A Deep Learning Framework With Domain Generalization and Few-Shot Learning for Locomotion Mode Classification Across Users, Sessions, and Prostheses

Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learnin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical robotics and bionics p. 1
Main Authors Anselmino, Eugenio, Simon, Ann M., Hargrove, Levi J.
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text
ISSN2576-3202
2576-3202
DOI10.1109/TMRB.2025.3606364

Cover

Abstract Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learning fine-tuning to classify locomotion modes in unseen sessions or subjects data across different prosthesis models. We validated the approach with a leave-one-session-out analysis repeated five times and made comparisons to a prosthesis-specific classifier. The dataset was created by merging data from two different prosthesis models (Vanderbilt University, VU, Gen 2 and Gen 3 powered knee-ankle prostheses), for a total of 31 sessions acquired across multiple days from 11 subjects. Subjects performed five locomotion tasks: level walking, incline and decline walking, and stair ascent and descent. Since transitions between different locomotion modes happen at different gait events, the analyses have been repeated for both heel-strike (HS) and toe-off (TO) events. At HS events, the proposed approach achieves a median f1-score of 99.12% and 92.41% on VU Gen 2 and Gen 3 prostheses respectively. At TO events, the proposed approach reaches a median f1-score of 96.83% with VU Gen 2 and 94.36% with VU Gen 3. The proposed framework is a promising solution for locomotion classification on data of previously unseen sessions or subjects, allowing classification on multiple prosthesis models.
AbstractList Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learning fine-tuning to classify locomotion modes in unseen sessions or subjects data across different prosthesis models. We validated the approach with a leave-one-session-out analysis repeated five times and made comparisons to a prosthesis-specific classifier. The dataset was created by merging data from two different prosthesis models (Vanderbilt University, VU, Gen 2 and Gen 3 powered knee-ankle prostheses), for a total of 31 sessions acquired across multiple days from 11 subjects. Subjects performed five locomotion tasks: level walking, incline and decline walking, and stair ascent and descent. Since transitions between different locomotion modes happen at different gait events, the analyses have been repeated for both heel-strike (HS) and toe-off (TO) events. At HS events, the proposed approach achieves a median f1-score of 99.12% and 92.41% on VU Gen 2 and Gen 3 prostheses respectively. At TO events, the proposed approach reaches a median f1-score of 96.83% with VU Gen 2 and 94.36% with VU Gen 3. The proposed framework is a promising solution for locomotion classification on data of previously unseen sessions or subjects, allowing classification on multiple prosthesis models.
Author Anselmino, Eugenio
Simon, Ann M.
Hargrove, Levi J.
Author_xml – sequence: 1
  givenname: Eugenio
  orcidid: 0000-0002-6429-3848
  surname: Anselmino
  fullname: Anselmino, Eugenio
  email: eugenio.anselmino@santannapisa.it
  organization: Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy
– sequence: 2
  givenname: Ann M.
  orcidid: 0000-0002-6431-0329
  surname: Simon
  fullname: Simon, Ann M.
  email: asimon@sralab.org
  organization: Shirley Ryan AbilityLab Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, USA
– sequence: 3
  givenname: Levi J.
  orcidid: 0000-0002-1705-0050
  surname: Hargrove
  fullname: Hargrove, Levi J.
  organization: Shirley Ryan AbilityLab Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University Chicago, USA
BookMark eNplkd1OwzAMhSM0JMbYAyBxkQegI2mbZL0cGxtInUBsE5dV1jos0CZTUjSN5-CB6X4kEFzZ8vFn2cfnqGWsAYQuKelRSpKb-fT5theSkPUiTnjE4xPUDpngQdQUW7_yM9T1_o0QElJGRMTb6GuARwBrnIJ0RptXPHaygo117_hF1ys8spXUBk_AgJOl_pS1tgZLU-AxbILZytY_qLIOpza3ld03TW0BeFhK77XS-QEc5M56jxcenL_GM2g0a5psN_CpkeoVePAX6FTJ0kP3GDtoMb6bD--D9HHyMBykQU5FPw5ARTJPkpznPIwh6aucJowQyQoquApB8DiOIyIkAxEnCRGF6i8ZhHHSF0wsVdRB4WHuh1nL7UaWZbZ2upJum1GS7azN6sots5212dHaBqIHaH-KA_WP2b3jL3N1YDQA_PRTyihrVvwG3ISIOg
CODEN ITMRBT
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1109/TMRB.2025.3606364
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-3202
EndPage 1
ExternalDocumentID 10.1109/tmrb.2025.3606364
10_1109_TMRB_2025_3606364
11151544
Genre orig-research
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01HD108554
  funderid: 10.13039/100000002
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
IFIPE
JAVBF
M~E
OCL
RIA
RIE
AAYXX
CITATION
EJD
ADTOC
UNPAY
ID FETCH-LOGICAL-c1784-ef3ac99c6c624e98fc19500a5d176f2e76444307a5e749907df8b5e2498757bf3
IEDL.DBID UNPAY
ISSN 2576-3202
IngestDate Sun Sep 07 11:03:54 EDT 2025
Sat Oct 25 05:12:39 EDT 2025
Sat Oct 25 03:12:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1784-ef3ac99c6c624e98fc19500a5d176f2e76444307a5e749907df8b5e2498757bf3
ORCID 0000-0002-6429-3848
0000-0002-1705-0050
0000-0002-6431-0329
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tmrb.2025.3606364
PageCount 1
ParticipantIDs ieee_primary_11151544
crossref_primary_10_1109_TMRB_2025_3606364
unpaywall_primary_10_1109_tmrb_2025_3606364
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on medical robotics and bionics
PublicationTitleAbbrev TMRB
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002150736
Score 2.281127
Snippet Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of...
SourceID unpaywall
crossref
ieee
SourceType Open Access Repository
Index Database
Publisher
StartPage 1
SubjectTerms Batch normalization
Convolution
Decoding
deep learning
Feature extraction
intention decoding
Legged locomotion
locomotion mode classification
lower limb prostheses
Neural networks
Prosthetics
Stairs
Testing
Training
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF8qBQkvF8pIPnNpmcRLndVweK4QAVYVVuUW2M2YRkKzYrFbt7-gPxpN4eapSbz7YIyvfxDNjz3wDsBuY1Bhr6jxZCOUJazM8FaXSIyrxwheFDhTVO5-dx8cDcXIVXbli9aYWBhGb5DPs0rB5yy8qPaGrsj37X0bEHjMP80kat8VaTxcqAbk2YexeLn2e7V2e_dy3EWAQdUPrpoexeGV7mmYqS7A4KUfy91Te3b2wK_2PcD7bUZtOctud1Kqr_7wha_zvLa_AsvMwWa9ViVWYw_ITLL3gHfwMf3vsEHHEHLnqNevPUrTYr5t6yA6re3lTMkdJ7So1mSwL1sepdzGs6uel1ullp5Wu2nZAjHqrsabTJuUgtQt7zedgAyrs_M4uWiYQOyKBP6jqZIhjHK_BoH90eXDsufYMnvaTVHhoQqmzTMc6DgRmqdHUUpbLqPCT2ASYWFdL2CNERpjYuIonhUlVhDbeIxJ9ZcIvsFBWJa4DCwtjJynJ7QEjAslTEXCrWkb6Okm44R34OgMuH7UsHHkTvfAsJ5RzQjl3KHdgjXB4nugg6MC3J6zfSanvH9QrKRv_kLIJH2haewuzBQv1wwS3rV9Sq51GHx8Btk_g_A
  priority: 102
  providerName: IEEE
Title A Deep Learning Framework With Domain Generalization and Few-Shot Learning for Locomotion Mode Classification Across Users, Sessions, and Prostheses
URI https://ieeexplore.ieee.org/document/11151544
https://doi.org/10.1109/tmrb.2025.3606364
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2576-3202
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002150736
  issn: 2576-3202
  databaseCode: RIE
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2576-3202
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002150736
  issn: 2576-3202
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgOVQcoLSgAu3KB06AFydxvo7LxwohFqHCqvQU2Y7NokKyYrNCcOiv4AczkxhY2h6KlIMV2VbksTxv4pn3CNnwbWItuDomc6GYAJ_BVJhIhlTiuSdy7Susd-6fRIcDcXQRXjiyaKyFmb6_93i6U93cKoji_LATANQOIjFL5qIQYHeLzA1OTrs_UTwOMDNDHXB3a_nPcW_8Ti2kMk8-TIqRvL-T19dTPqW32GRjjWsqQkwl-dWZVKqjH_4gavyvz_1IFhyypN1mKyyRGVN8IvNTfIOfyWOX7hszoo5U9ZL2nlOz6I-rakj3yxt5VVBHRe0qNKksctozd-xsWFavQwHs0uNSl40MEEVNNVorbGLuUTOwWy8FHWBB5zY9axhAoIUTnmK1ydCMzXiZDHoH53uHzMkyMO3FiWDGBlKnqY505AuTJlajlCyXYe7FkfVNDBBLwNEhQxNDPMXj3CYqNBDnIXm-ssEKaRVlYb4QGuQWOinJ4WARvuSJ8DlsKSs9Hcfc8lWy-Wy0bNSwb2R11MLT7Lz_fTfDpc7cUq-SZTTra0cPwZqA91svdv5rFjTYm1nW3tV7HeP8-ocMPF9Jq7qdmG-AUirVJrP93wftuqCw7fbqEzh04xU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lB6aAu0YmlpfeAEZOskzuu4UFYL7K4Q3RW9RbYzZivaZNVmVcHv4AfjSbx9UCFxiXywR1bG9szY830D8CowqTHW1HmyEMoT1mZ4KkqlR1TihS8KHSjCO4_G8WAqPp1Gpw6s3mBhELFJPsMuNZu3_KLSC7oqO7L7MiL2mEewZr8iauFaN1cqATk3YezeLn2eHU1GX9_ZGDCIuqF11MNY3LM-TTmVDVhflHP581qen9-xLP0tGC_n1CaU_OguatXVv_6ia_zvSW_DpvMxWa9dFE9gBcunsHGHefAZ_O6xY8Q5c_Sq31l_maTFvp3VM3ZcXcizkjlSaofVZLIsWB-vvZNZVd8OtW4vG1a6agsCMaquxppam5SF1A7sNb-DTQna-ZadtFwgtkUCvxDuZIZXeLUD0_6HyfuB5wo0eNpPUuGhCaXOMh3rOBCYpUZTUVkuo8JPYhNgYp0tYQ8RGWFiIyueFCZVEdqIj2j0lQl3YbWsSnwOLCyM7aQkt0eMCCRPRcDt4jLS10nCDe_A66Xi8nnLw5E38QvPctJyTlrOnZY7sEN6uO3oVNCBNze6fiClvrhU96S8-IeUQ1gfTEbDfPhx_HkPHtOQ9k5mH1brywW-tF5KrQ6atfkHotjkSQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgOQAHXqXiLR96ovXiJM7ruDxWCBWECqvSU2Q7dhcByYrNCsHv4AczkxhYSg9wiyPbijyW55t45vsI-ebbxFpwdUzmQjEBPoOpMJEMqcRzT-TaV1jvfHwSHfbE0UV44ciisRZm_P7e4-lOdXOrIIrzw3YAUDuIxCSZikKA3S0y1Ts57fxB8TjAzAx1wN2t5X_HvfE7tZDKLJkeFQN5fyevr8d8Sne-ycYa1lSEmEpy1R5Vqq0f_iFq_NDnLpA5hyxpp9kKi2TCFEtkdoxv8At57NB9YwbUkar-pd3n1Cz6-7Lq0_3yRl4W1FFRuwpNKoucds0dO-uX1etQALv0Z6nLRgaIoqYarRU2MfeoGdipl4L2sKDzBz1rGEDgCSc8xWqTvhma4TLpdQ_O9w6Zk2Vg2osTwYwNpE5THenIFyZNrEYpWS7D3Isj65sYIJaAo0OGJoZ4ise5TVRoIM5D8nxlg6-kVZSFWSE0yC10UpLDwSJ8yRPhc9hSVno6jrnlq2T72WjZoGHfyOqohafZ-fGv3QyXOnNLvUqW0ayvHT0EawLef3-x87tZ0GBvZln7VO91MoPN5p_MBmlVtyOzCSilUltufz4BpCjg6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Framework+With+Domain+Generalization+and+Few-Shot+Learning+for+Locomotion+Mode+Classification+Across+Users%2C+Sessions%2C+and+Prostheses&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Anselmino%2C+Eugenio&rft.au=Simon%2C+Ann+M.&rft.au=Hargrove%2C+Levi+J.&rft.date=2025&rft.pub=IEEE&rft.eissn=2576-3202&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMRB.2025.3606364&rft.externalDocID=11151544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon