GeoAI Dataset for Urban Water Body Detection Using TerraSAR-X Satellite Radar Imagery
This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challeng...
Saved in:
Published in | Geo Data Vol. 6; no. 4; pp. 435 - 450 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
GeoAI Data Society
01.12.2024
(사)지오에이아이데이터학회 |
Subjects | |
Online Access | Get full text |
ISSN | 2713-5004 2713-5004 |
DOI | 10.22761/GD.2024.0046 |
Cover
Abstract | This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challenges for SAR analysis. The data preprocessing involved generating Sigma0 images, image co-registration, median filtering for speckle noise reduction, decibel conversion, and orthorectification using Copernicus DEM for precise geometric correction. Label data were created using the global river widths from Landsat dataset combined with the Otsu thresholding method and fine-tuned with Google Map imagery. Annotation guidelines were meticulously designed to account for SAR-specific phenomena such as layover, corner reflections, and side lobe effects, ensuring consistent and accurate labeling across different orbits and observation conditions. The resulting dataset supports deep learning models in learning geometric characteristics of SAR imagery, enhancing water body detection capabilities. This work provides a foundational resource for future applications in urban water management and climate-resilient disaster response. |
---|---|
AbstractList | This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The study area includes urban regions in Seoul and Gyeonggi Province, chosen for their complex structures and frequent flooding, which pose challenges for SAR analysis. The data preprocessing involved generating Sigma0 images, image co-registration, median filtering for speckle noise reduction, decibel conversion, and orthorectification using Copernicus DEM for precise geometric correction. Label data were created using the global river widths from Landsat dataset combined with the Otsu thresholding method and fine-tuned with Google Map imagery. Annotation guidelines were meticulously designed to account for SAR-specific phenomena such as layover, corner reflections, and side lobe effects, ensuring consistent and accurate labeling across different orbits and observation conditions. The resulting dataset supports deep learning models in learning geometric characteristics of SAR imagery, enhancing water body detection capabilities. This work provides a foundational resource for future applications in urban water management and climate-resilient disaster response. This study presents the generation of a GeoAI dataset for urban water bodydetection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. Thestudy area includes urban regions in Seoul and Gyeonggi Province, chosen fortheir complex structures and frequent flooding, which pose challenges for SARanalysis. The data preprocessing involved generating Sigma0 images, image coregistration,median filtering for speckle noise reduction, decibel conversion, andorthorectification using Copernicus DEM for precise geometric correction. Label datawere created using the global river widths from Landsat dataset combined with theOtsu thresholding method and fine-tuned with Google Map imagery. Annotationguidelines were meticulously designed to account for SAR-specific phenomena suchas layover, corner reflections, and side lobe effects, ensuring consistent and accuratelabeling across different orbits and observation conditions. The resulting datasetsupports deep learning models in learning geometric characteristics of SAR imagery,enhancing water body detection capabilities. This work provides a foundationalresource for future applications in urban water management and climate-resilientdisaster response. KCI Citation Count: 0 |
Author | Lee, Eu-Ru Jung, Jun-Hyeok Yu, Seong-Jae Kim, Ki-Chang Jung, Hyung-Sup |
Author_xml | – sequence: 1 givenname: Eu-Ru orcidid: 0000-0003-3026-0543 surname: Lee fullname: Lee, Eu-Ru – sequence: 2 givenname: Jun-Hyeok orcidid: 0009-0004-4922-2832 surname: Jung fullname: Jung, Jun-Hyeok – sequence: 3 givenname: Ki-Chang orcidid: 0000-0001-9173-3485 surname: Kim fullname: Kim, Ki-Chang – sequence: 4 givenname: Seong-Jae orcidid: 0009-0005-5119-5391 surname: Yu fullname: Yu, Seong-Jae – sequence: 5 givenname: Hyung-Sup orcidid: 0000-0003-2335-8438 surname: Jung fullname: Jung, Hyung-Sup |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162997$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNpNkctLAzEQh4Mo-OrRe87C1rw2mxyr1bogCH2gtzBJZstq3Uh2L_3v7UPE029m-Oa7_C7JaZc6JOSGs7EQleZ3s-lYMKHGjCl9Qi5ExWVR7pbTf_M5GfX9B2NMWFFKpS7IaoZpUtMpDNDjQJuU6Sp76OgbDJjpfYpbOsUBw9Cmjq76tlvTJeYMi8m8eKeLHbXZtAPSOUTItP6CNebtNTlrYNPj6DevyOrpcfnwXLy8zuqHyUsReGV0Eb0VjTVMMitE0NJDiRq9NkHaqgoMsOQmKOURGiEMMxgqsKUWStvSxCCvyO3R2-XGfYbWJWgPuU7uM7vJfFk7znTFBTM7uD7CMcGH-87tF-Tt4eNwSHntIA9t2KBjNtiopI5ReqWN8Fxp1SjvG6lMlHznKo6ukFPfZ2z-fJy5Qx9uNnX7Pty-D_kDP457hg |
Cites_doi | 10.1109/taes.2012.6178042 10.1016/j.rse.2014.06.025 10.1109/jstars.2008.2001156 10.1016/j.isprsjprs.2019.10.017 10.1126/science.aat0636 10.1016/j.scitotenv.2016.05.046 10.1080/17538947.2022.2094002 10.1007/s42979-021-00815-1 10.2136/vzj2006.0094 10.1007/s11432-022-3734-0 10.3390/w15111979 10.7848/ksgpc.2012.30.6-1.519 10.1016/j.oceano.2017.03.005 10.1080/19475705.2017.1308971 10.1109/tgrs.2008.920911 10.1109/36.729367 10.3390/rs14071752 10.22761/gd.2023.0056 10.3390/s17010170 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA ACYCR |
DOI | 10.22761/GD.2024.0046 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2713-5004 |
EndPage | 450 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10671208 oai_doaj_org_article_09c9d436dd3b4682b1464f4bbf348d31 10_22761_GD_2024_0046 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ ACYCR |
ID | FETCH-LOGICAL-c1786-db92f98030922c63ba5e6eb68c3977c0ae518c44beaf22808ec7a956246958dc3 |
IEDL.DBID | DOA |
ISSN | 2713-5004 |
IngestDate | Sun Sep 14 03:10:34 EDT 2025 Wed Aug 27 01:30:36 EDT 2025 Tue Jul 01 01:19:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1786-db92f98030922c63ba5e6eb68c3977c0ae518c44beaf22808ec7a956246958dc3 |
ORCID | 0009-0005-5119-5391 0000-0001-9173-3485 0000-0003-2335-8438 0000-0003-3026-0543 0009-0004-4922-2832 |
OpenAccessLink | https://doaj.org/article/09c9d436dd3b4682b1464f4bbf348d31 |
PageCount | 16 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10671208 doaj_primary_oai_doaj_org_article_09c9d436dd3b4682b1464f4bbf348d31 crossref_primary_10_22761_GD_2024_0046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12 |
PublicationDecade | 2020 |
PublicationTitle | Geo Data |
PublicationYear | 2024 |
Publisher | GeoAI Data Society (사)지오에이아이데이터학회 |
Publisher_xml | – name: GeoAI Data Society – name: (사)지오에이아이데이터학회 |
References | ref13 ref12 ref23 ref15 ref14 Baek (ref3) 2019 ref20 ref11 ref22 ref21 Bernstein (ref4) 1983 ref2 ref1 Yu (ref24) 2022 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref6 ref5 Lee (ref10) 2023 |
References_xml | – ident: ref18 doi: 10.1109/taes.2012.6178042 – ident: ref6 doi: 10.1016/j.rse.2014.06.025 – ident: ref21 doi: 10.1109/jstars.2008.2001156 – ident: ref2 – ident: ref16 doi: 10.1016/j.isprsjprs.2019.10.017 – start-page: 8 volume-title: Flood mapping using modified U-NET from TerraSAR-X images year: 2022 ident: ref24 – ident: ref1 doi: 10.1126/science.aat0636 – ident: ref9 doi: 10.1016/j.scitotenv.2016.05.046 – ident: ref15 doi: 10.1080/17538947.2022.2094002 – ident: ref19 doi: 10.1007/s42979-021-00815-1 – ident: ref22 doi: 10.2136/vzj2006.0094 – start-page: 9 volume-title: A study of development and application of an inland water body training dataset using Sentinel-1 SAR images in Korea year: 2023 ident: ref10 – ident: ref17 doi: 10.1007/s11432-022-3734-0 – ident: ref13 doi: 10.3390/w15111979 – volume-title: Image geometry and rectification year: 1983 ident: ref4 – ident: ref12 doi: 10.7848/ksgpc.2012.30.6-1.519 – ident: ref23 doi: 10.1016/j.oceano.2017.03.005 – ident: ref14 doi: 10.1080/19475705.2017.1308971 – ident: ref5 doi: 10.1109/tgrs.2008.920911 – ident: ref20 doi: 10.1109/36.729367 – start-page: 737 volume-title: A review of change detection techniques using multi-temporal synthetic aperture radar images year: 2019 ident: ref3 – ident: ref7 doi: 10.3390/rs14071752 – ident: ref11 doi: 10.22761/gd.2023.0056 – ident: ref8 doi: 10.3390/s17010170 |
SSID | ssj0002925344 |
Score | 2.2793741 |
Snippet | This study presents the generation of a GeoAI dataset for urban water body detection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. The... This study presents the generation of a GeoAI dataset for urban water bodydetection using TerraSAR-X satellite synthetic aperture radar (SAR) imagery. Thestudy... |
SourceID | nrf doaj crossref |
SourceType | Open Website Index Database |
StartPage | 435 |
SubjectTerms | geoai dataset high-resolution sar imagery terrasar-x urban water body 지구과학 |
Title | GeoAI Dataset for Urban Water Body Detection Using TerraSAR-X Satellite Radar Imagery |
URI | https://doaj.org/article/09c9d436dd3b4682b1464f4bbf348d31 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003162997 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | GEO DATA, 2024, 6(4), , pp.435-450 |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2713-5004 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002925344 issn: 2713-5004 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYsoKs5fBBRvZWuatulxc7pN0MN-4G4hL0lFxE5KPey_9710ym5evLRQUhK-1-b7Hnn5wtiNs45osBeBxIvMII4A0jiycVy4Xl4aGTaJPT1n44V8XKbLraO-qCastQdugev2Cls4mWTOJSAzJQB_bVlKgDKRyoUd1AJpbCuZojlYFCJNpGxNNYXAXL07GmI2KMgrm8TuFgkFr36klqout6jl4YDtbzQh77djOWQ7vjpii5Ff9Sd8aBrkmYajtuSLGkzFX1Ad1nywcms-9E2opKp4WPnnc1_XZtafRks-M8Fqs_F8apyp-eSDzCrWx2zxcD-_G0ebMxAQrVxlkYNClIWihRAhbJaASX3mIVOWlJvtGZ_GykoJ3pTkbKO8zQ3mPALT3lQ5m5yw3WpV-VPGyWxLFlR1DAbbx0WepOByA6B8YozssNsfUPRna3WhMUUI6OnRUBN6mtDrsAFB9tuIHKrDA4yb3sRN_xW3DrtGwPW7fQvv0_11pd9rjTp-osnYLsa4nv1HV-dsj8beFqFcsN2m_vKXKCUauApfzTcAGcKH |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GeoAI+Dataset+for+Urban+Water+Body+Detection+Using+TerraSAR-X+Satellite+Radar+Imagery&rft.jtitle=Geo+Data&rft.au=%EC%9D%B4%EC%96%B4%EB%A3%A8%28Department+of+Geoinformatics%2C+University+of+Seoul&rft.au=Department+of+Smart+Cities%2C+University+of+Seoul%29&rft.au=%EC%A0%95%EC%A4%80%ED%98%81%28Department+of+Geoinformatics%2C+University+of+Seoul&rft.au=%EA%B9%80%EA%B8%B0%EC%B0%BD&rft.date=2024-12-01&rft.pub=%28%EC%82%AC%29%EC%A7%80%EC%98%A4%EC%97%90%EC%9D%B4%EC%95%84%EC%9D%B4%EB%8D%B0%EC%9D%B4%ED%84%B0%ED%95%99%ED%9A%8C&rft.eissn=2713-5004&rft.spage=435&rft.epage=450&rft_id=info:doi/10.22761%2FGD.2024.0046&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10671208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2713-5004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2713-5004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2713-5004&client=summon |