Attacks on Data-Driven Process Monitoring Systems: Subspace Transfer Networks

With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring sys...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on artificial intelligence Vol. 3; no. 3; pp. 470 - 484
Main Authors Jiang, Xiaoyu, Ge, Zhiqiang
Format Journal Article
LanguageEnglish
Published IEEE 01.06.2022
Subjects
Online AccessGet full text
ISSN2691-4581
2691-4581
DOI10.1109/TAI.2022.3145335

Cover

Abstract With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring system (PMS) is heavily subject to external risks. Data-driven PMSs have been widely used as initial lines of defense to ensure ICS safety. Once the PMS is under attack, the consequences on the whole ICS will be unimaginable. Unfortunately, the safety issues of the PMS have received inadequate attention. This article reveals PMS's vulnerabilities through effective attacks. A novel method called subspace transfer network (STN) is proposed to conduct adversarial and poisoning attacks on the PMS simultaneously. Then the attack task flow is defined and explained to make online adversarial attacks and data poisoning on PMS. Meanwhile, aiming at two poisoning goals, targeted and untargeted attacks of STN are designed, respectively. Finally, the PMS's fragility is verified in two industrial benchmarks.
AbstractList With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional industrial control systems (ICS); thus, the information security of ICS has been seriously threatened. As part of ICS, the process monitoring system (PMS) is heavily subject to external risks. Data-driven PMSs have been widely used as initial lines of defense to ensure ICS safety. Once the PMS is under attack, the consequences on the whole ICS will be unimaginable. Unfortunately, the safety issues of the PMS have received inadequate attention. This article reveals PMS's vulnerabilities through effective attacks. A novel method called subspace transfer network (STN) is proposed to conduct adversarial and poisoning attacks on the PMS simultaneously. Then the attack task flow is defined and explained to make online adversarial attacks and data poisoning on PMS. Meanwhile, aiming at two poisoning goals, targeted and untargeted attacks of STN are designed, respectively. Finally, the PMS's fragility is verified in two industrial benchmarks.
Author Jiang, Xiaoyu
Ge, Zhiqiang
Author_xml – sequence: 1
  givenname: Xiaoyu
  orcidid: 0000-0003-4170-5579
  surname: Jiang
  fullname: Jiang, Xiaoyu
  email: jiangxiaoyu@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhiqiang
  orcidid: 0000-0002-2071-4380
  surname: Ge
  fullname: Ge, Zhiqiang
  email: gezhiqiang@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kEtPAjEUhRuDiYjsTdz0Dwz2dtrp1B0BHyT4SMD1pHTumApMSVs1_HshEGNcuLpncb-Tk--cdFrfIiGXwAYATF_Ph5MBZ5wPchAyz-UJ6fJCQyZkCZ1f-Yz0Y3xnjHEJnHPVJY_DlIxdRupbOjbJZOPgPrGlL8FbjJE--tYlH1z7RmfbmHAdb-jsYxE3xiKdB9PGBgN9wvTlwzJekNPGrCL2j7dHXu9u56OHbPp8PxkNp5kFVaZMC1sbBjxXGoQqjQXUQtgGeMmhlgK1VjLXhRYSVV0qjkIK3thCqLpYWJX3SHHotcHHGLCprEsmOd-mYNyqAlbtvVQ7L9XeS3X0sgPZH3AT3NqE7X_I1QFxiPjzvhsHGmT-DaL_brA
CODEN ITAICB
CitedBy_id crossref_primary_10_1109_TICPS_2023_3317237
crossref_primary_10_1109_JAS_2023_123396
crossref_primary_10_1109_TII_2023_3291717
crossref_primary_10_1016_j_eswa_2025_126670
crossref_primary_10_1109_TMC_2024_3447087
crossref_primary_10_1109_TSMC_2023_3302838
crossref_primary_10_1016_j_cherd_2025_02_031
crossref_primary_10_1109_TII_2024_3449999
Cites_doi 10.1109/TIE.2021.3139194
10.1111/1467-9868.00196
10.1109/TNNLS.2018.2886017
10.1109/TDSC.2021.3050101
10.1016/0098-1354(94)00057-U
10.1109/CVPR.2016.282
10.1126/science.1127647
10.1016/j.jprocont.2007.07.006
10.1007/BFb0020217
10.1021/ie302069q
10.1177/1475921720920233
10.1016/j.ins.2017.05.047
10.1109/SP.2017.49
10.1016/j.jfranklin.2018.02.027
10.1109/TASE.2020.2998467
10.1145/3433210.3437513
10.1051/matecconf/201817301010
10.1021/acs.iecr.1c00367
10.1021/acs.iecr.8b02913
10.1201/9781351251389-8
10.18653/v1/2020.findings-emnlp.373
10.1109/PMAPS47429.2020.9183526
10.1109/TIM.2021.3075515
10.1016/j.arcontrol.2012.09.004
10.1109/TII.2021.3104056
10.1016/j.eng.2019.12.012
10.1109/MIE.2019.2938025
10.1109/ETFA.2015.7301457
10.1109/PES.2010.5590115
10.1109/ICCEA50009.2020.00063
10.1109/TII.2021.3053128
10.14236/ewic/ICSCSR2013.4
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAI.2022.3145335
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2691-4581
EndPage 484
ExternalDocumentID 10_1109_TAI_2022_3145335
9691915
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province
  grantid: LR18 F030001
  funderid: 10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 62103362; 62003300; 92167106
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IEDLZ
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c178t-94cda0123791478ac1e944cf12821d54e9975396945e7d872e4542fc647d6bc73
IEDL.DBID RIE
ISSN 2691-4581
IngestDate Wed Oct 01 05:36:00 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Wed Aug 27 07:40:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c178t-94cda0123791478ac1e944cf12821d54e9975396945e7d872e4542fc647d6bc73
ORCID 0000-0003-4170-5579
0000-0002-2071-4380
PageCount 15
ParticipantIDs ieee_primary_9691915
crossref_citationtrail_10_1109_TAI_2022_3145335
crossref_primary_10_1109_TAI_2022_3145335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-June
2022-6-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-June
PublicationDecade 2020
PublicationTitle IEEE transactions on artificial intelligence
PublicationTitleAbbrev TAI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
kurakin (ref29) 0
ref16
ref19
ref18
champneys (ref23) 2020; 20
shafahi (ref17) 0
goodfellow (ref13) 0
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
s (ref5) 2003; 17
ref9
ref4
ref3
vincent (ref7) 2010; 11
ref6
References_xml – ident: ref27
  doi: 10.1109/TIE.2021.3139194
– ident: ref10
  doi: 10.1111/1467-9868.00196
– start-page: 6106
  year: 0
  ident: ref17
  article-title: Poison frogs! Targeted clean-label poisoning attacks on neural networks
  publication-title: Proc Adv Neural Inf Process Syst 31 Annu Conf Neural Inf Process Syst
– ident: ref19
  doi: 10.1109/TNNLS.2018.2886017
– year: 0
  ident: ref13
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc 3rd Int Conf Learn Representations
– ident: ref22
  doi: 10.1109/TDSC.2021.3050101
– ident: ref35
  doi: 10.1016/0098-1354(94)00057-U
– year: 0
  ident: ref29
  article-title: Adversarial machine learning at scale
  publication-title: Proc 5th Int Conf Learn Representations
– ident: ref15
  doi: 10.1109/CVPR.2016.282
– ident: ref6
  doi: 10.1126/science.1127647
– ident: ref37
  doi: 10.1016/j.jprocont.2007.07.006
– volume: 17
  start-page: 480
  year: 2003
  ident: ref5
  article-title: Statistical process monitoring: Basics and beyond
  publication-title: Journal of Chemometrics A Journal of the Chemometrics Society
– ident: ref9
  doi: 10.1007/BFb0020217
– ident: ref2
  doi: 10.1021/ie302069q
– volume: 20
  start-page: 1476
  year: 2020
  ident: ref23
  article-title: On the vulnerability of data-driven structural health monitoring models to adversarial attack
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921720920233
– ident: ref32
  doi: 10.1016/j.ins.2017.05.047
– ident: ref16
  doi: 10.1109/SP.2017.49
– ident: ref36
  doi: 10.1016/j.jfranklin.2018.02.027
– ident: ref24
  doi: 10.1109/TASE.2020.2998467
– ident: ref28
  doi: 10.1145/3433210.3437513
– ident: ref30
  doi: 10.1051/matecconf/201817301010
– ident: ref4
  doi: 10.1021/acs.iecr.1c00367
– ident: ref11
  doi: 10.1021/acs.iecr.8b02913
– ident: ref14
  doi: 10.1201/9781351251389-8
– ident: ref18
  doi: 10.18653/v1/2020.findings-emnlp.373
– ident: ref21
  doi: 10.1109/PMAPS47429.2020.9183526
– ident: ref26
  doi: 10.1109/TIM.2021.3075515
– ident: ref1
  doi: 10.1016/j.arcontrol.2012.09.004
– ident: ref20
  doi: 10.1109/TII.2021.3104056
– ident: ref12
  doi: 10.1016/j.eng.2019.12.012
– ident: ref3
  doi: 10.1109/MIE.2019.2938025
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref7
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref31
  doi: 10.1109/ETFA.2015.7301457
– ident: ref34
  doi: 10.1109/PES.2010.5590115
– ident: ref25
  doi: 10.1109/ICCEA50009.2020.00063
– ident: ref8
  doi: 10.1109/TII.2021.3053128
– ident: ref33
  doi: 10.14236/ewic/ICSCSR2013.4
SSID ssj0002512227
Score 2.259603
Snippet With the rapid development of information technology, intelligent upgrading of the manufacturing industry has broken the closed environment of traditional...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 470
SubjectTerms Adversarial attack
Artificial intelligence
data-driven models
Generators
Perturbation methods
poisoning attack
Process control
Process monitoring
process monitoring system (PMS)
Sensors
subspace transfer
Training
Title Attacks on Data-Driven Process Monitoring Systems: Subspace Transfer Networks
URI https://ieeexplore.ieee.org/document/9691915
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: RIE
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2691-4581
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002512227
  issn: 2691-4581
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nVgoUBDlUXlgQSJt4l7imK2irQpSOrVSt8hx7AWUopIuDPx27LwECCG2KLKtk-_se_i-O4Ab4XLleVo6XCJ30FjwTpgmrkMV01aAPNe1eOdoGSzW-LTxNy24a7AwSqki-UwN7Wfxlp9u5d6GykY84Ma98NvQZmFQYrWaeIrV05Sy-iXS5aPV5NH4f5QatxSNUeN_0zxfWqkUmmTehaimoUwgeR7u82Qo33-UZ_wvkUdwWJmUZFLKwDG0VHYC3bpdA6lObw-iSZ5bRD3ZZmQqcuFMd_aqIxVWgJTH28b5SFXH_J7Ye8V41YoUOk2b5ZZl3vjbKazns9XDwqm6KTjSY2HucJSpsBYU4x6yUEhPcUSpjYKiXuqj4hZja6hHX7E0ZFShj1TLAFkaJJKNz6CTbTN1DkTjeDzmmIRaJ6jRT3xBmVCpFomrWSr6MKp3OpZVqXHb8eIlLlwOl8eGN7HlTVzxpg-3zYzXsszGH2N7dtebcdWGX_z--xIO7OQyu-sKOvlur66NHZEnA2hHH7NBIUafqGPGUg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBCgYIoTw8sSKRNnHMds1WUqoW2UyuxRY5jL6AUlXTh12MnaQUIIbYosq2T7-x7-L47gGvpCx0ERnlCofDQWvBelCa-RzU3ToAC33d458m0O5zj4zN7rsHtBgujtS6Sz3TbfRZv-elCrVyorCO6wroXbAu2GSKyEq21iag4TU0pX79F-qIz642sB0ipdUzRmjXsm-750kyl0CWDBkzWVJQpJC_tVZ601cePAo3_JXMf9iqjkvRKKTiAms4OobFu2ECq89uESS_PHaaeLDLSl7n0-kt32ZEKLUDKA-4ifaSqZH5H3M1i_WpNCq1m7HLTMnP8_Qjmg4fZ_dCr-il4KuBR7glUqXQ2FBcB8kiqQAtEZayKokHKUAuHsrXUI9M8jTjVyJAa1UWedhPFw2OoZ4tMnwAxGIahwCQyJkGDLGGScqlTIxPf8FS2oLPe6VhVxcZdz4vXuHA6fBFb3sSON3HFmxbcbGa8lYU2_hjbdLu-GVdt-Onvv69gZzibjOPxaPp0BrtuoTLX6xzq-XKlL6xVkSeXhTB9AoN_yG4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attacks+on+Data-Driven+Process+Monitoring+Systems%3A+Subspace+Transfer+Networks&rft.jtitle=IEEE+transactions+on+artificial+intelligence&rft.au=Jiang%2C+Xiaoyu&rft.au=Ge%2C+Zhiqiang&rft.date=2022-06-01&rft.issn=2691-4581&rft.eissn=2691-4581&rft.volume=3&rft.issue=3&rft.spage=470&rft.epage=484&rft_id=info:doi/10.1109%2FTAI.2022.3145335&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAI_2022_3145335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-4581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-4581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-4581&client=summon