Attacks on Data-Driven Process Monitoring Systems: Subspace Transfer Networks
With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring sys...
        Saved in:
      
    
          | Published in | IEEE transactions on artificial intelligence Vol. 3; no. 3; pp. 470 - 484 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.06.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2691-4581 2691-4581  | 
| DOI | 10.1109/TAI.2022.3145335 | 
Cover
| Abstract | With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring system (PMS) is heavily subject to external risks. Data-driven PMSs have been widely used as initial lines of defense to ensure ICS safety. Once the PMS is under attack, the consequences on the whole ICS will be unimaginable. Unfortunately, the safety issues of the PMS have received inadequate attention. This article reveals PMS's vulnerabilities through effective attacks. A novel method called subspace transfer network (STN) is proposed to conduct adversarial and poisoning attacks on the PMS simultaneously. Then the attack task flow is defined and explained to make online adversarial attacks and data poisoning on PMS. Meanwhile, aiming at two poisoning goals, targeted and untargeted attacks of STN are designed, respectively. Finally, the PMS's fragility is verified in two industrial benchmarks. | 
    
|---|---|
| AbstractList | With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring system (PMS) is heavily subject to external risks. Data-driven PMSs have been widely used as initial lines of defense to ensure ICS safety. Once the PMS is under attack, the consequences on the whole ICS will be unimaginable. Unfortunately, the safety issues of the PMS have received inadequate attention. This article reveals PMS's vulnerabilities through effective attacks. A novel method called subspace transfer network (STN) is proposed to conduct adversarial and poisoning attacks on the PMS simultaneously. Then the attack task flow is defined and explained to make online adversarial attacks and data poisoning on PMS. Meanwhile, aiming at two poisoning goals, targeted and untargeted attacks of STN are designed, respectively. Finally, the PMS's fragility is verified in two industrial benchmarks. | 
    
| Author | Jiang, Xiaoyu Ge, Zhiqiang  | 
    
| Author_xml | – sequence: 1 givenname: Xiaoyu orcidid: 0000-0003-4170-5579 surname: Jiang fullname: Jiang, Xiaoyu email: jiangxiaoyu@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Zhiqiang orcidid: 0000-0002-2071-4380 surname: Ge fullname: Ge, Zhiqiang email: gezhiqiang@zju.edu.cn organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China  | 
    
| BookMark | eNp9kEtPAjEUhRuDiYjsTdz0Dwz2dtrp1B0BHyT4SMD1pHTumApMSVs1_HshEGNcuLpncb-Tk--cdFrfIiGXwAYATF_Ph5MBZ5wPchAyz-UJ6fJCQyZkCZ1f-Yz0Y3xnjHEJnHPVJY_DlIxdRupbOjbJZOPgPrGlL8FbjJE--tYlH1z7RmfbmHAdb-jsYxE3xiKdB9PGBgN9wvTlwzJekNPGrCL2j7dHXu9u56OHbPp8PxkNp5kFVaZMC1sbBjxXGoQqjQXUQtgGeMmhlgK1VjLXhRYSVV0qjkIK3thCqLpYWJX3SHHotcHHGLCprEsmOd-mYNyqAlbtvVQ7L9XeS3X0sgPZH3AT3NqE7X_I1QFxiPjzvhsHGmT-DaL_brA | 
    
| CODEN | ITAICB | 
    
| CitedBy_id | crossref_primary_10_1109_TICPS_2023_3317237 crossref_primary_10_1109_JAS_2023_123396 crossref_primary_10_1109_TII_2023_3291717 crossref_primary_10_1016_j_eswa_2025_126670 crossref_primary_10_1109_TMC_2024_3447087 crossref_primary_10_1109_TSMC_2023_3302838 crossref_primary_10_1016_j_cherd_2025_02_031 crossref_primary_10_1109_TII_2024_3449999  | 
    
| Cites_doi | 10.1109/TIE.2021.3139194 10.1111/1467-9868.00196 10.1109/TNNLS.2018.2886017 10.1109/TDSC.2021.3050101 10.1016/0098-1354(94)00057-U 10.1109/CVPR.2016.282 10.1126/science.1127647 10.1016/j.jprocont.2007.07.006 10.1007/BFb0020217 10.1021/ie302069q 10.1177/1475921720920233 10.1016/j.ins.2017.05.047 10.1109/SP.2017.49 10.1016/j.jfranklin.2018.02.027 10.1109/TASE.2020.2998467 10.1145/3433210.3437513 10.1051/matecconf/201817301010 10.1021/acs.iecr.1c00367 10.1021/acs.iecr.8b02913 10.1201/9781351251389-8 10.18653/v1/2020.findings-emnlp.373 10.1109/PMAPS47429.2020.9183526 10.1109/TIM.2021.3075515 10.1016/j.arcontrol.2012.09.004 10.1109/TII.2021.3104056 10.1016/j.eng.2019.12.012 10.1109/MIE.2019.2938025 10.1109/ETFA.2015.7301457 10.1109/PES.2010.5590115 10.1109/ICCEA50009.2020.00063 10.1109/TII.2021.3053128 10.14236/ewic/ICSCSR2013.4  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TAI.2022.3145335 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2691-4581 | 
    
| EndPage | 484 | 
    
| ExternalDocumentID | 10_1109_TAI_2022_3145335 9691915  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LR18 F030001 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 62103362; 62003300; 92167106 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 97E AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IEDLZ IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c178t-94cda0123791478ac1e944cf12821d54e9975396945e7d872e4542fc647d6bc73 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2691-4581 | 
    
| IngestDate | Wed Oct 01 05:36:00 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Wed Aug 27 07:40:21 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c178t-94cda0123791478ac1e944cf12821d54e9975396945e7d872e4542fc647d6bc73 | 
    
| ORCID | 0000-0003-4170-5579 0000-0002-2071-4380  | 
    
| PageCount | 15 | 
    
| ParticipantIDs | ieee_primary_9691915 crossref_citationtrail_10_1109_TAI_2022_3145335 crossref_primary_10_1109_TAI_2022_3145335  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-June 2022-6-00  | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-June  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on artificial intelligence | 
    
| PublicationTitleAbbrev | TAI | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 kurakin (ref29) 0 ref16 ref19 ref18 champneys (ref23) 2020; 20 shafahi (ref17) 0 goodfellow (ref13) 0 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 s (ref5) 2003; 17 ref9 ref4 ref3 vincent (ref7) 2010; 11 ref6  | 
    
| References_xml | – ident: ref27 doi: 10.1109/TIE.2021.3139194 – ident: ref10 doi: 10.1111/1467-9868.00196 – start-page: 6106 year: 0 ident: ref17 article-title: Poison frogs! Targeted clean-label poisoning attacks on neural networks publication-title: Proc Adv Neural Inf Process Syst 31 Annu Conf Neural Inf Process Syst – ident: ref19 doi: 10.1109/TNNLS.2018.2886017 – year: 0 ident: ref13 article-title: Explaining and harnessing adversarial examples publication-title: Proc 3rd Int Conf Learn Representations – ident: ref22 doi: 10.1109/TDSC.2021.3050101 – ident: ref35 doi: 10.1016/0098-1354(94)00057-U – year: 0 ident: ref29 article-title: Adversarial machine learning at scale publication-title: Proc 5th Int Conf Learn Representations – ident: ref15 doi: 10.1109/CVPR.2016.282 – ident: ref6 doi: 10.1126/science.1127647 – ident: ref37 doi: 10.1016/j.jprocont.2007.07.006 – volume: 17 start-page: 480 year: 2003 ident: ref5 article-title: Statistical process monitoring: Basics and beyond publication-title: Journal of Chemometrics A Journal of the Chemometrics Society – ident: ref9 doi: 10.1007/BFb0020217 – ident: ref2 doi: 10.1021/ie302069q – volume: 20 start-page: 1476 year: 2020 ident: ref23 article-title: On the vulnerability of data-driven structural health monitoring models to adversarial attack publication-title: Structural Health Monitoring doi: 10.1177/1475921720920233 – ident: ref32 doi: 10.1016/j.ins.2017.05.047 – ident: ref16 doi: 10.1109/SP.2017.49 – ident: ref36 doi: 10.1016/j.jfranklin.2018.02.027 – ident: ref24 doi: 10.1109/TASE.2020.2998467 – ident: ref28 doi: 10.1145/3433210.3437513 – ident: ref30 doi: 10.1051/matecconf/201817301010 – ident: ref4 doi: 10.1021/acs.iecr.1c00367 – ident: ref11 doi: 10.1021/acs.iecr.8b02913 – ident: ref14 doi: 10.1201/9781351251389-8 – ident: ref18 doi: 10.18653/v1/2020.findings-emnlp.373 – ident: ref21 doi: 10.1109/PMAPS47429.2020.9183526 – ident: ref26 doi: 10.1109/TIM.2021.3075515 – ident: ref1 doi: 10.1016/j.arcontrol.2012.09.004 – ident: ref20 doi: 10.1109/TII.2021.3104056 – ident: ref12 doi: 10.1016/j.eng.2019.12.012 – ident: ref3 doi: 10.1109/MIE.2019.2938025 – volume: 11 start-page: 3371 year: 2010 ident: ref7 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref31 doi: 10.1109/ETFA.2015.7301457 – ident: ref34 doi: 10.1109/PES.2010.5590115 – ident: ref25 doi: 10.1109/ICCEA50009.2020.00063 – ident: ref8 doi: 10.1109/TII.2021.3053128 – ident: ref33 doi: 10.14236/ewic/ICSCSR2013.4  | 
    
| SSID | ssj0002512227 | 
    
| Score | 2.259603 | 
    
| Snippet | With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 470 | 
    
| SubjectTerms | Adversarial attack Artificial intelligence data-driven models Generators Perturbation methods poisoning attack Process control Process monitoring process monitoring system (PMS) Sensors subspace transfer Training  | 
    
| Title | Attacks on Data-Driven Process Monitoring Systems: Subspace Transfer Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9691915 | 
    
| Volume | 3 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: RIE dateStart: 20200101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2691-4581 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002512227 issn: 2691-4581 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nVgoUBDlUXlgQSJt4l7imK2irQpSOrVSt8hx7AWUopIuDPx27LwECCG2KLKtk-_se_i-O4Ab4XLleVo6XCJ30FjwTpgmrkMV01aAPNe1eOdoGSzW-LTxNy24a7AwSqki-UwN7Wfxlp9u5d6GykY84Ma98NvQZmFQYrWaeIrV05Sy-iXS5aPV5NH4f5QatxSNUeN_0zxfWqkUmmTehaimoUwgeR7u82Qo33-UZ_wvkUdwWJmUZFLKwDG0VHYC3bpdA6lObw-iSZ5bRD3ZZmQqcuFMd_aqIxVWgJTH28b5SFXH_J7Ye8V41YoUOk2b5ZZl3vjbKazns9XDwqm6KTjSY2HucJSpsBYU4x6yUEhPcUSpjYKiXuqj4hZja6hHX7E0ZFShj1TLAFkaJJKNz6CTbTN1DkTjeDzmmIRaJ6jRT3xBmVCpFomrWSr6MKp3OpZVqXHb8eIlLlwOl8eGN7HlTVzxpg-3zYzXsszGH2N7dtebcdWGX_z--xIO7OQyu-sKOvlur66NHZEnA2hHH7NBIUafqGPGUg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBCgYIoTw8sSKRNnHMds1WUqoW2UyuxRY5jL6AUlXTh12MnaQUIIbYosq2T7-x7-L47gGvpCx0ERnlCofDQWvBelCa-RzU3ToAC33d458m0O5zj4zN7rsHtBgujtS6Sz3TbfRZv-elCrVyorCO6wroXbAu2GSKyEq21iag4TU0pX79F-qIz642sB0ipdUzRmjXsm-750kyl0CWDBkzWVJQpJC_tVZ601cePAo3_JXMf9iqjkvRKKTiAms4OobFu2ECq89uESS_PHaaeLDLSl7n0-kt32ZEKLUDKA-4ifaSqZH5H3M1i_WpNCq1m7HLTMnP8_Qjmg4fZ_dCr-il4KuBR7glUqXQ2FBcB8kiqQAtEZayKokHKUAuHsrXUI9M8jTjVyJAa1UWedhPFw2OoZ4tMnwAxGIahwCQyJkGDLGGScqlTIxPf8FS2oLPe6VhVxcZdz4vXuHA6fBFb3sSON3HFmxbcbGa8lYU2_hjbdLu-GVdt-Onvv69gZzibjOPxaPp0BrtuoTLX6xzq-XKlL6xVkSeXhTB9AoN_yG4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attacks+on+Data-Driven+Process+Monitoring+Systems%3A+Subspace+Transfer+Networks&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Jiang%2C+Xiaoyu&rft.au=Ge%2C+Zhiqiang&rft.date=2022-06-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=3&rft.issue=3&rft.spage=470&rft.epage=484&rft_id=info:doi/10.1109%2FTAI.2022.3145335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2022_3145335 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon |