Image segmentation with Kapur, Otsu and minimum cross entropy based multilevel thresholding aided with cuckoo search algorithm

Color image segmentation is the primary factor to provide the intended information from the input image. The straightforward method called multilevel thresholding (MLT) is used to analyse the various classes of complex images. But, when the level of threshold increases, computational difficulty incr...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 1119; no. 1; p. 12019
Main Authors Kalyani, R, Sathya, P D, Sakthivel, V P
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.03.2021
Subjects
Online AccessGet full text
ISSN1757-8981
1757-899X
1757-899X
DOI10.1088/1757-899X/1119/1/012019

Cover

Abstract Color image segmentation is the primary factor to provide the intended information from the input image. The straightforward method called multilevel thresholding (MLT) is used to analyse the various classes of complex images. But, when the level of threshold increases, computational difficulty increases. Hence, MLT with most promising objective functions such as Kapur, Otsu and minimum cross entropy aided with cuckoo search algorithm (CSA) is used. The efficient metaheuristic cuckoo search algorithm’s controlling parameter balances the local and global search. In this paper, the efficacy of CSA at 4,5,6 and 7 threshold levels with various fitness functions are utilized for precise image segmentation. It is seen from experimental results, the Otsu based cuckoo search algorithm outperform than Kapur and MCE. Quality metrices such as computational time, PSNR (peak signal to noise ratio) and SSIM (structural similarity index) authenticate the exploration and exploitation capability of CSA algorithm for real-world applications.
AbstractList Color image segmentation is the primary factor to provide the intended information from the input image. The straightforward method called multilevel thresholding (MLT) is used to analyse the various classes of complex images. But, when the level of threshold increases, computational difficulty increases. Hence, MLT with most promising objective functions such as Kapur, Otsu and minimum cross entropy aided with cuckoo search algorithm (CSA) is used. The efficient metaheuristic cuckoo search algorithm’s controlling parameter balances the local and global search. In this paper, the efficacy of CSA at 4,5,6 and 7 threshold levels with various fitness functions are utilized for precise image segmentation. It is seen from experimental results, the Otsu based cuckoo search algorithm outperform than Kapur and MCE. Quality metrices such as computational time, PSNR (peak signal to noise ratio) and SSIM (structural similarity index) authenticate the exploration and exploitation capability of CSA algorithm for real-world applications.
Author Sakthivel, V P
Sathya, P D
Kalyani, R
Author_xml – sequence: 1
  givenname: R
  surname: Kalyani
  fullname: Kalyani, R
– sequence: 2
  givenname: P D
  surname: Sathya
  fullname: Sathya, P D
– sequence: 3
  givenname: V P
  surname: Sakthivel
  fullname: Sakthivel, V P
BookMark eNqFkctu3CAUhlGVSrm0zxCkbDsdjh0GWGRRRb1EjZRNK2WHjjGeIcXggJ3pbPLsYeIqi1RVVxzxX0DfOSYHIQZLyCmwj8CkXILgYiGVul0CgFrCkkHFQL0hRy_Kwcss4ZAc53zH2Eqcn7Mj8njV49rSbNe9DSOOLga6deOGfsdhSh_ozZgniqGlvQuun3pqUsyZFm-Kw442mG3RJj86bx-sp-Mm2byJvnVhTdG1RX2uM5P5FWN5B5PZUPTrmMp1_4687dBn-_7PeUJ-fvn84_Lb4vrm69Xlp-uFAaHUAgQzUogWQYHqWsU7JmyLsuuwq5WqKm4aMNxgXTcWFa9XbcUbK9umkR2vVH1C5Nw7hQF3W_ReD8n1mHYamN5z1HtCutD6rfccNeiZY4mezdEhxfvJ5lHfxSmF8ltdcQDOViCq4hKz65lPst0_-2__6r94lTRuXsSY0Pn_5p8AXoGcAw
CitedBy_id crossref_primary_10_3390_asi6050087
crossref_primary_10_4018_IJAMC_292516
crossref_primary_10_3390_rs13224604
crossref_primary_10_1007_s10489_022_04064_4
Cites_doi 10.1016/j.proeng.2012.01.873
10.1016/j.asoc.2016.09.008
10.1016/j.patrec.2014.11.009
10.1016/j.eswa.2011.06.004
10.1016/j.asoc.2016.07.016
10.1016/S0031-3203(00)00149-7
10.1504/IJBIC.2011.042260
10.1109/ACCESS.2019.2908653
10.1016/j.amc.2006.06.057
10.1016/j.ijleo.2019.02.004
10.1016/j.asoc.2016.05.040
10.1016/j.asoc.2017.08.039
10.1016/j.asoc.2019.105570
10.1016/j.sigpro.2018.01.022
10.1109/ACCESS.2019.2891673
ContentType Journal Article
Copyright 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1088/1757-899X/1119/1/012019
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1757-899X
ExternalDocumentID 10.1088/1757-899x/1119/1/012019
10_1088_1757_899X_1119_1_012019
Genre Conference Proceeding
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
AAYXX
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEINN
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CITATION
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PHGZM
PHGZT
PIMPY
PJBAE
PQGLB
PTHSS
PUEGO
RIN
RNS
SY9
T37
TR2
W28
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1WK
4.4
AALHV
ACARI
ADTOC
AERVB
AGQPQ
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M48
Q02
UNPAY
ID FETCH-LOGICAL-c1799-170c877da1919fd95f07eda8ffaf399225cb1c5ca33bea9536d25be8dbb8f5293
IEDL.DBID BENPR
ISSN 1757-8981
1757-899X
IngestDate Sun Sep 07 11:25:08 EDT 2025
Wed Aug 13 09:33:58 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Wed Oct 01 01:45:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1799-170c877da1919fd95f07eda8ffaf399225cb1c5ca33bea9536d25be8dbb8f5293
Notes ObjectType-Conference Proceeding-1
SourceType-Scholarly Journals-1
content type line 14
OpenAccessLink https://www.proquest.com/docview/2511506172?pq-origsite=%requestingapplication%&accountid=15518
PQID 2511506172
PQPubID 4998670
ParticipantIDs unpaywall_primary_10_1088_1757_899x_1119_1_012019
proquest_journals_2511506172
crossref_primary_10_1088_1757_899X_1119_1_012019
crossref_citationtrail_10_1088_1757_899X_1119_1_012019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ouaarab (MSE_1119_1_012019bib21) 2013
Li (MSE_1119_1_012019bib12) 2018; 147
Pare (MSE_1119_1_012019bib14) 2016; 47
Zhao (MSE_1119_1_012019bib15) 2016; 48
Bhandari (MSE_1119_1_012019bib16) 2019; 82
Tein (MSE_1119_1_012019bib19) 2009
Upadhyay (MSE_1119_1_012019bib4) 2019
Jia (MSE_1119_1_012019bib2) 2019; 7
Li (MSE_1119_1_012019bib6) 2019; 183
Sarkar (MSE_1119_1_012019bib8) 2014; 54
Yin (MSE_1119_1_012019bib7) 2007; 184
Liang (MSE_1119_1_012019bib1) 2019; 7
Cheng (MSE_1119_1_012019bib3) 2001; 34
Jiang (MSE_1119_1_012019bib11) 2016; 52
Layeb (MSE_1119_1_012019bib20) 2011; 3
Sathya (MSE_1119_1_012019bib5) 2011; 38
Chen (MSE_1119_1_012019bib9) 2013
Baskan (MSE_1119_1_012019bib13) 2013
Manikantan (MSE_1119_1_012019bib10) 2012; 30
Yang (MSE_1119_1_012019bib18) 2009
Pare (MSE_1119_1_012019bib17) 2017; 61
References_xml – volume: 30
  start-page: 364
  year: 2012
  ident: MSE_1119_1_012019bib10
  article-title: Optimal Multilevel Thresholds based on Tsallis Entropy Method using Golden Ratio Particle Swarm Optimization for Improved Image Segmentation
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2012.01.873
– start-page: 210
  year: 2009
  ident: MSE_1119_1_012019bib18
– volume: 52
  start-page: 1181
  year: 2016
  ident: MSE_1119_1_012019bib11
  article-title: A Honeybee mating Based Algorithm for Multilevel Image segmentation using Bayesian theorem
  publication-title: Applied Soft computing
  doi: 10.1016/j.asoc.2016.09.008
– volume: 54
  start-page: 27
  year: 2014
  ident: MSE_1119_1_012019bib8
  article-title: A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution
  publication-title: Pattern recognition letters.
  doi: 10.1016/j.patrec.2014.11.009
– volume: 38
  start-page: 15549
  year: 2011
  ident: MSE_1119_1_012019bib5
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.004
– volume: 48
  start-page: 151
  year: 2016
  ident: MSE_1119_1_012019bib15
  article-title: A multilevel thresholding segmentation algorithm based on two-dimensional K-L divergence and modified particle swarm optimization
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2016.07.016
– start-page: 1
  year: 2013
  ident: MSE_1119_1_012019bib9
  article-title: A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm
– volume: 34
  start-page: 2259
  year: 2001
  ident: MSE_1119_1_012019bib3
  article-title: Color image segmentation: advances and prospects
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(00)00149-7
– volume: 3
  start-page: 297
  year: 2011
  ident: MSE_1119_1_012019bib20
  article-title: A novel quantum inspired cuckoo search for knapsack problems
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2011.042260
– volume: 7
  start-page: 44903
  year: 2019
  ident: MSE_1119_1_012019bib2
  article-title: Hybrid multiverse optimisation algorithm with gravitational search algorithm for multithreshold color image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908653
– start-page: 1659
  year: 2013
  ident: MSE_1119_1_012019bib21
  article-title: Discrete cuckoo search algorithm for the travelling salesman problem
– start-page: 105522
  year: 2019
  ident: MSE_1119_1_012019bib4
  article-title: Kapur’s entropy based optimal multilevel image segmentation using Crow Search Algorithm
– volume: 184
  start-page: 503
  year: 2007
  ident: MSE_1119_1_012019bib7
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
– volume: 183
  start-page: 30
  year: 2019
  ident: MSE_1119_1_012019bib6
  article-title: A multilevel color image thresholding scheme based on minimum cross entropy and alternating direction method of multipliers
  publication-title: optik
  doi: 10.1016/j.ijleo.2019.02.004
– volume: 47
  start-page: 76
  year: 2016
  ident: MSE_1119_1_012019bib14
  article-title: A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2016.05.040
– volume: 61
  start-page: 570
  year: 2017
  ident: MSE_1119_1_012019bib17
  article-title: An efficient method for Multilevel Colour image thresholding using cuckoo search algorithm based on minimum cross entropy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.08.039
– volume: 82
  start-page: 105570
  year: 2019
  ident: MSE_1119_1_012019bib16
  article-title: A context sensitive energy thresholding-based 3D Otsu function for image segmentation using human learning optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105570
– volume: 147
  start-page: 80
  year: 2018
  ident: MSE_1119_1_012019bib12
  article-title: Multilevel Thresholding Selection based on variational mode decomposition for Image segmentation
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2018.01.022
– volume: 7
  start-page: 11258
  year: 2019
  ident: MSE_1119_1_012019bib1
  article-title: Modified grasshopper algorithm based multilevel thresholding for color image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891673
– year: 2009
  ident: MSE_1119_1_012019bib19
  article-title: Recent Advancements of Nurse Scheduling Models and A Potential Path
– start-page: 1
  year: 2013
  ident: MSE_1119_1_012019bib13
  article-title: Determining optimal link capacity expansion in road networks using cuckoo search algorithm with Levy flights
SSID ssj0067440
Score 2.171078
Snippet Color image segmentation is the primary factor to provide the intended information from the input image. The straightforward method called multilevel...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 12019
SubjectTerms Algorithms
Color imagery
Computing time
Entropy
Entropy (Information theory)
Heuristic methods
Image segmentation
Search algorithms
Signal to noise ratio
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdkAceCOGBsqBI2UNa9rmOCEmHhJwYNI4VXmVA31pa8XGgd9O3MfYkBCCa1tbTeLEdmx_RuhU2TanTHmWcF3bckTILaEYsfqMgvOsqKtKtM9793rk3I7peA31mlqYlfi9cc6MdjOnKGOzntmUrEd6UOwJMJ9tlxrju4Xao_vHwXNZ9lh-WbYlbajGTUbXz5xW9dGXkbleJBmfv_EoWtI3wy302PxplWbyel7k4ly-fwNx_MNQttFmbXviQSUsO2hNJ7toYwmRcA993MTmgMFT_RLXRUkJhqtafMezYnKGH_JpgXmiMECSxEWMy1FhuCJOszkGnWjeQZJiBNlIODeiMq0jXBjQKFXFThbyNU1xtc8wj17SiXkc76PR8Orp8tqqWzRYEqDkLOLZ0vc8xY3bx0LFaGh7WnE_DHlYQt5SKYikkvf7QnMIFasLKrSvhPBDakyNA9RK0kQfIkwFDyVRnnHZHIcalekSLjWnfWV7XDukg9xmoQJZ45dDG40oKOPovh_ABAew6uDWsIAE1QR3kL0gzCoIj99Juo0kBPWengbgjNHS4usgspCOH1nOVlke_YOmi1r5pNDHxuzJxUkt6p-dIvat
  priority: 102
  providerName: Unpaywall
Title Image segmentation with Kapur, Otsu and minimum cross entropy based multilevel thresholding aided with cuckoo search algorithm
URI https://www.proquest.com/docview/2511506172
https://doi.org/10.1088/1757-899x/1119/1/012019
UnpaywallVersion publishedVersion
Volume 1119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: IOP
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB612wNwqHiKhVL5wJFo4904iQ8IFdSlBWm7Qqy0nCK_0krkRTdR20t_Ox7HaZcDcLQjjyKPPQ_PzDcAb3UYCsZ1Esg4DoNI5iKQmtNgxhk6z5rF2qF9LuKTVfRlzdY7sBhqYTCtcpCJTlDrWuEb-QRNYeb07YfmV4BdozC6OrTQEL61gn7vIMZ2YW-KyFgj2Pt4vFh-G2RzjHB4rkSSWdnMUzpkfFk30M_x9cRefz6hEywrRQCebX11b4Q-6KpG3FyJotjSR_PHsO8NSXLUc_4J7JjqKTzaghd8BrenpZUWZGPOS19hVBF8dyVfRdNdviNn7aYjotIE8UXKriTuFwi-99bNDUEFZ79hxmGBqUWktXzf-HAVQWhJ3ZNTnfpZ16S_NEQU53bf2ovyOazmx98_nQS-30KgEBcuoEmo0iTRwvpwPNec5WFitEjzXOQOv5YpSRVTYjaTRmDcV0-ZNKmWMs2ZtRtewKiqK_MSCJMiV1Qn1v-KImb1X0yFMoLNdJgIE9ExxMOuZsqDkWNPjCJzQfE0zZAdGbIDfRSe0axnxxjCu4VNj8fx_yUHA9syf0E32f1xGgO9Y-VfSV7_SfLVv0m-hodTTH1xqWoHMGovO_PG2i6tPITddP750B9LOzo9W9rRarE8-vEbWH_tsg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9lA4IJ5iaQEf4Ea0cRIn8aFCPFrtsmVBqJX2FvxKkcirTaKyF34avw2P47TLATj1msijyDOZb8ae-QahF8r3OWUq8UQc-14kcu4JxYgXMgrJs6Kxsmyfy3h2Gn1Y0dUW-jX2wkBZ5egTraNWtYQz8imEwtTi7evm3IOpUXC7Oo7Q4G60gjqwFGOusWOh15cmhWsP5u-Nvl8GwdHhybuZ56YMeBLY0DyS-DJNEsVN5sJyxWjuJ1rxNM95bllbqRREUsnDUGgOt50qoEKnSog0pwGQMRkI2InCiJnkb-ft4fLzlxELYqDfsy2Z1GABS8lYYWbSTveMrabG3bApmUIbKxD-bOLjddC721cNX1_yotjAv6O76I4LXPGbwdLuoS1d3Ue3N-gMH6Cf89J4J9zqs9J1NFUYznnxgjf9xSv8qWt7zCuFgc-k7EtsPwHD-XLdrDEAqnkHFY4FlDLhzthZ667HMFBZqkGc7OX3usbD7mNenBk9dd_Kh-j0Rnb-Edqu6ko_RpgKnkuiEpPvRRE1eBsTLjWnofITriMyQfG4q5l05Ocwg6PI7CV8mmagjgzUATkRy0g2qGOC_KuFzcD_8f8l-6PaMucQ2uzafCeIXKnyryJ__Cnyyb9FPke7s5OPx9nxfLnYQ7cCKLuxZXL7aLu76PVTEzd14pkzToy-3vT_8Bu-fCgc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QdkAceCOGBsqBI2UNa9rmOCEmHhJwYNI4VXmVA31pa8XGgd9O3MfYkBCCa1tbTeLEdmx_RuhU2TanTHmWcF3bckTILaEYsfqMgvOsqKtKtM9793rk3I7peA31mlqYlfi9cc6MdjOnKGOzntmUrEd6UOwJMJ9tlxrju4Xao_vHwXNZ9lh-WbYlbajGTUbXz5xW9dGXkbleJBmfv_EoWtI3wy302PxplWbyel7k4ly-fwNx_MNQttFmbXviQSUsO2hNJ7toYwmRcA993MTmgMFT_RLXRUkJhqtafMezYnKGH_JpgXmiMECSxEWMy1FhuCJOszkGnWjeQZJiBNlIODeiMq0jXBjQKFXFThbyNU1xtc8wj17SiXkc76PR8Orp8tqqWzRYEqDkLOLZ0vc8xY3bx0LFaGh7WnE_DHlYQt5SKYikkvf7QnMIFasLKrSvhPBDakyNA9RK0kQfIkwFDyVRnnHZHIcalekSLjWnfWV7XDukg9xmoQJZ45dDG40oKOPovh_ABAew6uDWsIAE1QR3kL0gzCoIj99Juo0kBPWengbgjNHS4usgspCOH1nOVlke_YOmi1r5pNDHxuzJxUkt6p-dIvat
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+segmentation+with+Kapur%2C+Otsu+and+minimum+cross+entropy+based+multilevel+thresholding+aided+with+cuckoo+search+algorithm&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Kalyani%2C+R&rft.au=Sathya%2C+P+D&rft.au=Sakthivel%2C+V+P&rft.date=2021-03-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=1119&rft.issue=1&rft_id=info:doi/10.1088%2F1757-899X%2F1119%2F1%2F012019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon