Autofocus Algorithm for Real-Time Correction of Residual RCM Based on ANCPS

With synthetic aperture radar (SAR) systems being developed with miniaturization, lightweight, low-cost, high-resolution, and real-time capabilities, the scope of their application has expanded to some lightweight platforms that cannot carry a high-precision position and orientation system (POS) and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 16
Main Authors Xie, Yi, Chen, Longyong, Zhang, Fubo, Xu, Yihao, Yang, Ling
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2025.3537865

Cover

Abstract With synthetic aperture radar (SAR) systems being developed with miniaturization, lightweight, low-cost, high-resolution, and real-time capabilities, the scope of their application has expanded to some lightweight platforms that cannot carry a high-precision position and orientation system (POS) and whose trajectories are susceptible to interference. This often results in residual range cell migration (RCM) exceeding several or even dozens of range resolution cells, which notably degrades the performance of traditional autofocus algorithms and seriously affects the quality of real-time imaging. Considering this, we propose a real-time residual RCM correction scheme based on the autocorrelated normalized cross-power spectrum (ANCPS). First, the range-compressed image is segmented into blocks based on the azimuth and range. The ANCPS is then used to estimate the optimal residual RCM for each subblock. Second, the optimal segment is selected from the residual RCM curve fragments estimated by various subblocks. Finally, the residual RCM fragments are spliced and filtered to correct the complete data. When the algorithm is deployed on a GPU platform, it only takes 1.39 s to process an <inline-formula> <tex-math notation="LaTeX">8\times 40 </tex-math></inline-formula> K high-resolution original SAR image, and the calculation time is reduced by 94.6% compared with only using a CPU for calculation. The experimental results demonstrate that the proposed residual RCM correction scheme has good convergence, can achieve subpixel residual RCM compensation without iteration and interpolation, has a simple calculation process, is efficient, and has strong parallelism. It is thus suitable for deployment in GPUs and is conducive to realizing real-time SAR autofocus at a low cost and with a high resolution.
AbstractList With synthetic aperture radar (SAR) systems being developed with miniaturization, lightweight, low-cost, high-resolution, and real-time capabilities, the scope of their application has expanded to some lightweight platforms that cannot carry a high-precision position and orientation system (POS) and whose trajectories are susceptible to interference. This often results in residual range cell migration (RCM) exceeding several or even dozens of range resolution cells, which notably degrades the performance of traditional autofocus algorithms and seriously affects the quality of real-time imaging. Considering this, we propose a real-time residual RCM correction scheme based on the autocorrelated normalized cross-power spectrum (ANCPS). First, the range-compressed image is segmented into blocks based on the azimuth and range. The ANCPS is then used to estimate the optimal residual RCM for each subblock. Second, the optimal segment is selected from the residual RCM curve fragments estimated by various subblocks. Finally, the residual RCM fragments are spliced and filtered to correct the complete data. When the algorithm is deployed on a GPU platform, it only takes 1.39 s to process an <inline-formula> <tex-math notation="LaTeX">8\times 40 </tex-math></inline-formula> K high-resolution original SAR image, and the calculation time is reduced by 94.6% compared with only using a CPU for calculation. The experimental results demonstrate that the proposed residual RCM correction scheme has good convergence, can achieve subpixel residual RCM compensation without iteration and interpolation, has a simple calculation process, is efficient, and has strong parallelism. It is thus suitable for deployment in GPUs and is conducive to realizing real-time SAR autofocus at a low cost and with a high resolution.
With synthetic aperture radar (SAR) systems being developed with miniaturization, lightweight, low-cost, high-resolution, and real-time capabilities, the scope of their application has expanded to some lightweight platforms that cannot carry a high-precision position and orientation system (POS) and whose trajectories are susceptible to interference. This often results in residual range cell migration (RCM) exceeding several or even dozens of range resolution cells, which notably degrades the performance of traditional autofocus algorithms and seriously affects the quality of real-time imaging. Considering this, we propose a real-time residual RCM correction scheme based on the autocorrelated normalized cross-power spectrum (ANCPS). First, the range-compressed image is segmented into blocks based on the azimuth and range. The ANCPS is then used to estimate the optimal residual RCM for each subblock. Second, the optimal segment is selected from the residual RCM curve fragments estimated by various subblocks. Finally, the residual RCM fragments are spliced and filtered to correct the complete data. When the algorithm is deployed on a GPU platform, it only takes 1.39 s to process an [Formula Omitted] K high-resolution original SAR image, and the calculation time is reduced by 94.6% compared with only using a CPU for calculation. The experimental results demonstrate that the proposed residual RCM correction scheme has good convergence, can achieve subpixel residual RCM compensation without iteration and interpolation, has a simple calculation process, is efficient, and has strong parallelism. It is thus suitable for deployment in GPUs and is conducive to realizing real-time SAR autofocus at a low cost and with a high resolution.
Author Chen, Longyong
Xu, Yihao
Zhang, Fubo
Xie, Yi
Yang, Ling
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0009-0002-2019-1484
  surname: Xie
  fullname: Xie, Yi
  email: xieyi20@mails.ucas.ac.cn
  organization: National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Longyong
  orcidid: 0009-0007-4960-2116
  surname: Chen
  fullname: Chen, Longyong
  email: chenly@aircas.ac.cn
  organization: National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Fubo
  surname: Zhang
  fullname: Zhang, Fubo
  email: zhangfb@aircas.ac.cn
  organization: National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Yihao
  orcidid: 0000-0002-3333-0394
  surname: Xu
  fullname: Xu, Yihao
  email: xuyihao211@mails.ucas.ac.cn
  organization: National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Ling
  orcidid: 0000-0001-9738-4634
  surname: Yang
  fullname: Yang, Ling
  email: yangling181@mails.ucas.ac.cn
  organization: National Key Laboratory of Microwave Imaging, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
BookMark eNpNkMtOwzAQRS1UJNrCByCxsMQ6xXZix16GCAqiPJSWteU4E0iVxsVOFvw9qdoFq5HunDsjnRmadK4DhK4pWVBK1N1mWawXjDC-iHmcSsHP0JRyLiMikmSCpoQqETGp2AWahbAlhCacplP0kg29q50dAs7aL-eb_nuHa-dxAaaNNs0OcO68B9s3rsOuHvPQVINpcZG_4nsToMLjInvLP9aX6Lw2bYCr05yjz8eHTf4Urd6Xz3m2iixNRR8xSGRS2qqysiyZAAuVKg0IWhmbcjDWCFIRbpU0dWpVwkmphOBG1ZaMKI_n6PZ4d-_dzwCh11s3-G58qWMqhGSJJHSk6JGy3oXgodZ73-yM_9WU6IMzfXCmD870ydnYuTl2GgD4x0s5Aiz-A2DTacY
CODEN IGRSD2
Cites_doi 10.1049/iet-rsn.2011.0078
10.1109/JSTARS.2022.3175263
10.3390/rs14112670
10.23919/APMC.2018.8617613
10.1109/7.395222
10.1109/TGRS.2022.3217063
10.1109/ACCESS.2020.3020182
10.1109/LGRS.2004.842465
10.1109/TAES.1980.308873
10.1109/TAES.2007.4383594
10.1109/TCI.2016.2612945
10.3390/fractalfract7040329
10.1109/LGRS.2022.3177734
10.1049/iet-spr.2015.0162
10.1109/BIGSARDATA53212.2021.9574431
10.1109/APSAR46974.2019.9048401
10.1109/TGRS.2019.2890978
10.3390/rs12203283
10.12000/JR20008
10.1109/TGRS.2018.2817507
10.2172/919639
10.1109/LGRS.2012.2196676
10.1109/TGRS.2020.3030935
10.1080/2150704X.2022.2092911
10.1109/MGRS.2021.3113982
10.3390/rs13142729
10.1109/TGRS.2016.2608423
10.1109/JSTARS.2016.2577588
10.1109/TGRS.2021.3137422
10.1109/TGRS.2018.2818262
10.1109/TAES.2013.6621846
10.1109/TGRS.2011.2175737
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3537865
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 16
ExternalDocumentID 10_1109_TGRS_2025_3537865
10885372
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3901601
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c176t-2e484bcddc8bb26eced9bae61dac75eaca60d05c98af7c9450b9665a9fc0ed953
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Jul 22 16:40:36 EDT 2025
Wed Oct 01 06:50:36 EDT 2025
Wed Aug 27 01:50:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-2e484bcddc8bb26eced9bae61dac75eaca60d05c98af7c9450b9665a9fc0ed953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-4960-2116
0000-0001-9738-4634
0009-0002-2019-1484
0000-0002-3333-0394
PQID 3166824801
PQPubID 85465
PageCount 16
ParticipantIDs crossref_primary_10_1109_TGRS_2025_3537865
proquest_journals_3166824801
ieee_primary_10885372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Yanfei (ref22) 2016; 5
ref2
ref17
ref16
ref19
ref18
Blacknell (ref15)
ref24
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
Tang (ref1) 2019; 2
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1049/iet-rsn.2011.0078
– ident: ref20
  doi: 10.1109/JSTARS.2022.3175263
– ident: ref10
  doi: 10.3390/rs14112670
– ident: ref16
  doi: 10.23919/APMC.2018.8617613
– ident: ref30
  doi: 10.1109/7.395222
– ident: ref18
  doi: 10.1109/TGRS.2022.3217063
– ident: ref3
  doi: 10.1109/ACCESS.2020.3020182
– ident: ref12
  doi: 10.1109/LGRS.2004.842465
– ident: ref29
  doi: 10.1109/TAES.1980.308873
– ident: ref34
  doi: 10.1109/TAES.2007.4383594
– ident: ref27
  doi: 10.1109/TCI.2016.2612945
– ident: ref35
  doi: 10.3390/fractalfract7040329
– ident: ref7
  doi: 10.1109/LGRS.2022.3177734
– ident: ref14
  doi: 10.1049/iet-spr.2015.0162
– ident: ref5
  doi: 10.1109/BIGSARDATA53212.2021.9574431
– volume: 2
  start-page: 27
  issue: 2
  year: 2019
  ident: ref1
  article-title: Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging
  publication-title: J. Geodesy Geoinf. Sci.
– ident: ref23
  doi: 10.1109/APSAR46974.2019.9048401
– ident: ref32
  doi: 10.1109/TGRS.2019.2890978
– ident: ref2
  doi: 10.3390/rs12203283
– start-page: 363
  volume-title: Proc. 92 Int. Conf. Radar
  ident: ref15
  article-title: A comparison of SAR multilook registration and contrast optimisation autofocus algorithms applied to real SAR data
– ident: ref6
  doi: 10.12000/JR20008
– ident: ref26
  doi: 10.1109/TGRS.2018.2817507
– ident: ref21
  doi: 10.2172/919639
– ident: ref25
  doi: 10.1109/LGRS.2012.2196676
– ident: ref33
  doi: 10.1109/TGRS.2020.3030935
– ident: ref4
  doi: 10.1080/2150704X.2022.2092911
– volume: 5
  start-page: 333
  issue: 4
  year: 2016
  ident: ref22
  article-title: Technology and applications of UAV synthetic aperture radar system
  publication-title: J. Radars
– ident: ref11
  doi: 10.1109/MGRS.2021.3113982
– ident: ref8
  doi: 10.3390/rs13142729
– ident: ref31
  doi: 10.1109/TGRS.2016.2608423
– ident: ref13
  doi: 10.1109/JSTARS.2016.2577588
– ident: ref19
  doi: 10.1109/TGRS.2021.3137422
– ident: ref9
  doi: 10.1109/TGRS.2018.2818262
– ident: ref24
  doi: 10.1109/TAES.2013.6621846
– ident: ref28
  doi: 10.1109/TGRS.2011.2175737
SSID ssj0014517
Score 2.466841
Snippet With synthetic aperture radar (SAR) systems being developed with miniaturization, lightweight, low-cost, high-resolution, and real-time capabilities, the scope...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Apertures
Autocorrelated normalized cross-power spectrum (ANCPS)
Azimuth
Cell migration
correction of range cell migration (RCM)
Field programmable gate arrays
Fragments
Graphics processing units
High resolution
Image resolution
Image segmentation
Imaging
Lightweight
Low cost
parallel computing
Radar imaging
Real time
Real-time systems
Robustness
SAR (radar)
Synthetic aperture radar
synthetic aperture radar (SAR) real-time autofocus
Trajectory
Weight reduction
Title Autofocus Algorithm for Real-Time Correction of Residual RCM Based on ANCPS
URI https://ieeexplore.ieee.org/document/10885372
https://www.proquest.com/docview/3166824801
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EPTgx5w4nZKDJ6E1_UiaHutQh7Ih-4DdSpKmKuoqW3fxr_cl7WQogpdS2iSEvLyvvPzeQ-jCZyrnnAnHC6hyQiq4I6WOzUOSPAClrQ3AuT9gvUl4P6XTGqxusTBaa3v5TLvm1cbys0ItzVEZcDgH7RKBxN2MOKvAWt8hg5B6NTaaOeBF-HUI0yPx1fhuOAJX0KduAN25USRrSshWVfkliq1-ud1Dg9XMqmslr-6ylK76_JG08d9T30e7taWJk2prHKANPWuinbX8g020Ze9_qsUhekiWZZHDMAucvD0V85fy-R2DPYuHYEg6BieCu6aOh0VB4CKH7wsL48LDbh9fgyrMMPxIBt3HUQtNbm_G3Z5T11lwlBex0vF1yEOpskxxKX2mlc5iKTTzMqEiCpJZMJIRqmIu8kjFISUSnCQq4lwRaEqDI9SYFTN9jHDk5cbjFsIk-QmAt4niyqSMCwXYbYK00eVq4dOPKp1Gat0QEqeGSqmhUlpTqY1aZiHXGlZr2EadFa3SmuMWaeAxxn2TDOfkj26naNuMXp2fdFCjnC_1GVgUpTy3O-kLKcfGcQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH5CmybgsI3SibIOfOA0KcVJbMc5dtVKYWuFuk7qLbIdZ0NAg5r0sr9-z06Kqk1IXKIocRzLz34_7Pd9BvgUCVNIKVQQxtwEjCsZaG1Td9G0iNFoWwdwns7E5JZ9W_JlC1b3WBhrrU8-swN36_fy89Js3FIZznCJ1iVBjbvPGWO8gWv93TRgPGzR0SLAOCJqNzFDmn5efJnfYDAY8UGMFUhnSnbMkD9X5Zky9hZmfASzbduaxJKfg02tB-bhCW3jfzf-GA5bX5MMm8HxBl7YVQde7zAQduDAZ4Ca6i1cDTd1WWA1FRn-uivXP-r73wQ9WjJHVzJwSBEycid5eBwEKQt8XnkgF5mPpuQCjWFO8MVwNvp-04Xb8eViNAnakxYCEyaiDiLLJNMmz43UOhLW2DzVyoowVybhqJuVoDnlJpWqSEzKONUYJnGVFoZiUR6fwN6qXNl3QJKwcDG3Uo7mJ8bZTY00jjSOKfTcFO3B-bbjsz8NoUbmAxGaZk5KmZNS1kqpB13XkTsFmz7sQX8rq6ydc1UWh0LIyNHhvP_HZx_h5WQxvc6uv86uTuGV-1OzmtKHvXq9sWfoX9T6gx9Vj72Uyb4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autofocus+Algorithm+for+Real-Time+Correction+of+Residual+RCM+Based+on+ANCPS&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Xie%2C+Yi&rft.au=Chen%2C+Longyong&rft.au=Zhang%2C+Fubo&rft.au=Xu%2C+Yihao&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1109%2FTGRS.2025.3537865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3537865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon