Optimizing GPS L2P Radio Occultation Processing for COSMIC-2 Atmospheric Bending Angle Retrieval

For the second Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) Global Positioning System radio occultation (GPS RO) neutral atmosphere retrieval, ionosphere error correction on bending angle is performed by combining either L2C or L2P signals with L1 at the Univers...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 63; pp. 1 - 10
Main Authors Guo, Sheng, Zhang, Shaocheng, He, Youlin, Wang, Sicheng, Sheng, Zheng, Meng, Xiangguang, Yu, Tao
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2025.3539725

Cover

Abstract For the second Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) Global Positioning System radio occultation (GPS RO) neutral atmosphere retrieval, ionosphere error correction on bending angle is performed by combining either L2C or L2P signals with L1 at the University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA. While the L2C is a civil signal, the encrypted L2P signal from high-noise occultations will lead to low-accuracy bending angle profiles. This study distinguishes high-noise COSMIC-2 L2P occultations using the L2P signal-to-noise ratio (SNR) and proposes an alternative ionosphere correction method by fitting and extrapolating the difference between the L1 bending angle and the bending angle derived from the MSIS 00 model above 35 km (<inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+M}} </tex-math></inline-formula>). Statistical validations are performed based on over 110159 L2P occultations from January 2023 to June 2023. The comparison of <inline-formula> <tex-math notation="LaTeX"> {\alpha }_{\text {L1+M}} </tex-math></inline-formula> and L1 and L2P bending angle, derived from L2P occultations with SNR below 200 v/v (<inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {{L}1}+{\text {ML}}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {{L}1+L}{2}{\text {PL}}} </tex-math></inline-formula>), shows that the percentage passed quality control increased from 40.8% (39.5%) to 73.6% (69.0%) for rising (setting) occultations. The mean standard deviation (SD) of <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+M}} </tex-math></inline-formula> is 2.0% (1.9%) on impact heights between 19 and 30 km for rising (setting) occultations, which is obviously smaller than 2.6% (2.5%) for <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+L2PL}} </tex-math></inline-formula> profiles. Hence, it can be concluded that the proposed ionosphere correction method can be utilized for retrieving COSMIC-2 L2P occultations, and combined with L2P high SNR occultations, the COSMIC-2 L2P occultations can further enrich the amounts of effective profiles on numerical weather prediction (NWP) and climate research.
AbstractList For the second Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) Global Positioning System radio occultation (GPS RO) neutral atmosphere retrieval, ionosphere error correction on bending angle is performed by combining either L2C or L2P signals with L1 at the University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA. While the L2C is a civil signal, the encrypted L2P signal from high-noise occultations will lead to low-accuracy bending angle profiles. This study distinguishes high-noise COSMIC-2 L2P occultations using the L2P signal-to-noise ratio (SNR) and proposes an alternative ionosphere correction method by fitting and extrapolating the difference between the L1 bending angle and the bending angle derived from the MSIS 00 model above 35 km (<inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+M}} </tex-math></inline-formula>). Statistical validations are performed based on over 110159 L2P occultations from January 2023 to June 2023. The comparison of <inline-formula> <tex-math notation="LaTeX"> {\alpha }_{\text {L1+M}} </tex-math></inline-formula> and L1 and L2P bending angle, derived from L2P occultations with SNR below 200 v/v (<inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {{L}1}+{\text {ML}}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {{L}1+L}{2}{\text {PL}}} </tex-math></inline-formula>), shows that the percentage passed quality control increased from 40.8% (39.5%) to 73.6% (69.0%) for rising (setting) occultations. The mean standard deviation (SD) of <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+M}} </tex-math></inline-formula> is 2.0% (1.9%) on impact heights between 19 and 30 km for rising (setting) occultations, which is obviously smaller than 2.6% (2.5%) for <inline-formula> <tex-math notation="LaTeX">{\alpha }_{\text {L1+L2PL}} </tex-math></inline-formula> profiles. Hence, it can be concluded that the proposed ionosphere correction method can be utilized for retrieving COSMIC-2 L2P occultations, and combined with L2P high SNR occultations, the COSMIC-2 L2P occultations can further enrich the amounts of effective profiles on numerical weather prediction (NWP) and climate research.
For the second Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) Global Positioning System radio occultation (GPS RO) neutral atmosphere retrieval, ionosphere error correction on bending angle is performed by combining either L2C or L2P signals with L1 at the University Corporation for Atmospheric Research (UCAR), Boulder, CO, USA. While the L2C is a civil signal, the encrypted L2P signal from high-noise occultations will lead to low-accuracy bending angle profiles. This study distinguishes high-noise COSMIC-2 L2P occultations using the L2P signal-to-noise ratio (SNR) and proposes an alternative ionosphere correction method by fitting and extrapolating the difference between the L1 bending angle and the bending angle derived from the MSIS 00 model above 35 km ([Formula Omitted]). Statistical validations are performed based on over 110159 L2P occultations from January 2023 to June 2023. The comparison of [Formula Omitted] and L1 and L2P bending angle, derived from L2P occultations with SNR below 200 v/v ([Formula Omitted] and [Formula Omitted]), shows that the percentage passed quality control increased from 40.8% (39.5%) to 73.6% (69.0%) for rising (setting) occultations. The mean standard deviation (SD) of [Formula Omitted] is 2.0% (1.9%) on impact heights between 19 and 30 km for rising (setting) occultations, which is obviously smaller than 2.6% (2.5%) for [Formula Omitted] profiles. Hence, it can be concluded that the proposed ionosphere correction method can be utilized for retrieving COSMIC-2 L2P occultations, and combined with L2P high SNR occultations, the COSMIC-2 L2P occultations can further enrich the amounts of effective profiles on numerical weather prediction (NWP) and climate research.
Author Meng, Xiangguang
Guo, Sheng
He, Youlin
Zhang, Shaocheng
Wang, Sicheng
Sheng, Zheng
Yu, Tao
Author_xml – sequence: 1
  givenname: Sheng
  surname: Guo
  fullname: Guo, Sheng
  email: geo_gs@foxmail.com
  organization: School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
– sequence: 2
  givenname: Shaocheng
  orcidid: 0000-0002-5379-8293
  surname: Zhang
  fullname: Zhang, Shaocheng
  email: zsc@cug.edu.cn
  organization: School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Youlin
  orcidid: 0009-0000-4796-8316
  surname: He
  fullname: He, Youlin
  email: he_youlin@foxmail.com
  organization: School of Geography and Information Engineering, China University of Geosciences, Wuhan, China
– sequence: 4
  givenname: Sicheng
  orcidid: 0000-0002-3819-2365
  surname: Wang
  fullname: Wang, Sicheng
  email: wangsch1987@163.com
  organization: Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
– sequence: 5
  givenname: Zheng
  surname: Sheng
  fullname: Sheng, Zheng
  email: 19994035@sina.com
  organization: Institute of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
– sequence: 6
  givenname: Xiangguang
  surname: Meng
  fullname: Meng, Xiangguang
  email: xgmeng@nssc.ac.cn
  organization: National Space Science Center, Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Tao
  orcidid: 0000-0003-3327-3526
  surname: Yu
  fullname: Yu, Tao
  email: yutao@cug.edu.cn
  organization: School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China
BookMark eNpNkMFLwzAchYMouE3_AMFDwHNnkjZNe5xF52DSsc1zbZNfZkbX1KQT9K-3ZTt4epfvvQffGF02tgGE7iiZUkrSx-18vZkywvg05GEqGL9AI8p5EpA4ii7RiNA0DliSsms09n5PCI04FSP0kbedOZhf0-zwfLXBS7bC61IZi3Mpj3VXdsY2eOWsBO8HSFuHs3zztsgChmfdwfr2E5yR-AkaNQCzZlcDXkPnDHyX9Q260mXt4facE_T-8rzNXoNlPl9ks2UgqYi7gHGtdFhxRhRJVEo0ZyLVUFaaVbxiWjFZxXEFBKRWVRhJISqqVFqGCcQJqHCCHk67rbNfR_BdsbdH1_SXRUjjJIpJr6Wn6ImSznrvQBetM4fS_RSUFIPIYhBZDCKLs8i-c3_qGAD4xydCJFyEf4LKcYA
CODEN IGRSD2
Cites_doi 10.1007/s00190-022-01672-3
10.1016/S1364-6826(01)00114-6
10.1038/s41612-022-00229-7
10.5194/amt-8-3447-2015
10.1029/2012GL051720
10.1007/s10291-017-0688-4
10.5194/amt-16-5217-2023
10.5194/amt-14-3003-2021
10.1109/TGRS.2016.2532346
10.1029/2006GL026112
10.1007/s10291-013-0340-x
10.1029/2010JD014058
10.1029/2008RS003907
10.5194/amt-9-335-2016
10.1007/s10291-016-0568-3
10.3390/rs14030691
10.3390/rs16020402
10.1029/2006JD007764
10.1175/BAMS-D-18-0290.1
10.1109/TGRS.2013.2259632
10.1002/2013JD019840
10.1029/2002JA009430
10.1109/TGRS.2015.2449338
10.3390/atmos13091409
10.1029/2008JD010483
10.1029/2000RS002370
10.1175/2009JTECHA1192.1
10.1029/2019GL086841
10.5194/amt-11-2601-2018
10.2151/jmsj.2004.507
10.1002/2015JA021055
10.1002/2014JD022204
10.1007/s10291-023-01559-6
10.1029/2021RS007267
10.3390/rs14122742
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2025.3539725
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 10
ExternalDocumentID 10_1109_TGRS_2025_3539725
10877857
Genre orig-research
GrantInformation_xml – fundername: Knowledge Innovation Program of Wuhan—Basic Research
  grantid: 2023010201010102
– fundername: National Natural Science Foundation of China
  grantid: 42174043; 42474225
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c176t-25fdf3b520d08d90f5279feabf2b5b2fd2cb66be0ecfdb34c77b1dd9a38e68ed3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:15:23 EDT 2025
Wed Oct 01 06:55:43 EDT 2025
Wed Aug 27 01:52:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c176t-25fdf3b520d08d90f5279feabf2b5b2fd2cb66be0ecfdb34c77b1dd9a38e68ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5379-8293
0000-0002-3819-2365
0009-0000-4796-8316
0000-0003-3327-3526
PQID 3168460397
PQPubID 85465
PageCount 10
ParticipantIDs proquest_journals_3168460397
ieee_primary_10877857
crossref_primary_10_1109_TGRS_2025_3539725
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
Woo (ref27)
ref4
ref3
ref6
ref5
Tien (ref9)
Johannes (ref38) 2022
ref40
Gorbunov (ref16) 2021; 2021
Weiss (ref11) 2019
References_xml – ident: ref4
  doi: 10.1007/s00190-022-01672-3
– ident: ref6
  doi: 10.1016/S1364-6826(01)00114-6
– ident: ref15
  doi: 10.1038/s41612-022-00229-7
– ident: ref33
  doi: 10.5194/amt-8-3447-2015
– ident: ref13
  doi: 10.1029/2012GL051720
– ident: ref26
  doi: 10.1007/s10291-017-0688-4
– ident: ref35
  doi: 10.5194/amt-16-5217-2023
– ident: ref40
  doi: 10.5194/amt-14-3003-2021
– ident: ref29
  doi: 10.1109/TGRS.2016.2532346
– ident: ref31
  doi: 10.1029/2006GL026112
– ident: ref3
  doi: 10.1007/s10291-013-0340-x
– ident: ref7
  doi: 10.1029/2010JD014058
– ident: ref32
  doi: 10.1029/2008RS003907
– ident: ref25
  doi: 10.5194/amt-9-335-2016
– ident: ref2
  doi: 10.1007/s10291-016-0568-3
– ident: ref18
  doi: 10.3390/rs14030691
– ident: ref20
  doi: 10.3390/rs16020402
– ident: ref30
  doi: 10.1029/2006JD007764
– volume-title: ROPP Product User Manual
  year: 2022
  ident: ref38
– ident: ref8
  doi: 10.1175/BAMS-D-18-0290.1
– ident: ref22
  doi: 10.1109/TGRS.2013.2259632
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref16
  article-title: The influence of the signal-to-noise ratio upon radio occultation inversion quality
  publication-title: Atmos. Meas. Tech. Discuss.
– ident: ref36
  doi: 10.1002/2013JD019840
– ident: ref19
  doi: 10.1029/2002JA009430
– ident: ref14
  doi: 10.1109/TGRS.2015.2449338
– ident: ref21
  doi: 10.3390/atmos13091409
– ident: ref28
  doi: 10.1029/2008JD010483
– ident: ref5
  doi: 10.1029/2000RS002370
– ident: ref24
  doi: 10.1175/2009JTECHA1192.1
– start-page: 82
  volume-title: Proc. 12th Int. Tech. Meeting Satell. Division Inst. Navigat.
  ident: ref27
  article-title: Optimum semi-codeless carrier phase tracking of L2
– ident: ref12
  doi: 10.1029/2019GL086841
– ident: ref34
  doi: 10.5194/amt-11-2601-2018
– ident: ref39
  doi: 10.2151/jmsj.2004.507
– volume-title: COSMIC-2 Neutral Atmosphere Provisional Data Release
  year: 2019
  ident: ref11
– ident: ref1
  doi: 10.1002/2015JA021055
– ident: ref37
  doi: 10.1002/2014JD022204
– ident: ref23
  doi: 10.1007/s10291-023-01559-6
– volume-title: Proc. AGU Fall Meeting
  ident: ref9
  article-title: Next generation of spaceborne GNSS receiver for radio occultation science and precision orbit determination
– ident: ref10
  doi: 10.1029/2021RS007267
– ident: ref17
  doi: 10.3390/rs14122742
SSID ssj0014517
Score 2.4778385
Snippet For the second Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) Global Positioning System radio occultation (GPS RO) neutral...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Atmospheric correction
Atmospheric measurements
Atmospheric modeling
Atmospheric research
Bending
Climate
Climate (COSMIC-2)
Climate prediction
Codes
Deformation
Doppler effect
Error correction
Global Positioning System
Global positioning systems
GPS
Ionosphere
Ionosphere correction
L2P signal
Meteorology
Positioning systems
Quality control
Radio
Radio occultation
radio occultation (RO)
Retrieval
Satellite broadcasting
second Constellation Observing System for Meteorology
Signal to noise ratio
Statistical models
Weather forecasting
Title Optimizing GPS L2P Radio Occultation Processing for COSMIC-2 Atmospheric Bending Angle Retrieval
URI https://ieeexplore.ieee.org/document/10877857
https://www.proquest.com/docview/3168460397
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VpEpwgJaHCKSVDz0hbbrrt48h4qGqBZSAxG0b27MoAhJENhd-PbZ3U0VFlXpbrWzL8md7ZjzzzQB8Q5U7Scc2M5Hiwy2XmeGchxOPzFY4tixxYX5dyotb_uNO3LVk9cSFQcQUfIa9-Jl8-X7mFvGpLJxwrZQWag3WlJYNWeuPy4CLouVGyyxYEbR1YRa5-X5zPhwFU5CKHhNB_say2CtCKFVVeXcVJ_lytg2Xy5k1YSUPvUVte-71r6SN_z31T7DVapqk32yNz_ABpzuwuZJ_cAc-pvhPN9-F31fh6niavIbf5Px6RH7SazIc-8mMxDTEj42_nrSsgtgo6LpkcDUKIGaU9Oun2TzmJ5g4coKJJ0P60_tHJMNUsCvs5j24PTu9GVxkbfGFzBVK1hkVla-YFTT3ufYmrwRVJoJXUSssrTx1VkqLObrKW8adUrbw3oyZRqnRs31Yn86meACk8EYVSLXTDDkPgwY1yGjhEakUlskOHC_RKJ-bHBtlsk1yU0boyghd2ULXgb24uisNm4XtQHcJYNkew3kZq3JxmYeOh__odgQbcfTmUaUL6_XLAr8ENaO2X9P2egO2rM5t
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0VKgQ9tIUGkZaCDz1V2nTXn-tjigophICSIHHbxvYsioAENZsLv762d1NFrSr1trJsr-Xn8Yw9fjMAn1ClVtKJSXSg-HDDZaI5517ikZkSJ4ZFLszlQPZu-PmtuG3I6pELg4jx8Rl2wmf05bu5XYarMi_huVK5UBvwUvgORU3X-u004CJr2NEy8ecI2jgxs1R_GZ8NR_4wSEWHCa-BQ2LsNTUU86r8tRlHDXP6BgarsdUPS-47y8p07PMfYRv_e_Bv4XVja5JuvTh24QXO9uDVWgTCPdiKL0Dt4h38uPKbx-P02ReTs-sR6dNrMpy46ZyEQMQPtceeNLyCUMlbu-TkauRhTCjpVo_zRYhQMLXkK0amDOnO7h6QDGPKLr-eW3Bz-m180kua9AuJzZSsEipKVzIjaOrS3Om0FFTpAF9JjTC0dNQaKQ2maEtnGLdKmcw5PWE5yhwd24fN2XyGB0Ayp1WGNLc5Q859p94Q0rlwiFQKw2QbPq_QKJ7qKBtFPJ2kugjQFQG6ooGuDa0wu2sV64ltw-EKwKIRxEUR8nJxmfqG7__R7Bi2e-PLftH_Prj4ADvhT_UVyyFsVj-X-NEbHZU5ikvtF7Fp0bo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+GPS+L2P+Radio+Occultation+Processing+for+COSMIC-2+Atmospheric+Bending+Angle+Retrieval&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Guo%2C+Sheng&rft.au=Zhang%2C+Shaocheng&rft.au=He%2C+Youlin&rft.au=Wang%2C+Sicheng&rft.date=2025&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=63&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTGRS.2025.3539725&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2025_3539725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon