GeoAI Dataset for Urban Water Body Detection Using TerraSAR-X Satellite Radar Imagery

This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challeng...

Full description

Saved in:
Bibliographic Details
Published inGeo Data Vol. 6; no. 4; pp. 435 - 450
Main Authors Lee, Eu-Ru, Jung, Jun-Hyeok, Kim, Ki-Chang, Yu, Seong-Jae, Jung, Hyung-Sup
Format Journal Article
LanguageEnglish
Published GeoAI Data Society 01.12.2024
(사)지오에이아이데이터학회
Subjects
Online AccessGet full text
ISSN2713-5004
2713-5004
DOI10.22761/GD.2024.0046

Cover

Abstract This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challenges for SAR analysis. The data preprocessing involved generating Sigma0 images, image co-registration, median filtering for speckle noise reduction, decibel conversion, and orthorectification using Copernicus DEM for precise geometric correction. Label data were created using the global river widths from Landsat dataset combined with the Otsu thresholding method and fine-tuned with Google Map imagery. Annotation guidelines were meticulously designed to account for SAR-specific phenomena such as layover, corner reflections, and side lobe effects, ensuring consistent and accurate labeling across different orbits and observation conditions. The resulting dataset supports deep learning models in learning geometric characteristics of SAR imagery, enhancing water body detection capabilities. This work provides a foundational resource for future applications in urban water management and climate-resilient disaster response.
AbstractList This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challenges for SAR analysis. The data preprocessing involved generating Sigma0 images, image co-registration, median filtering for speckle noise reduction, decibel conversion, and orthorectification using Copernicus DEM for precise geometric correction. Label data were created using the global river widths from Landsat dataset combined with the Otsu thresholding method and fine-tuned with Google Map imagery. Annotation guidelines were meticulously designed to account for SAR-specific phenomena such as layover, corner reflections, and side lobe effects, ensuring consistent and accurate labeling across different orbits and observation conditions. The resulting dataset supports deep learning models in learning geometric characteristics of SAR imagery, enhancing water body detection capabilities. This work provides a foundational resource for future applications in urban water management and climate-resilient disaster response.
This study presents the generation of a GeoAI dataset for urban water bodydetection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. Thestudy area includes urban regions in Seoul and Gyeonggi Province, chosen fortheir complex structures and frequent flooding, which pose challenges for SARanalysis. The data preprocessing involved generating Sigma0 images, image coregistration,median filtering for speckle noise reduction, decibel conversion, andorthorectification using Copernicus DEM for precise geometric correction. Label datawere created using the global river widths from Landsat dataset combined with theOtsu thresholding method and fine-tuned with Google Map imagery. Annotationguidelines were meticulously designed to account for SAR-specific phenomena suchas layover, corner reflections, and side lobe effects, ensuring consistent and accuratelabeling across different orbits and observation conditions. The resulting datasetsupports deep learning models in learning geometric characteristics of SAR imagery,enhancing water body detection capabilities. This work provides a foundationalresource for future applications in urban water management and climate-resilientdisaster response. KCI Citation Count: 0
Author Lee, Eu-Ru
Jung, Jun-Hyeok
Yu, Seong-Jae
Kim, Ki-Chang
Jung, Hyung-Sup
Author_xml – sequence: 1
  givenname: Eu-Ru
  orcidid: 0000-0003-3026-0543
  surname: Lee
  fullname: Lee, Eu-Ru
– sequence: 2
  givenname: Jun-Hyeok
  orcidid: 0009-0004-4922-2832
  surname: Jung
  fullname: Jung, Jun-Hyeok
– sequence: 3
  givenname: Ki-Chang
  orcidid: 0000-0001-9173-3485
  surname: Kim
  fullname: Kim, Ki-Chang
– sequence: 4
  givenname: Seong-Jae
  orcidid: 0009-0005-5119-5391
  surname: Yu
  fullname: Yu, Seong-Jae
– sequence: 5
  givenname: Hyung-Sup
  orcidid: 0000-0003-2335-8438
  surname: Jung
  fullname: Jung, Hyung-Sup
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162997$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNpNkctLAzEQh4Mo-OrRe87C1rw2mxyr1bogCH2gtzBJZstq3Uh2L_3v7UPE029m-Oa7_C7JaZc6JOSGs7EQleZ3s-lYMKHGjCl9Qi5ExWVR7pbTf_M5GfX9B2NMWFFKpS7IaoZpUtMpDNDjQJuU6Sp76OgbDJjpfYpbOsUBw9Cmjq76tlvTJeYMi8m8eKeLHbXZtAPSOUTItP6CNebtNTlrYNPj6DevyOrpcfnwXLy8zuqHyUsReGV0Eb0VjTVMMitE0NJDiRq9NkHaqgoMsOQmKOURGiEMMxgqsKUWStvSxCCvyO3R2-XGfYbWJWgPuU7uM7vJfFk7znTFBTM7uD7CMcGH-87tF-Tt4eNwSHntIA9t2KBjNtiopI5ReqWN8Fxp1SjvG6lMlHznKo6ukFPfZ2z-fJy5Qx9uNnX7Pty-D_kDP457hg
Cites_doi 10.1109/taes.2012.6178042
10.1016/j.rse.2014.06.025
10.1109/jstars.2008.2001156
10.1016/j.isprsjprs.2019.10.017
10.1126/science.aat0636
10.1016/j.scitotenv.2016.05.046
10.1080/17538947.2022.2094002
10.1007/s42979-021-00815-1
10.2136/vzj2006.0094
10.1007/s11432-022-3734-0
10.3390/w15111979
10.7848/ksgpc.2012.30.6-1.519
10.1016/j.oceano.2017.03.005
10.1080/19475705.2017.1308971
10.1109/tgrs.2008.920911
10.1109/36.729367
10.3390/rs14071752
10.22761/gd.2023.0056
10.3390/s17010170
ContentType Journal Article
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.22761/GD.2024.0046
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2713-5004
EndPage 450
ExternalDocumentID oai_kci_go_kr_ARTI_10671208
oai_doaj_org_article_09c9d436dd3b4682b1464f4bbf348d31
10_22761_GD_2024_0046
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ACYCR
ID FETCH-LOGICAL-c1786-db92f98030922c63ba5e6eb68c3977c0ae518c44beaf22808ec7a956246958dc3
IEDL.DBID DOA
ISSN 2713-5004
IngestDate Sun Sep 14 03:10:34 EDT 2025
Wed Aug 27 01:30:36 EDT 2025
Tue Jul 01 01:19:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1786-db92f98030922c63ba5e6eb68c3977c0ae518c44beaf22808ec7a956246958dc3
ORCID 0009-0005-5119-5391
0000-0001-9173-3485
0000-0003-2335-8438
0000-0003-3026-0543
0009-0004-4922-2832
OpenAccessLink https://doaj.org/article/09c9d436dd3b4682b1464f4bbf348d31
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10671208
doaj_primary_oai_doaj_org_article_09c9d436dd3b4682b1464f4bbf348d31
crossref_primary_10_22761_GD_2024_0046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12
PublicationDecade 2020
PublicationTitle Geo Data
PublicationYear 2024
Publisher GeoAI Data Society
(사)지오에이아이데이터학회
Publisher_xml – name: GeoAI Data Society
– name: (사)지오에이아이데이터학회
References ref13
ref12
ref23
ref15
ref14
Baek (ref3) 2019
ref20
ref11
ref22
ref21
Bernstein (ref4) 1983
ref2
ref1
Yu (ref24) 2022
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref6
ref5
Lee (ref10) 2023
References_xml – ident: ref18
  doi: 10.1109/taes.2012.6178042
– ident: ref6
  doi: 10.1016/j.rse.2014.06.025
– ident: ref21
  doi: 10.1109/jstars.2008.2001156
– ident: ref2
– ident: ref16
  doi: 10.1016/j.isprsjprs.2019.10.017
– start-page: 8
  volume-title: Flood mapping using modified U-NET from TerraSAR-X images
  year: 2022
  ident: ref24
– ident: ref1
  doi: 10.1126/science.aat0636
– ident: ref9
  doi: 10.1016/j.scitotenv.2016.05.046
– ident: ref15
  doi: 10.1080/17538947.2022.2094002
– ident: ref19
  doi: 10.1007/s42979-021-00815-1
– ident: ref22
  doi: 10.2136/vzj2006.0094
– start-page: 9
  volume-title: A study of development and application of an inland water body training dataset using Sentinel-1 SAR images in Korea
  year: 2023
  ident: ref10
– ident: ref17
  doi: 10.1007/s11432-022-3734-0
– ident: ref13
  doi: 10.3390/w15111979
– volume-title: Image geometry and rectification
  year: 1983
  ident: ref4
– ident: ref12
  doi: 10.7848/ksgpc.2012.30.6-1.519
– ident: ref23
  doi: 10.1016/j.oceano.2017.03.005
– ident: ref14
  doi: 10.1080/19475705.2017.1308971
– ident: ref5
  doi: 10.1109/tgrs.2008.920911
– ident: ref20
  doi: 10.1109/36.729367
– start-page: 737
  volume-title: A review of change detection techniques using multi-temporal synthetic aperture radar images
  year: 2019
  ident: ref3
– ident: ref7
  doi: 10.3390/rs14071752
– ident: ref11
  doi: 10.22761/gd.2023.0056
– ident: ref8
  doi: 10.3390/s17010170
SSID ssj0002925344
Score 2.2793741
Snippet This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The...
This study presents the generation of a GeoAI dataset for urban water bodydetection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. Thestudy...
SourceID nrf
doaj
crossref
SourceType Open Website
Index Database
StartPage 435
SubjectTerms geoai dataset
high-resolution sar imagery
terrasar-x
urban water body
지구과학
Title GeoAI Dataset for Urban Water Body Detection Using TerraSAR-X Satellite Radar Imagery
URI https://doaj.org/article/09c9d436dd3b4682b1464f4bbf348d31
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162997
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX GEO DATA, 2024, 6(4), , pp.435-450
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2713-5004
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002925344
  issn: 2713-5004
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYsoKs5fBBRvZWuatulxc7pN0MN-4G4hL0lFxE5KPey_9710ym5evLRQUhK-1-b7Hnn5wtiNs45osBeBxIvMII4A0jiycVy4Xl4aGTaJPT1n44V8XKbLraO-qCastQdugev2Cls4mWTOJSAzJQB_bVlKgDKRyoUd1AJpbCuZojlYFCJNpGxNNYXAXL07GmI2KMgrm8TuFgkFr36klqout6jl4YDtbzQh77djOWQ7vjpii5Ff9Sd8aBrkmYajtuSLGkzFX1Ad1nywcms-9E2opKp4WPnnc1_XZtafRks-M8Fqs_F8apyp-eSDzCrWx2zxcD-_G0ebMxAQrVxlkYNClIWihRAhbJaASX3mIVOWlJvtGZ_GykoJ3pTkbKO8zQ3mPALT3lQ5m5yw3WpV-VPGyWxLFlR1DAbbx0WepOByA6B8YozssNsfUPRna3WhMUUI6OnRUBN6mtDrsAFB9tuIHKrDA4yb3sRN_xW3DrtGwPW7fQvv0_11pd9rjTp-osnYLsa4nv1HV-dsj8beFqFcsN2m_vKXKCUauApfzTcAGcKH
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GeoAI+Dataset+for+Urban+Water+Body+Detection+Using+TerraSAR-X+Satellite+Radar+Imagery&rft.jtitle=Geo+Data&rft.au=%EC%9D%B4%EC%96%B4%EB%A3%A8%28Department+of+Geoinformatics%2C+University+of+Seoul&rft.au=Department+of+Smart+Cities%2C+University+of+Seoul%29&rft.au=%EC%A0%95%EC%A4%80%ED%98%81%28Department+of+Geoinformatics%2C+University+of+Seoul&rft.au=%EA%B9%80%EA%B8%B0%EC%B0%BD&rft.date=2024-12-01&rft.pub=%28%EC%82%AC%29%EC%A7%80%EC%98%A4%EC%97%90%EC%9D%B4%EC%95%84%EC%9D%B4%EB%8D%B0%EC%9D%B4%ED%84%B0%ED%95%99%ED%9A%8C&rft.eissn=2713-5004&rft.spage=435&rft.epage=450&rft_id=info:doi/10.22761%2FGD.2024.0046&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10671208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2713-5004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2713-5004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2713-5004&client=summon