Operator splitting method for the stochastic production–inventory model equation

Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal met...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 174; p. 108712
Main Author Gao, Yijin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2022.108712

Cover

Abstract Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal method to obtain the analytic solution is to give the conjecture that its solution takes the given form (quadratic). Then we solve the ordinary differential equation with initial or terminal conditions. There are two drawbacks for such method: (1) We do not know the solution curve tendency with respect to the time t; (2) Solve the ODE system directly is complicated computing. Instead we apply the operator splitting method after Cole–Hopf transformation for the initial equation. Split the partial differential equation into two parts, each part can be solved with an analytical solution. Numerical application of the method will be presented to verify the result. •Analysis the production–inventory model equation from mathematical view.•Extend the equation to the general Kardar–Parisi–Zhang (KPZ) form equation.•Apply operator splitting method to solve the equation system numerically.•Give some other alternative numerical methods existing in the appendix.
AbstractList Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty of solving this partial differential equation is the non-linear term (ux)2 which has no exactly meaning from mathematical view. The normal method to obtain the analytic solution is to give the conjecture that its solution takes the given form (quadratic). Then we solve the ordinary differential equation with initial or terminal conditions. There are two drawbacks for such method: (1) We do not know the solution curve tendency with respect to the time t; (2) Solve the ODE system directly is complicated computing. Instead we apply the operator splitting method after Cole–Hopf transformation for the initial equation. Split the partial differential equation into two parts, each part can be solved with an analytical solution. Numerical application of the method will be presented to verify the result. •Analysis the production–inventory model equation from mathematical view.•Extend the equation to the general Kardar–Parisi–Zhang (KPZ) form equation.•Apply operator splitting method to solve the equation system numerically.•Give some other alternative numerical methods existing in the appendix.
ArticleNumber 108712
Author Gao, Yijin
Author_xml – sequence: 1
  givenname: Yijin
  surname: Gao
  fullname: Gao, Yijin
  email: 2022024@shisu.edu.cn
  organization: School of Economics and Finance, Shanghai International Studies University, Shanghai, 201620, PR China
BookMark eNp9kM1KAzEQx4NUsFYfwFteYGuS3Ww3eJLiFxQKoueQj4lNaZM1SQu9-Q6-oU_ilnr2NMz85zcMv0s0CjEAQjeUTCmh7e16ajxMGWFs6LsZZWdoTLuZqAjnZITGpG5J1dWcXaDLnNeEkIYLOkavyx6SKjHh3G98KT584C2UVbTYDcOyApxLNCuVize4T9HuTPEx_Hx9-7CHMJAHvI0WNhg-d-oYXaFzpzYZrv_qBL0_PrzNn6vF8ullfr-oDJ2JUoGlSndamabR1NRKU0e1cE4zrQUXirUNcZYCmKZtreC87VzXcCa0MzV3rJ4gerprUsw5gZN98luVDpISeZQi13KQIo9S5EnKwNydGBge23tIMg8rwYD1CUyRNvp_6F8INW-l
Cites_doi 10.1016/j.jksus.2012.01.004
10.1016/S0305-0548(00)00016-2
10.1017/S0269964802162024
10.1016/j.camwa.2006.12.070
10.1080/00207543.2013.848486
10.1162/qjec.122.3.1103
10.4171/owr/2006/14
10.1090/qam/42889
10.1016/S0925-5273(99)00034-1
10.1016/S0045-7825(99)00018-3
10.1007/s00222-014-0505-4
10.1007/s10915-020-01386-8
10.1016/j.jksus.2011.08.001
10.1016/j.jcp.2015.09.005
10.1016/j.jcp.2009.02.001
10.1016/0377-2217(94)90270-4
10.1016/j.ejor.2003.02.004
10.1016/j.apm.2012.01.013
10.1080/00207543.2014.961206
10.1016/j.cie.2006.07.012
10.1214/154957805100000195
10.1016/S0377-2217(03)00221-2
10.1137/S0036144595293534
10.1016/j.jcp.2004.09.004
10.1080/00207543.2014.961201
10.1016/j.jcp.2011.04.009
10.1002/cpa.3160030302
10.1016/j.mcm.2009.05.037
10.1103/PhysRevLett.56.889
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2022.108712
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2022_108712
S0360835222007008
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c179t-ed1ab8bac44b1c3ab1f1b9ffb2bb959a2640fd1eec466d95568f84529bfc35f23
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Oct 09 00:29:47 EDT 2025
Fri Feb 23 02:41:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deteriorating items
Stochastic production–inventory
Operator splitting methods
Partial differential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c179t-ed1ab8bac44b1c3ab1f1b9ffb2bb959a2640fd1eec466d95568f84529bfc35f23
ParticipantIDs crossref_primary_10_1016_j_cie_2022_108712
elsevier_sciencedirect_doi_10_1016_j_cie_2022_108712
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ropp, Shadid (b29) 2005; 203
Yang (b33) 2004; 157
Albeverio, Höegh-Krohn, Mazzucchi (b1) 1976
Geiser (b13) 2009
Li, Zhang, Tang (b21) 2015; 53
Nik, Effati, Shirazian (b25) 2012; 36
Kardar, Parisi, Zhang (b19) 1986; 56
Ouyang, Wu, Yang (b26) 2006; 51
Bukhari, El-Gohary (b7) 2012; 24
Chung, Tsai (b9) 2001; 28
He (b16) 1999; 178
Cheng, Kurganov, Qu, Tang (b8) 2015; 303
Hopf (b17) 1950; 3
Alshamrani (b2) 2013; 25
Shen (b31) 1994; 73
Pan, Li (b27) 2015; 53
Benhadid, Tadj, Bounkhel (b3) 2008; 8
Delgado (b11) 1997; 39
Luttmer (b23) 2007; 122
Hairer (b14) 2014; 198
Cole (b10) 1951; 9
Benkherouf, Aggoun (b4) 2002; 16
Ganji, Tari, Jooybari (b12) 2007; 54
Luttmer (b24) 2012
Pham (b28) 2005; 2
Zhao, Ovadia, Liu, Zhang, Nie (b35) 2011; 230
Zhai, Weng, Feng, He (b34) 2021; 86
Li (b20) 2014; 52
Ropp, Shadid (b30) 2009; 228
Benkherouf, Johnson (b5) 2009; 50
Xu, Han, Wu (b32) 2006; 1
Bhattacharya (b6) 2005; 162
Lie (b22) 1970
Horowitz (b18) 2000; 65
Hairer, Hochbruck, Iserles, Lubich (b15) 2006; 3
He (10.1016/j.cie.2022.108712_b16) 1999; 178
Alshamrani (10.1016/j.cie.2022.108712_b2) 2013; 25
Pham (10.1016/j.cie.2022.108712_b28) 2005; 2
Cole (10.1016/j.cie.2022.108712_b10) 1951; 9
Cheng (10.1016/j.cie.2022.108712_b8) 2015; 303
Hopf (10.1016/j.cie.2022.108712_b17) 1950; 3
Ganji (10.1016/j.cie.2022.108712_b12) 2007; 54
Pan (10.1016/j.cie.2022.108712_b27) 2015; 53
Bhattacharya (10.1016/j.cie.2022.108712_b6) 2005; 162
Benhadid (10.1016/j.cie.2022.108712_b3) 2008; 8
Geiser (10.1016/j.cie.2022.108712_b13) 2009
Kardar (10.1016/j.cie.2022.108712_b19) 1986; 56
Zhai (10.1016/j.cie.2022.108712_b34) 2021; 86
Albeverio (10.1016/j.cie.2022.108712_b1) 1976
Horowitz (10.1016/j.cie.2022.108712_b18) 2000; 65
Shen (10.1016/j.cie.2022.108712_b31) 1994; 73
Luttmer (10.1016/j.cie.2022.108712_b24) 2012
Ropp (10.1016/j.cie.2022.108712_b29) 2005; 203
Hairer (10.1016/j.cie.2022.108712_b14) 2014; 198
Chung (10.1016/j.cie.2022.108712_b9) 2001; 28
Li (10.1016/j.cie.2022.108712_b20) 2014; 52
Benkherouf (10.1016/j.cie.2022.108712_b4) 2002; 16
Lie (10.1016/j.cie.2022.108712_b22) 1970
Nik (10.1016/j.cie.2022.108712_b25) 2012; 36
Ouyang (10.1016/j.cie.2022.108712_b26) 2006; 51
Xu (10.1016/j.cie.2022.108712_b32) 2006; 1
Zhao (10.1016/j.cie.2022.108712_b35) 2011; 230
Benkherouf (10.1016/j.cie.2022.108712_b5) 2009; 50
Delgado (10.1016/j.cie.2022.108712_b11) 1997; 39
Ropp (10.1016/j.cie.2022.108712_b30) 2009; 228
Yang (10.1016/j.cie.2022.108712_b33) 2004; 157
Hairer (10.1016/j.cie.2022.108712_b15) 2006; 3
Li (10.1016/j.cie.2022.108712_b21) 2015; 53
Luttmer (10.1016/j.cie.2022.108712_b23) 2007; 122
Bukhari (10.1016/j.cie.2022.108712_b7) 2012; 24
References_xml – volume: 228
  start-page: 3508
  year: 2009
  end-page: 3516
  ident: b30
  article-title: Stability of operator splitting methods for systems with indefinite operators: Advection–diffusion–reaction systems
  publication-title: Journal of Computational Physics
– volume: 16
  start-page: 151
  year: 2002
  ident: b4
  article-title: On a stochastic inventory model with deterioration and stock-dependent demand items
  publication-title: Probability in the Engineering and Informational Sciences
– volume: 24
  start-page: 351
  year: 2012
  end-page: 357
  ident: b7
  article-title: Optimal control of a production-maintenance system with deteriorating items
  publication-title: Journal of King Saud University-Science
– volume: 36
  start-page: 5614
  year: 2012
  end-page: 5623
  ident: b25
  article-title: An approximate-analytical solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation method
  publication-title: Applied Mathematical Modelling
– volume: 2
  start-page: 506
  year: 2005
  end-page: 549
  ident: b28
  article-title: On some recent aspects of stochastic control and their applications
  publication-title: Probability Surveys
– volume: 3
  start-page: 805
  year: 2006
  end-page: 882
  ident: b15
  article-title: Geometric numerical integration
  publication-title: Oberwolfach Reports
– volume: 162
  start-page: 786
  year: 2005
  end-page: 791
  ident: b6
  article-title: On multi-item inventory
  publication-title: European Journal of Operational Research
– volume: 122
  start-page: 1103
  year: 2007
  end-page: 1144
  ident: b23
  article-title: Selection, growth, and the size distribution of firms
  publication-title: Quarterly Journal of Economics
– year: 2009
  ident: b13
  article-title: Decomposition methods for differential equations: theory and applications
– volume: 54
  start-page: 1018
  year: 2007
  end-page: 1027
  ident: b12
  article-title: Variational iteration method and homotopy perturbation method for nonlinear evolution equations
  publication-title: Computers & Mathematics with Applications
– volume: 203
  start-page: 449
  year: 2005
  end-page: 466
  ident: b29
  article-title: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems
  publication-title: Journal of Computational Physics
– volume: 56
  start-page: 889
  year: 1986
  ident: b19
  article-title: Dynamic scaling of growing interfaces
  publication-title: Physical Review Letters
– volume: 1
  start-page: 479
  year: 2006
  end-page: 493
  ident: b32
  article-title: Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains
  publication-title: Communications in Computational Physics
– year: 1970
  ident: b22
  article-title: Theorie der transformationsgruppen. Vol. 2
– volume: 50
  start-page: 1218
  year: 2009
  end-page: 1228
  ident: b5
  article-title: On a stochastic demand jump inventory model
  publication-title: Mathematical and Computer Modelling
– volume: 198
  start-page: 269
  year: 2014
  end-page: 504
  ident: b14
  article-title: A theory of regularity structures
  publication-title: Inventiones Mathematicae
– year: 1976
  ident: b1
  article-title: Mathematical theory of Feynman path integrals. Vol. 523
– volume: 28
  start-page: 915
  year: 2001
  end-page: 934
  ident: b9
  article-title: Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value
  publication-title: Computers & Operations Research
– volume: 39
  start-page: 298
  year: 1997
  end-page: 304
  ident: b11
  article-title: Classroom note: The Lagrange–Charpit method
  publication-title: SIAM Review
– volume: 73
  start-page: 346
  year: 1994
  end-page: 359
  ident: b31
  article-title: Aggregate production planning by stochastic control
  publication-title: European Journal of Operational Research
– volume: 52
  start-page: 1787
  year: 2014
  end-page: 1807
  ident: b20
  article-title: Optimal control of production-maintenance system with deteriorating items, emission tax and pollution R&D investment
  publication-title: International Journal of Production Research
– volume: 3
  start-page: 201
  year: 1950
  end-page: 230
  ident: b17
  article-title: The partial differential equation ut+ uux=
  publication-title: Communications on Pure and Applied Mathematics
– volume: 53
  start-page: 607
  year: 2015
  end-page: 628
  ident: b27
  article-title: Optimal control of a stochastic production–inventory system under deteriorating items and environmental constraints
  publication-title: International Journal of Production Research
– volume: 8
  start-page: 194
  year: 2008
  end-page: 202
  ident: b3
  article-title: Optimal control of production inventory systems with deteriorating items and dynamic costs
  publication-title: Applied Mathematics E-Notes
– volume: 86
  start-page: 1
  year: 2021
  end-page: 23
  ident: b34
  article-title: Stability and error estimate of the operator splitting method for the phase field crystal equation
  publication-title: Journal of Scientific Computing
– volume: 230
  start-page: 5996
  year: 2011
  end-page: 6009
  ident: b35
  article-title: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems
  publication-title: Journal of Computational Physics
– volume: 51
  start-page: 637
  year: 2006
  end-page: 651
  ident: b26
  article-title: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments
  publication-title: Computers & Industrial Engineering
– volume: 25
  start-page: 7
  year: 2013
  end-page: 13
  ident: b2
  article-title: Optimal control of a stochastic production-inventory model with deteriorating items
  publication-title: Journal of King Saud University-Science
– volume: 303
  start-page: 45
  year: 2015
  end-page: 65
  ident: b8
  article-title: Fast and stable explicit operator splitting methods for phase-field models
  publication-title: Journal of Computational Physics
– volume: 65
  start-page: 217
  year: 2000
  end-page: 224
  ident: b18
  article-title: EOQ and inflation uncertainty
  publication-title: International Journal of Production Economics
– volume: 178
  start-page: 257
  year: 1999
  end-page: 262
  ident: b16
  article-title: Homotopy perturbation technique
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 157
  start-page: 344
  year: 2004
  end-page: 356
  ident: b33
  article-title: Two-warehouse inventory models for deteriorating items with shortages under inflation
  publication-title: European Journal of Operational Research
– volume: 53
  start-page: 2937
  year: 2015
  end-page: 2950
  ident: b21
  article-title: Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products
  publication-title: International Journal of Production Research
– volume: 9
  start-page: 225
  year: 1951
  end-page: 236
  ident: b10
  article-title: On a quasi-linear parabolic equation occurring in aerodynamics
  publication-title: Quarterly Of Applied Mathematics
– year: 2012
  ident: b24
  article-title: Eventually, noise and imitation implies balanced growth
– volume: 25
  start-page: 7
  issue: 1
  year: 2013
  ident: 10.1016/j.cie.2022.108712_b2
  article-title: Optimal control of a stochastic production-inventory model with deteriorating items
  publication-title: Journal of King Saud University-Science
  doi: 10.1016/j.jksus.2012.01.004
– volume: 28
  start-page: 915
  issue: 9
  year: 2001
  ident: 10.1016/j.cie.2022.108712_b9
  article-title: Inventory systems for deteriorating items with shortages and a linear trend in demand-taking account of time value
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(00)00016-2
– volume: 16
  start-page: 151
  issue: 2
  year: 2002
  ident: 10.1016/j.cie.2022.108712_b4
  article-title: On a stochastic inventory model with deterioration and stock-dependent demand items
  publication-title: Probability in the Engineering and Informational Sciences
  doi: 10.1017/S0269964802162024
– volume: 54
  start-page: 1018
  issue: 7–8
  year: 2007
  ident: 10.1016/j.cie.2022.108712_b12
  article-title: Variational iteration method and homotopy perturbation method for nonlinear evolution equations
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2006.12.070
– volume: 1
  start-page: 479
  issue: 3
  year: 2006
  ident: 10.1016/j.cie.2022.108712_b32
  article-title: Numerical method for the deterministic Kardar-Parisi-Zhang equation in unbounded domains
  publication-title: Communications in Computational Physics
– volume: 52
  start-page: 1787
  issue: 6
  year: 2014
  ident: 10.1016/j.cie.2022.108712_b20
  article-title: Optimal control of production-maintenance system with deteriorating items, emission tax and pollution R&D investment
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.848486
– volume: 122
  start-page: 1103
  issue: 3
  year: 2007
  ident: 10.1016/j.cie.2022.108712_b23
  article-title: Selection, growth, and the size distribution of firms
  publication-title: Quarterly Journal of Economics
  doi: 10.1162/qjec.122.3.1103
– volume: 3
  start-page: 805
  issue: 1
  year: 2006
  ident: 10.1016/j.cie.2022.108712_b15
  article-title: Geometric numerical integration
  publication-title: Oberwolfach Reports
  doi: 10.4171/owr/2006/14
– volume: 8
  start-page: 194
  year: 2008
  ident: 10.1016/j.cie.2022.108712_b3
  article-title: Optimal control of production inventory systems with deteriorating items and dynamic costs
  publication-title: Applied Mathematics E-Notes
– volume: 9
  start-page: 225
  issue: 3
  year: 1951
  ident: 10.1016/j.cie.2022.108712_b10
  article-title: On a quasi-linear parabolic equation occurring in aerodynamics
  publication-title: Quarterly Of Applied Mathematics
  doi: 10.1090/qam/42889
– volume: 65
  start-page: 217
  issue: 2
  year: 2000
  ident: 10.1016/j.cie.2022.108712_b18
  article-title: EOQ and inflation uncertainty
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(99)00034-1
– volume: 178
  start-page: 257
  issue: 3–4
  year: 1999
  ident: 10.1016/j.cie.2022.108712_b16
  article-title: Homotopy perturbation technique
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(99)00018-3
– volume: 198
  start-page: 269
  issue: 2
  year: 2014
  ident: 10.1016/j.cie.2022.108712_b14
  article-title: A theory of regularity structures
  publication-title: Inventiones Mathematicae
  doi: 10.1007/s00222-014-0505-4
– year: 2009
  ident: 10.1016/j.cie.2022.108712_b13
– volume: 86
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cie.2022.108712_b34
  article-title: Stability and error estimate of the operator splitting method for the phase field crystal equation
  publication-title: Journal of Scientific Computing
  doi: 10.1007/s10915-020-01386-8
– volume: 24
  start-page: 351
  issue: 4
  year: 2012
  ident: 10.1016/j.cie.2022.108712_b7
  article-title: Optimal control of a production-maintenance system with deteriorating items
  publication-title: Journal of King Saud University-Science
  doi: 10.1016/j.jksus.2011.08.001
– volume: 303
  start-page: 45
  year: 2015
  ident: 10.1016/j.cie.2022.108712_b8
  article-title: Fast and stable explicit operator splitting methods for phase-field models
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2015.09.005
– volume: 228
  start-page: 3508
  issue: 9
  year: 2009
  ident: 10.1016/j.cie.2022.108712_b30
  article-title: Stability of operator splitting methods for systems with indefinite operators: Advection–diffusion–reaction systems
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2009.02.001
– volume: 73
  start-page: 346
  issue: 2
  year: 1994
  ident: 10.1016/j.cie.2022.108712_b31
  article-title: Aggregate production planning by stochastic control
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(94)90270-4
– volume: 162
  start-page: 786
  issue: 3
  year: 2005
  ident: 10.1016/j.cie.2022.108712_b6
  article-title: On multi-item inventory
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.02.004
– volume: 36
  start-page: 5614
  issue: 11
  year: 2012
  ident: 10.1016/j.cie.2022.108712_b25
  article-title: An approximate-analytical solution for the Hamilton–Jacobi–Bellman equation via homotopy perturbation method
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.01.013
– volume: 53
  start-page: 2937
  issue: 10
  year: 2015
  ident: 10.1016/j.cie.2022.108712_b21
  article-title: Joint dynamic pricing and inventory control policy for a stochastic inventory system with perishable products
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.961206
– year: 1970
  ident: 10.1016/j.cie.2022.108712_b22
– volume: 51
  start-page: 637
  issue: 4
  year: 2006
  ident: 10.1016/j.cie.2022.108712_b26
  article-title: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2006.07.012
– volume: 2
  start-page: 506
  year: 2005
  ident: 10.1016/j.cie.2022.108712_b28
  article-title: On some recent aspects of stochastic control and their applications
  publication-title: Probability Surveys
  doi: 10.1214/154957805100000195
– volume: 157
  start-page: 344
  issue: 2
  year: 2004
  ident: 10.1016/j.cie.2022.108712_b33
  article-title: Two-warehouse inventory models for deteriorating items with shortages under inflation
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(03)00221-2
– volume: 39
  start-page: 298
  issue: 2
  year: 1997
  ident: 10.1016/j.cie.2022.108712_b11
  article-title: Classroom note: The Lagrange–Charpit method
  publication-title: SIAM Review
  doi: 10.1137/S0036144595293534
– volume: 203
  start-page: 449
  issue: 2
  year: 2005
  ident: 10.1016/j.cie.2022.108712_b29
  article-title: Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2004.09.004
– volume: 53
  start-page: 607
  issue: 2
  year: 2015
  ident: 10.1016/j.cie.2022.108712_b27
  article-title: Optimal control of a stochastic production–inventory system under deteriorating items and environmental constraints
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2014.961201
– year: 1976
  ident: 10.1016/j.cie.2022.108712_b1
– volume: 230
  start-page: 5996
  issue: 15
  year: 2011
  ident: 10.1016/j.cie.2022.108712_b35
  article-title: Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2011.04.009
– year: 2012
  ident: 10.1016/j.cie.2022.108712_b24
– volume: 3
  start-page: 201
  issue: 3
  year: 1950
  ident: 10.1016/j.cie.2022.108712_b17
  article-title: The partial differential equation ut+ uux=μxx
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.3160030302
– volume: 50
  start-page: 1218
  issue: 7–8
  year: 2009
  ident: 10.1016/j.cie.2022.108712_b5
  article-title: On a stochastic demand jump inventory model
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2009.05.037
– volume: 56
  start-page: 889
  issue: 9
  year: 1986
  ident: 10.1016/j.cie.2022.108712_b19
  article-title: Dynamic scaling of growing interfaces
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.56.889
SSID ssj0004591
Score 2.3780878
Snippet Stochastic optimal control of an inventory model with a deterministic rate of deteriorating items is first provided by Alshamerni (2013). The main difficulty...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108712
SubjectTerms Deteriorating items
Operator splitting methods
Partial differential equation
Stochastic production–inventory
Title Operator splitting method for the stochastic production–inventory model equation
URI https://dx.doi.org/10.1016/j.cie.2022.108712
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZYGBRwFRHpUHJqRQnDgPj1VFVUAUCajULbJjW5ShDW0YWBD_gX_IL-EcJ1KRYGFMZEfR2b777Pv8HcBpGCVKBFx7HOM3blCk8rgy1CYcMTiJJPQzew55O4qGY3Y9CScN6Nd3YSytsvL9zqeX3rp6062s2c2n0-4D-l6HH-xxm7vwy1hsqxicv9MVxXBXNQ8be7Z1ndksOV74Wdwi-r5l2sXU_z02rcSbwTZsVkCR9Ny_7EBDz1qwVYFGUi3JZQs2VhQFd-H-Ltdl4pwssWHJaSauSDRBdEoQ7RFEe9mTsPLMJHdyrzg0Xx-f05J-Pl-8kbI6DtEvTgV8D8aDy8f-0KvKJngZrq7C04oKmUiRMSZpFghJDZXcGOlLyUMuEAJdGEW1zlgUKW4lyExi86_SZEFo_GAfmrP5TB8ACZWJEDJyQZOE6VhzKwUTyiQWkUIoEbXhrDZYmjt1jLSmjT2naInUWjd11m0Dq02a_hjiFL33390O_9ftCNbtk2OeHEOzWLzqE8QPheyUE6QDa72rm-HoGzb3xeo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMgADHwVE-fTAhBSK0ziJR1RRFWiLBK3UzbJjW5ShDW0ZWBD_gX_IL-FsJ1KRYGFN7Cg623fPvud3CJ3ROFWiyXTAIH7DBkWqgClDbMIRgpNIaZjZc8heP-4Mo9sRHVVQq7wLY2mVhe_3Pt156-JJo7BmIx-PG4_gez1-sMdt7sLvSkTDxO7ALt7JkmS4L5sHrQPbvExtOpIXfBf2iGFoqXYJCX8PTksBp72FNgqkiK_8z2yjip7U0GaBGnGxJuc1tL4kKbiDHu5z7TLneA4NHakZ-yrRGOApBriHAe5lT8LqM-Pc673C2Hx9fI4d_3w6e8OuPA7WL14GfBcN29eDVico6iYEGSyvRaAVETKVIosiSbKmkMQQyYyRoZSMMgEY6NIoonUWxbFiVoPMpDYBK03WpCZs7qHqZDrR-whTZWLAjEyQNI10opnVgqEyTUSsAEvEdXReGoznXh6Dl7yxZw6W4Na63Fu3jqLSpPzHGHNw3393O_hft1O02hn0urx70787RGv2jaehHKHqYvaqjwFMLOSJmyzfBX7Hfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+splitting+method+for+the+stochastic+production%E2%80%93inventory+model+equation&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Gao%2C+Yijin&rft.date=2022-12-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=174&rft_id=info:doi/10.1016%2Fj.cie.2022.108712&rft.externalDocID=S0360835222007008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon