A Deep Learning Framework With Domain Generalization and Few-Shot Learning for Locomotion Mode Classification Across Users, Sessions, and Prostheses
Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learnin...
        Saved in:
      
    
          | Published in | IEEE transactions on medical robotics and bionics p. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2576-3202 2576-3202  | 
| DOI | 10.1109/TMRB.2025.3606364 | 
Cover
| Abstract | Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learning fine-tuning to classify locomotion modes in unseen sessions or subjects data across different prosthesis models. We validated the approach with a leave-one-session-out analysis repeated five times and made comparisons to a prosthesis-specific classifier. The dataset was created by merging data from two different prosthesis models (Vanderbilt University, VU, Gen 2 and Gen 3 powered knee-ankle prostheses), for a total of 31 sessions acquired across multiple days from 11 subjects. Subjects performed five locomotion tasks: level walking, incline and decline walking, and stair ascent and descent. Since transitions between different locomotion modes happen at different gait events, the analyses have been repeated for both heel-strike (HS) and toe-off (TO) events. At HS events, the proposed approach achieves a median f1-score of 99.12% and 92.41% on VU Gen 2 and Gen 3 prostheses respectively. At TO events, the proposed approach reaches a median f1-score of 96.83% with VU Gen 2 and 94.36% with VU Gen 3. The proposed framework is a promising solution for locomotion classification on data of previously unseen sessions or subjects, allowing classification on multiple prosthesis models. | 
    
|---|---|
| AbstractList | Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of locomotion mode classification algorithms. Here, we present a deep-learning framework based on domain-adversarial training and few-shot learning fine-tuning to classify locomotion modes in unseen sessions or subjects data across different prosthesis models. We validated the approach with a leave-one-session-out analysis repeated five times and made comparisons to a prosthesis-specific classifier. The dataset was created by merging data from two different prosthesis models (Vanderbilt University, VU, Gen 2 and Gen 3 powered knee-ankle prostheses), for a total of 31 sessions acquired across multiple days from 11 subjects. Subjects performed five locomotion tasks: level walking, incline and decline walking, and stair ascent and descent. Since transitions between different locomotion modes happen at different gait events, the analyses have been repeated for both heel-strike (HS) and toe-off (TO) events. At HS events, the proposed approach achieves a median f1-score of 99.12% and 92.41% on VU Gen 2 and Gen 3 prostheses respectively. At TO events, the proposed approach reaches a median f1-score of 96.83% with VU Gen 2 and 94.36% with VU Gen 3. The proposed framework is a promising solution for locomotion classification on data of previously unseen sessions or subjects, allowing classification on multiple prosthesis models. | 
    
| Author | Anselmino, Eugenio Simon, Ann M. Hargrove, Levi J.  | 
    
| Author_xml | – sequence: 1 givenname: Eugenio orcidid: 0000-0002-6429-3848 surname: Anselmino fullname: Anselmino, Eugenio email: eugenio.anselmino@santannapisa.it organization: Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, The BioRobotics Institute, Pisa, Italy – sequence: 2 givenname: Ann M. orcidid: 0000-0002-6431-0329 surname: Simon fullname: Simon, Ann M. email: asimon@sralab.org organization: Shirley Ryan AbilityLab Department of Physical Medicine and Rehabilitation, Northwestern University Chicago, USA – sequence: 3 givenname: Levi J. orcidid: 0000-0002-1705-0050 surname: Hargrove fullname: Hargrove, Levi J. organization: Shirley Ryan AbilityLab Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University Chicago, USA  | 
    
| BookMark | eNplkd1OwzAMhSM0JMbYAyBxkQegI2mbZL0cGxtInUBsE5dV1jos0CZTUjSN5-CB6X4kEFzZ8vFn2cfnqGWsAYQuKelRSpKb-fT5theSkPUiTnjE4xPUDpngQdQUW7_yM9T1_o0QElJGRMTb6GuARwBrnIJ0RptXPHaygo117_hF1ys8spXUBk_AgJOl_pS1tgZLU-AxbILZytY_qLIOpza3ld03TW0BeFhK77XS-QEc5M56jxcenL_GM2g0a5psN_CpkeoVePAX6FTJ0kP3GDtoMb6bD--D9HHyMBykQU5FPw5ARTJPkpznPIwh6aucJowQyQoquApB8DiOIyIkAxEnCRGF6i8ZhHHSF0wsVdRB4WHuh1nL7UaWZbZ2upJum1GS7azN6sots5212dHaBqIHaH-KA_WP2b3jL3N1YDQA_PRTyihrVvwG3ISIOg | 
    
| CODEN | ITMRBT | 
    
| ContentType | Journal Article | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1109/TMRB.2025.3606364 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2576-3202 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | 10.1109/tmrb.2025.3606364 10_1109_TMRB_2025_3606364 11151544  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Institutes of Health grantid: R01HD108554 funderid: 10.13039/100000002  | 
    
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL IFIPE JAVBF M~E OCL RIA RIE AAYXX CITATION EJD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1784-ef3ac99c6c624e98fc19500a5d176f2e76444307a5e749907df8b5e2498757bf3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2576-3202 | 
    
| IngestDate | Sun Sep 07 11:03:54 EDT 2025 Sat Oct 25 05:12:39 EDT 2025 Sat Oct 25 03:12:14 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1784-ef3ac99c6c624e98fc19500a5d176f2e76444307a5e749907df8b5e2498757bf3 | 
    
| ORCID | 0000-0002-6429-3848 0000-0002-1705-0050 0000-0002-6431-0329  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/tmrb.2025.3606364 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | ieee_primary_11151544 crossref_primary_10_1109_TMRB_2025_3606364 unpaywall_primary_10_1109_tmrb_2025_3606364  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-00-00 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | IEEE transactions on medical robotics and bionics | 
    
| PublicationTitleAbbrev | TMRB | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| SSID | ssj0002150736 | 
    
| Score | 2.281127 | 
    
| Snippet | Transfemoral amputees don and doff their prostheses at least daily, making inter-session classification performance important for clinical implementation of... | 
    
| SourceID | unpaywall crossref ieee  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Batch normalization Convolution Decoding deep learning Feature extraction intention decoding Legged locomotion locomotion mode classification lower limb prostheses Neural networks Prosthetics Stairs Testing Training  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BF8qBQkvF8pIPnNpmcRLndVweK4QAVYVVuUW2M2YRkKzYrFbt7-gPxpN4eapSbz7YIyvfxDNjz3wDsBuY1Bhr6jxZCOUJazM8FaXSIyrxwheFDhTVO5-dx8cDcXIVXbli9aYWBhGb5DPs0rB5yy8qPaGrsj37X0bEHjMP80kat8VaTxcqAbk2YexeLn2e7V2e_dy3EWAQdUPrpoexeGV7mmYqS7A4KUfy91Te3b2wK_2PcD7bUZtOctud1Kqr_7wha_zvLa_AsvMwWa9ViVWYw_ITLL3gHfwMf3vsEHHEHLnqNevPUrTYr5t6yA6re3lTMkdJ7So1mSwL1sepdzGs6uel1ullp5Wu2nZAjHqrsabTJuUgtQt7zedgAyrs_M4uWiYQOyKBP6jqZIhjHK_BoH90eXDsufYMnvaTVHhoQqmzTMc6DgRmqdHUUpbLqPCT2ASYWFdL2CNERpjYuIonhUlVhDbeIxJ9ZcIvsFBWJa4DCwtjJynJ7QEjAslTEXCrWkb6Okm44R34OgMuH7UsHHkTvfAsJ5RzQjl3KHdgjXB4nugg6MC3J6zfSanvH9QrKRv_kLIJH2haewuzBQv1wwS3rV9Sq51GHx8Btk_g_A priority: 102 providerName: IEEE  | 
    
| Title | A Deep Learning Framework With Domain Generalization and Few-Shot Learning for Locomotion Mode Classification Across Users, Sessions, and Prostheses | 
    
| URI | https://ieeexplore.ieee.org/document/11151544 https://doi.org/10.1109/tmrb.2025.3606364  | 
    
| UnpaywallVersion | publishedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2576-3202 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002150736 issn: 2576-3202 databaseCode: RIE dateStart: 20190101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2576-3202 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002150736 issn: 2576-3202 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgOVQcoLSgAu3KB06AFydxvo7LxwohFqHCqvQU2Y7NokKyYrNCcOiv4AczkxhY2h6KlIMV2VbksTxv4pn3CNnwbWItuDomc6GYAJ_BVJhIhlTiuSdy7Susd-6fRIcDcXQRXjiyaKyFmb6_93i6U93cKoji_LATANQOIjFL5qIQYHeLzA1OTrs_UTwOMDNDHXB3a_nPcW_8Ti2kMk8-TIqRvL-T19dTPqW32GRjjWsqQkwl-dWZVKqjH_4gavyvz_1IFhyypN1mKyyRGVN8IvNTfIOfyWOX7hszoo5U9ZL2nlOz6I-rakj3yxt5VVBHRe0qNKksctozd-xsWFavQwHs0uNSl40MEEVNNVorbGLuUTOwWy8FHWBB5zY9axhAoIUTnmK1ydCMzXiZDHoH53uHzMkyMO3FiWDGBlKnqY505AuTJlajlCyXYe7FkfVNDBBLwNEhQxNDPMXj3CYqNBDnIXm-ssEKaRVlYb4QGuQWOinJ4WARvuSJ8DlsKSs9Hcfc8lWy-Wy0bNSwb2R11MLT7Lz_fTfDpc7cUq-SZTTra0cPwZqA91svdv5rFjTYm1nW3tV7HeP8-ocMPF9Jq7qdmG-AUirVJrP93wftuqCw7fbqEzh04xU | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9lB6aAu0YmlpfeAEZOskzuu4UFYL7K4Q3RW9RbYzZivaZNVmVcHv4AfjSbx9UCFxiXywR1bG9szY830D8CowqTHW1HmyEMoT1mZ4KkqlR1TihS8KHSjCO4_G8WAqPp1Gpw6s3mBhELFJPsMuNZu3_KLSC7oqO7L7MiL2mEewZr8iauFaN1cqATk3YezeLn2eHU1GX9_ZGDCIuqF11MNY3LM-TTmVDVhflHP581qen9-xLP0tGC_n1CaU_OguatXVv_6ia_zvSW_DpvMxWa9dFE9gBcunsHGHefAZ_O6xY8Q5c_Sq31l_maTFvp3VM3ZcXcizkjlSaofVZLIsWB-vvZNZVd8OtW4vG1a6agsCMaquxppam5SF1A7sNb-DTQna-ZadtFwgtkUCvxDuZIZXeLUD0_6HyfuB5wo0eNpPUuGhCaXOMh3rOBCYpUZTUVkuo8JPYhNgYp0tYQ8RGWFiIyueFCZVEdqIj2j0lQl3YbWsSnwOLCyM7aQkt0eMCCRPRcDt4jLS10nCDe_A66Xi8nnLw5E38QvPctJyTlrOnZY7sEN6uO3oVNCBNze6fiClvrhU96S8-IeUQ1gfTEbDfPhx_HkPHtOQ9k5mH1brywW-tF5KrQ6atfkHotjkSQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgOQAHXqXiLR96ovXiJM7ruDxWCBWECqvSU2Q7dhcByYrNCsHv4AczkxhYSg9wiyPbijyW55t45vsI-ebbxFpwdUzmQjEBPoOpMJEMqcRzT-TaV1jvfHwSHfbE0UV44ciisRZm_P7e4-lOdXOrIIrzw3YAUDuIxCSZikKA3S0y1Ts57fxB8TjAzAx1wN2t5X_HvfE7tZDKLJkeFQN5fyevr8d8Sne-ycYa1lSEmEpy1R5Vqq0f_iFq_NDnLpA5hyxpp9kKi2TCFEtkdoxv8At57NB9YwbUkar-pd3n1Cz6-7Lq0_3yRl4W1FFRuwpNKoucds0dO-uX1etQALv0Z6nLRgaIoqYarRU2MfeoGdipl4L2sKDzBz1rGEDgCSc8xWqTvhma4TLpdQ_O9w6Zk2Vg2osTwYwNpE5THenIFyZNrEYpWS7D3Isj65sYIJaAo0OGJoZ4ise5TVRoIM5D8nxlg6-kVZSFWSE0yC10UpLDwSJ8yRPhc9hSVno6jrnlq2T72WjZoGHfyOqohafZ-fGv3QyXOnNLvUqW0ayvHT0EawLef3-x87tZ0GBvZln7VO91MoPN5p_MBmlVtyOzCSilUltufz4BpCjg6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Framework+With+Domain+Generalization+and+Few-Shot+Learning+for+Locomotion+Mode+Classification+Across+Users%2C+Sessions%2C+and+Prostheses&rft.jtitle=IEEE+transactions+on+medical+robotics+and+bionics&rft.au=Anselmino%2C+Eugenio&rft.au=Simon%2C+Ann+M.&rft.au=Hargrove%2C+Levi+J.&rft.date=2025&rft.pub=IEEE&rft.eissn=2576-3202&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTMRB.2025.3606364&rft.externalDocID=11151544 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-3202&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-3202&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-3202&client=summon |