich (b15) 2006; 3 He (10.1016/j.cie.2022.108712_b16) 1999; 178 Alshamrani (10.1016/j.cie.2022.108712_b2) 2013; 25 Pham (10.1016/j.cie.2022.108712_b28) 2005; 2 Cole (10.1016/j.cie.2022.108712_b10) 1951; 9 Cheng (10.1016/j.cie.2022.108712_b8) 2015; 303 Hopf (10.1016/j.cie.2022.108712_b17) 1950; 3 Ganji (10.1016/j.cie.2022.108712_b12) 2007; 54 Pan (10.1016/j.cie.2022.108712_b27) 2015; 53 Bhattacharya (10.1016/j.cie.2022.108712_b6) 2005; 162 Benhadid (10.1016/j.cie.2022.108712_b3) 2008; 8 Geiser (10.1016/j.cie.2022.108712_b13) 2009 Kardar (10.1016/j.cie.2022.108712_b19) 1986; 56 Zhai (10.1016/j.cie.2022.108712_b34) 2021; 86 Albeverio (10.1016/j.cie.2022.108712_b1) 1976 Horowitz (10.1016/j.cie.2022.108712_b18) 2000; 65 Shen (10.1016/j.cie.2022.108712_b31) 1994; 73 Luttmer (10.1016/j.cie.2022.108712_b24) 2012 Ropp (10.1016/j.cie.2022.108712_b29) 2005; 203 Hairer (10.1016/j.cie.2022.108712_b14) 2014; 198 Chung (10.1016/j.cie.2022.108712_b9) 2001; 28 Li (10.1016/j.cie.2022.108712_b20) 2014; 52 Benkherouf (10.1016/j.cie.2022.108712_b4) 2002; 16 Lie (10.1016/j.cie.2022.108712_b22) 1970 Nik (10.1016/j.cie.2022.108712_b25) 2012; 36 Ouyang (10.1016/j.cie.2022.108712_b26) 2006; 51 Xu (10.1016/j.cie.2022.108712_b32) 2006; 1 Zhao (10.1016/j.cie.2022.108712_b35) 2011; 230 Benkherouf (10.1016/j.cie.2022.108712_b5) 2009; 50 Delgado (10.1016/j.cie.2022.108712_b11) 1997; 39 Ropp (10.1016/j.cie.2022.108712_b30) 2009; 228 Yang (10.1016/j.cie.2022.108712_b33) 2004; 157 Hairer (10.1016/j.cie.2022.108712_b15) 2006; 3 Li (10.1016/j.cie.2022.108712_b21) 2015; 53 Luttmer (10.1016/j.cie.2022.108712_b23) 2007; 122 Bukhari (10.1016/j.cie.2022.108712_b7) 2012; 24 |
| References_xml | – volume: 228 start-page: 3508 year: 2009 end-page: 3516 ident: b30 article-title: Stability of operator splitting methods for systems with indefinite operators: Advection–diffusion–reaction systems publication-title: Journal of Computational Physics – volume: 16 start-page: 151 year: 2002 ident: b4 article-title: On a stochastic inventory model with deterioration and stock-dependent demand items publication-title: Probability in the Engineering and Informational Sciences – volume: 24 start-page: 351 year: 2012 end-page: 357 ident: b7 article-title: Optimal control of a production-maintenance system with deteriorating items publication-title: Journal of King Saud University-Science – volume: 36 start-page: 5614 year: 2012 end-page: 5623 ident: b25 article-title: An approximate-analytical solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation method publication-title: Applied Mathematical Modelling – volume: 2 start-page: 506 year: 2005 end-page: 549 ident: b28 article-title: On some recent aspects of stochastic control and their applications publication-title: Probability Surveys – volume: 3 start-page: 805 year: 2006 end-page: 882 ident: b15 article-title: Geometric numerical integration publication-title: Oberwolfach Reports – volume: 162 start-page: 786 year: 2005 end-page: 791 ident: b6 article-title: On multi-item inventory publication-title: European Journal of Operational Research – volume: 122 start-page: 1103 year: 2007 end-page: 1144 ident: b23 article-title: Selection, growth, and the size distribution of firms publication-title: Quarterly Journal of Economics – year: 2009 ident: b13 article-title: Decomposition methods for differential equations: theory and applications – volume: 54 start-page: 1018 year: 2007 end-page: 1027 ident: b12 article-title: Variational iteration method and homotopy perturbation method for nonlinear evolution equations publication-title: Computers & Mathematics with Applications – volume: 203 start-page: 449 year: 2005 end-page: 466 ident: b29 article-title: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems publication-title: Journal of Computational Physics – volume: 56 start-page: 889 year: 1986 ident: b19 article-title: Dynamic scaling of growing interfaces publication-title: Physical Review Letters – volume: 1 start-page: 479 year: 2006 end-page: 493 ident: b32 article-title: Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains publication-title: Communications in Computational Physics – year: 1970 ident: b22 article-title: Theorie der transformationsgruppen. Vol. 2 – volume: 50 start-page: 1218 year: 2009 end-page: 1228 ident: b5 article-title: On a stochastic demand jump inventory model publication-title: Mathematical and Computer Modelling – volume: 198 start-page: 269 year: 2014 end-page: 504 ident: b14 article-title: A theory of regularity structures publication-title: Inventiones Mathematicae – year: 1976 ident: b1 article-title: Mathematical theory of Feynman path integrals. Vol. 523 – volume: 28 start-page: 915 year: 2001 end-page: 934 ident: b9 article-title: Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value publication-title: Computers & Operations Research – volume: 39 start-page: 298 year: 1997 end-page: 304 ident: b11 article-title: Classroom note: The Lagrange–Charpit method publication-title: SIAM Review – volume: 73 start-page: 346 year: 1994 end-page: 359 ident: b31 article-title: Aggregate production planning by stochastic control publication-title: European Journal of Operational Research – volume: 52 start-page: 1787 year: 2014 end-page: 1807 ident: b20 article-title: Optimal control of production-maintenance system with deteriorating items, emission tax and pollution R&D investment publication-title: International Journal of Production Research – volume: 3 start-page: 201 year: 1950 end-page: 230 ident: b17 article-title: The partial differential equation ut+ uux= publication-title: Communications on Pure and Applied Mathematics – volume: 53 start-page: 607 year: 2015 end-page: 628 ident: b27 article-title: Optimal control of a stochastic production–inventory system under deteriorating items and environmental constraints publication-title: International Journal of Production Research – volume: 8 start-page: 194 year: 2008 end-page: 202 ident: b3 article-title: Optimal control of production inventory systems with deteriorating items and dynamic costs publication-title: Applied Mathematics E-Notes – volume: 86 start-page: 1 year: 2021 end-page: 23 ident: b34 article-title: Stability and error estimate of the operator splitting method for the phase field crystal equation publication-title: Journal of Scientific Computing – volume: 230 start-page: 5996 year: 2011 end-page: 6009 ident: b35 article-title: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems publication-title: Journal of Computational Physics – volume: 51 start-page: 637 year: 2006 end-page: 651 ident: b26 article-title: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments publication-title: Computers & Industrial Engineering – volume: 25 start-page: 7 year: 2013 end-page: 13 ident: b2 article-title: Optimal control of a stochastic production-inventory model with deteriorating items publication-title: Journal of King Saud University-Science – volume: 303 start-page: 45 year: 2015 end-page: 65 ident: b8 article-title: Fast and stable explicit operator splitting methods for phase-field models publication-title: Journal of Computational Physics – volume: 65 start-page: 217 year: 2000 end-page: 224 ident: b18 article-title: EOQ and inflation uncertainty publication-title: International Journal of Production Economics – volume: 178 start-page: 257 year: 1999 end-page: 262 ident: b16 article-title: Homotopy perturbation technique publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 157 start-page: 344 year: 2004 end-page: 356 ident: b33 article-title: Two-warehouse inventory models for deteriorating items with shortages under inflation publication-title: European Journal of Operational Research – volume: 53 start-page: 2937 year: 2015 end-page: 2950 ident: b21 article-title: Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products publication-title: International Journal of Production Research – volume: 9 start-page: 225 year: 1951 end-page: 236 ident: b10 article-title: On a quasi-linear parabolic equation occurring in aerodynamics publication-title: Quarterly Of Applied Mathematics – year: 2012 ident: b24 article-title: Eventually, noise and imitation implies balanced growth – volume: 25 start-page: 7 issue: 1 year: 2013 ident: 10.1016/j.cie.2022.108712_b2 article-title: Optimal control of a stochastic production-inventory model with deteriorating items publication-title: Journal of King Saud University-Science doi: 10.1016/j.jksus.2012.01.004 – volume: 28 start-page: 915 issue: 9 year: 2001 ident: 10.1016/j.cie.2022.108712_b9 article-title: Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value publication-title: Computers & Operations Research doi: 10.1016/S0305-0548(00)00016-2 – volume: 16 start-page: 151 issue: 2 year: 2002 ident: 10.1016/j.cie.2022.108712_b4 article-title: On a stochastic inventory model with deterioration and stock-dependent demand items publication-title: Probability in the Engineering and Informational Sciences doi: 10.1017/S0269964802162024 – volume: 54 start-page: 1018 issue: 7–8 year: 2007 ident: 10.1016/j.cie.2022.108712_b12 article-title: Variational iteration method and homotopy perturbation method for nonlinear evolution equations publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2006.12.070 – volume: 1 start-page: 479 issue: 3 year: 2006 ident: 10.1016/j.cie.2022.108712_b32 article-title: Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains publication-title: Communications in Computational Physics – volume: 52 start-page: 1787 issue: 6 year: 2014 ident: 10.1016/j.cie.2022.108712_b20 article-title: Optimal control of production-maintenance system with deteriorating items, emission tax and pollution R&D investment publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.848486 – volume: 122 start-page: 1103 issue: 3 year: 2007 ident: 10.1016/j.cie.2022.108712_b23 article-title: Selection, growth, and the size distribution of firms publication-title: Quarterly Journal of Economics doi: 10.1162/qjec.122.3.1103 – volume: 3 start-page: 805 issue: 1 year: 2006 ident: 10.1016/j.cie.2022.108712_b15 article-title: Geometric numerical integration publication-title: Oberwolfach Reports doi: 10.4171/owr/2006/14 – volume: 8 start-page: 194 year: 2008 ident: 10.1016/j.cie.2022.108712_b3 article-title: Optimal control of production inventory systems with deteriorating items and dynamic costs publication-title: Applied Mathematics E-Notes – volume: 9 start-page: 225 issue: 3 year: 1951 ident: 10.1016/j.cie.2022.108712_b10 article-title: On a quasi-linear parabolic equation occurring in aerodynamics publication-title: Quarterly Of Applied Mathematics doi: 10.1090/qam/42889 – volume: 65 start-page: 217 issue: 2 year: 2000 ident: 10.1016/j.cie.2022.108712_b18 article-title: EOQ and inflation uncertainty publication-title: International Journal of Production Economics doi: 10.1016/S0925-5273(99)00034-1 – volume: 178 start-page: 257 issue: 3–4 year: 1999 ident: 10.1016/j.cie.2022.108712_b16 article-title: Homotopy perturbation technique publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/S0045-7825(99)00018-3 – volume: 198 start-page: 269 issue: 2 year: 2014 ident: 10.1016/j.cie.2022.108712_b14 article-title: A theory of regularity structures publication-title: Inventiones Mathematicae doi: 10.1007/s00222-014-0505-4 – year: 2009 ident: 10.1016/j.cie.2022.108712_b13 – volume: 86 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cie.2022.108712_b34 article-title: Stability and error estimate of the operator splitting method for the phase field crystal equation publication-title: Journal of Scientific Computing doi: 10.1007/s10915-020-01386-8 – volume: 24 start-page: 351 issue: 4 year: 2012 ident: 10.1016/j.cie.2022.108712_b7 article-title: Optimal control of a production-maintenance system with deteriorating items publication-title: Journal of King Saud University-Science doi: 10.1016/j.jksus.2011.08.001 – volume: 303 start-page: 45 year: 2015 ident: 10.1016/j.cie.2022.108712_b8 article-title: Fast and stable explicit operator splitting methods for phase-field models publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2015.09.005 – volume: 228 start-page: 3508 issue: 9 year: 2009 ident: 10.1016/j.cie.2022.108712_b30 article-title: Stability of operator splitting methods for systems with indefinite operators: Advection–diffusion–reaction systems publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2009.02.001 – volume: 73 start-page: 346 issue: 2 year: 1994 ident: 10.1016/j.cie.2022.108712_b31 article-title: Aggregate production planning by stochastic control publication-title: European Journal of Operational Research doi: 10.1016/0377-2217(94)90270-4 – volume: 162 start-page: 786 issue: 3 year: 2005 ident: 10.1016/j.cie.2022.108712_b6 article-title: On multi-item inventory publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2003.02.004 – volume: 36 start-page: 5614 issue: 11 year: 2012 ident: 10.1016/j.cie.2022.108712_b25 article-title: An approximate-analytical solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation method publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.01.013 – volume: 53 start-page: 2937 issue: 10 year: 2015 ident: 10.1016/j.cie.2022.108712_b21 article-title: Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products publication-title: International Journal of Production Research doi: 10.1080/00207543.2014.961206 – year: 1970 ident: 10.1016/j.cie.2022.108712_b22 – volume: 51 start-page: 637 issue: 4 year: 2006 ident: 10.1016/j.cie.2022.108712_b26 article-title: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2006.07.012 – volume: 2 start-page: 506 year: 2005 ident: 10.1016/j.cie.2022.108712_b28 article-title: On some recent aspects of stochastic control and their applications publication-title: Probability Surveys doi: 10.1214/154957805100000195 – volume: 157 start-page: 344 issue: 2 year: 2004 ident: 10.1016/j.cie.2022.108712_b33 article-title: Two-warehouse inventory models for deteriorating items with shortages under inflation publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(03)00221-2 – volume: 39 start-page: 298 issue: 2 year: 1997 ident: 10.1016/j.cie.2022.108712_b11 article-title: Classroom note: The Lagrange–Charpit method publication-title: SIAM Review doi: 10.1137/S0036144595293534 – volume: 203 start-page: 449 issue: 2 year: 2005 ident: 10.1016/j.cie.2022.108712_b29 article-title: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2004.09.004 – volume: 53 start-page: 607 issue: 2 year: 2015 ident: 10.1016/j.cie.2022.108712_b27 article-title: Optimal control of a stochastic production–inventory system under deteriorating items and environmental constraints publication-title: International Journal of Production Research doi: 10.1080/00207543.2014.961201 – year: 1976 ident: 10.1016/j.cie.2022.108712_b1 – volume: 230 start-page: 5996 issue: 15 year: 2011 ident: 10.1016/j.cie.2022.108712_b35 article-title: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2011.04.009 – year: 2012 ident: 10.1016/j.cie.2022.108712_b24 – volume: 3 start-page: 201 issue: 3 year: 1950 ident: 10.1016/j.cie.2022.108712_b17 article-title: The partial differential equation ut+ uux=μxx publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.3160030302 – volume: 50 start-page: 1218 issue: 7–8 year: 2009 ident: 10.1016/j.cie.2022.108712_b5 article-title: On a stochastic demand jump inventory model publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2009.05.037 – volume: 56 start-page: 889 issue: 9 year: 1986 ident: 10.1016/j.cie.2022.108712_b19 article-title: Dynamic scaling of growing interfaces publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.56.889 |
| SSID | ssj0004591 |
| Score | 2.3780878 |
| Snippet | Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 108712 |
| SubjectTerms | Deteriorating items Operator splitting methods Partial differential equation Stochastic production–inventory |
| Title | Operator splitting method for the stochastic production–inventory model equation |
| URI | https://dx.doi.org/10.1016/j.cie.2022.108712 |
| Volume | 174 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYGBRwFRHpUHJqRQnDgPj1VFVUAUCajULbJjW5ShDW0YWBD_gX_IL-EcJ1KRYGFMZEfR2b777Pv8HcBpGCVKBFx7HOM3blCk8rgy1CYcMTiJJPQzew55O4qGY3Y9CScN6Nd3YSytsvL9zqeX3rp6062s2c2n0-4D-l6HH-xxm7vwy1hsqxicv9MVxXBXNQ8be7Z1ndksOV74Wdwi-r5l2sXU_z02rcSbwTZsVkCR9Ny_7EBDz1qwVYFGUi3JZQs2VhQFd-H-Ltdl4pwssWHJaSauSDRBdEoQ7RFEe9mTsPLMJHdyrzg0Xx-f05J-Pl-8kbI6DtEvTgV8D8aDy8f-0KvKJngZrq7C04oKmUiRMSZpFghJDZXcGOlLyUMuEAJdGEW1zlgUKW4lyExi86_SZEFo_GAfmrP5TB8ACZWJEDJyQZOE6VhzKwUTyiQWkUIoEbXhrDZYmjt1jLSmjT2naInUWjd11m0Dq02a_hjiFL33390O_9ftCNbtk2OeHEOzWLzqE8QPheyUE6QDa72rm-HoGzb3xeo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMgADHwVE-fTAhBSK0ziJR1RRFWiLBK3UzbJjW5ShDW0ZWBD_gX_IL-FsJ1KRYGFN7Cg623fPvud3CJ3ROFWiyXTAIH7DBkWqgClDbMIRgpNIaZjZc8heP-4Mo9sRHVVQq7wLY2mVhe_3Pt156-JJo7BmIx-PG4_gez1-sMdt7sLvSkTDxO7ALt7JkmS4L5sHrQPbvExtOpIXfBf2iGFoqXYJCX8PTksBp72FNgqkiK_8z2yjip7U0GaBGnGxJuc1tL4kKbiDHu5z7TLneA4NHakZ-yrRGOApBriHAe5lT8LqM-Pc673C2Hx9fI4d_3w6e8OuPA7WL14GfBcN29eDVico6iYEGSyvRaAVETKVIosiSbKmkMQQyYyRoZSMMgEY6NIoonUWxbFiVoPMpDYBK03WpCZs7qHqZDrR-whTZWLAjEyQNI10opnVgqEyTUSsAEvEdXReGoznXh6Dl7yxZw6W4Na63Fu3jqLSpPzHGHNw3393O_hft1O02hn0urx70787RGv2jaehHKHqYvaqjwFMLOSJmyzfBX7Hfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+splitting+method+for+the+stochastic+production%E2%80%93inventory+model+equation&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Gao%2C+Yijin&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=174&rft_id=info:doi/10.1016%2Fj.cie.2022.108712&rft.externalDocID=S0360835222007008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |