Multimodal Semi-Supervised Domain Adaptation Using Cross-Modal Learning and Joint Distribution Alignment for Cross-Subject Emotion Recognition
Multimodal physiological data from electroencephalogram (EEG) and eye movement (EM) signals have been shown to be useful in effectively recognizing human emotional states. Unfortunately, individual differences reduce the applicability of existing multimodal classifiers to new users, as low performan...
        Saved in:
      
    
          | Published in | IEEE transactions on instrumentation and measurement Vol. 74; pp. 1 - 12 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9456 1557-9662  | 
| DOI | 10.1109/TIM.2025.3551924 | 
Cover
| Abstract | Multimodal physiological data from electroencephalogram (EEG) and eye movement (EM) signals have been shown to be useful in effectively recognizing human emotional states. Unfortunately, individual differences reduce the applicability of existing multimodal classifiers to new users, as low performance is usually observed. Indeed, existing works mainly focus on multimodal domain adaptation from a labeled source domain and unlabeled target domain to address the mentioned problem, transferring knowledge from known subjects to new one. However, a limited set of labeled target data has not been effectively exploited to enhance the knowledge transfer between subjects. In this article, we propose a multimodal semi-supervised domain adaptation (SSDA) method, called cross-modal learning and joint distribution alignment (CMJDA), to address the limitations of existing works, following three strategies: 1) discriminative features are exploited per modality through independent neural networks; 2) correlated features and consistent predictions are produced between modalities; and 3) marginal and conditional distributions are encouraged to be similar between the labeled source data, limited labeled target data, and abundant unlabeled target data. We conducted comparison experiments on two public benchmarks for emotion recognition, SEED-IV and SEED-V, using leave-one-out cross-validation (LOOCV). Our proposal achieves an average accuracy of 92.50%-96.13% across the three available sessions on SEED-IV and SEED-V, only including three labeled target samples per class from the first recorded trial. | 
    
|---|---|
| AbstractList | Multimodal physiological data from electroencephalogram (EEG) and eye movement (EM) signals have been shown to be useful in effectively recognizing human emotional states. Unfortunately, individual differences reduce the applicability of existing multimodal classifiers to new users, as low performance is usually observed. Indeed, existing works mainly focus on multimodal domain adaptation from a labeled source domain and unlabeled target domain to address the mentioned problem, transferring knowledge from known subjects to new one. However, a limited set of labeled target data has not been effectively exploited to enhance the knowledge transfer between subjects. In this article, we propose a multimodal semi-supervised domain adaptation (SSDA) method, called cross-modal learning and joint distribution alignment (CMJDA), to address the limitations of existing works, following three strategies: 1) discriminative features are exploited per modality through independent neural networks; 2) correlated features and consistent predictions are produced between modalities; and 3) marginal and conditional distributions are encouraged to be similar between the labeled source data, limited labeled target data, and abundant unlabeled target data. We conducted comparison experiments on two public benchmarks for emotion recognition, SEED-IV and SEED-V, using leave-one-out cross-validation (LOOCV). Our proposal achieves an average accuracy of 92.50%-96.13% across the three available sessions on SEED-IV and SEED-V, only including three labeled target samples per class from the first recorded trial. | 
    
| Author | Jimenez-Guarneros, Magdiel Fuentes-Pineda, Gibran Grande-Barreto, Jonas  | 
    
| Author_xml | – sequence: 1 givenname: Magdiel orcidid: 0000-0001-9675-7494 surname: Jimenez-Guarneros fullname: Jimenez-Guarneros, Magdiel email: mjmnzg@gmail.com organization: Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico – sequence: 2 givenname: Gibran orcidid: 0000-0002-1964-8208 surname: Fuentes-Pineda fullname: Fuentes-Pineda, Gibran email: gibranfp@unam.mx organization: Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico – sequence: 3 givenname: Jonas orcidid: 0000-0003-3789-1479 surname: Grande-Barreto fullname: Grande-Barreto, Jonas email: jonas.barreto385@uppuebla.edu.mx organization: Department of Information Technology Engineering, Universidad Politécnica de Puebla, Puebla, Mexico  | 
    
| BookMark | eNpNkE9rwyAYh2V0sLbbfYcdhJ3TaRI1Hku7Px0tg7U9BxO1WBLNNBnsS-wzL2l72OHFlx-_R-WZgJF1VgFwj9EMY8SfdqvNLEYxmSWEYB6nV2CMCWERpzQegTFCOIt4SugNmIRwRAgxmrIx-N10VWtqJ0UFt6o20bZrlP82QUm4dLUwFs6laFrRGmfhPhh7gAvvQog2J2athLdDKKyE787YFi5NaL0puhMxr8zB1qqPtfMXctsVR1W28Ll2p86nKt3BmmG_BddaVEHdXc4p2L887xZv0frjdbWYr6MSM9JGRalxgaTGWgjGiMYpkSLRHFFZECZKjOOCCx1T2g9LaDFYKJXUOkMk0ySZgsfzvY13X50KbX50nbf9k3mCM5KkDMe8b6Fzqxz-7ZXOG29q4X9yjPLBet5bzwfr-cV6jzycEaOU-lfnMacpT_4AxreC_g | 
    
| CODEN | IEIMAO | 
    
| Cites_doi | 10.1016/j.brainresbull.2024.110901 10.1109/TCSS.2023.3314508 10.1016/j.inffus.2023.102129 10.1109/TAFFC.2023.3259010 10.1016/j.eswa.2024.124001 10.1109/TCSS.2023.3298324 10.1088/1741-2552/ac5c8d 10.1088/1741-2552/ac49a7 10.1109/CCECE58730.2023.10289007 10.1109/TETCI.2024.3406422 10.1109/TAMD.2015.2431497 10.1109/BIBM52615.2021.9669556 10.1109/TAFFC.2024.3357656 10.1109/CVPR46437.2021.01636 10.1109/TPAMI.2022.3159589 10.1109/NER.2013.6695876 10.1109/tnnls.2024.3493425 10.1016/j.compbiomed.2021.104696 10.1109/TCYB.2018.2797176 10.1016/j.knosys.2024.112669 10.1007/978-981-97-7007-6_13 10.1016/j.knosys.2021.107982 10.1109/ICCV.2019.00814 10.1007/978-3-642-35289-8 10.1016/j.neunet.2023.03.039 10.1109/NER.2019.8716943 10.1016/j.compbiomed.2023.106860 10.1016/j.cmpb.2018.04.005 10.1109/TIM.2023.3302938 10.1016/j.neucom.2021.05.064 10.1016/j.ins.2019.01.025 10.1109/JBHI.2022.3210158 10.1016/j.compbiomed.2022.105907 10.1109/TAFFC.2024.3392791 10.1109/TCYB.2019.2904052 10.1007/s11571-024-10123-y 10.1109/TCDS.2019.2949306  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| DOI | 10.1109/TIM.2025.3551924 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1557-9662 | 
    
| EndPage | 12 | 
    
| ExternalDocumentID | 10_1109_TIM_2025_3551924 10929649  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Universidad Nacional Autónoma de México (UNAM) Posdoctoral Program (POSDOC) funderid: 10.13039/501100005739  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c175t-bcf1b0df1faa775f145da3f906db57ac112b9af266f26736b9662cedff8058f53 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0018-9456 | 
    
| IngestDate | Mon Jun 30 10:07:49 EDT 2025 Wed Oct 01 06:40:28 EDT 2025 Wed Aug 27 02:05:01 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c175t-bcf1b0df1faa775f145da3f906db57ac112b9af266f26736b9662cedff8058f53 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-9675-7494 0000-0002-1964-8208 0000-0003-3789-1479  | 
    
| PQID | 3185347129 | 
    
| PQPubID | 85462 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_journals_3185347129 crossref_primary_10_1109_TIM_2025_3551924 ieee_primary_10929649  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250000 2025-00-00 20250101  | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 20250000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on instrumentation and measurement | 
    
| PublicationTitleAbbrev | TIM | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref11 ref33 ref10 ref32 Shu (ref30) ref2 ref1 ref17 ref16 ref38 ref19 ref18 Montavon (ref37) 2012; 7700 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref26 doi: 10.1016/j.brainresbull.2024.110901 – ident: ref16 doi: 10.1109/TCSS.2023.3314508 – ident: ref9 doi: 10.1016/j.inffus.2023.102129 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref30 article-title: A DIRT-T approach to unsupervised domain adaptation – ident: ref14 doi: 10.1109/TAFFC.2023.3259010 – ident: ref38 doi: 10.1016/j.eswa.2024.124001 – ident: ref1 doi: 10.1109/TCSS.2023.3298324 – ident: ref10 doi: 10.1088/1741-2552/ac5c8d – ident: ref13 doi: 10.1088/1741-2552/ac49a7 – ident: ref8 doi: 10.1109/CCECE58730.2023.10289007 – ident: ref18 doi: 10.1109/TETCI.2024.3406422 – ident: ref35 doi: 10.1109/TAMD.2015.2431497 – ident: ref7 doi: 10.1109/BIBM52615.2021.9669556 – ident: ref17 doi: 10.1109/TAFFC.2024.3357656 – ident: ref11 doi: 10.1109/CVPR46437.2021.01636 – ident: ref28 doi: 10.1109/TPAMI.2022.3159589 – ident: ref34 doi: 10.1109/NER.2013.6695876 – ident: ref25 doi: 10.1109/tnnls.2024.3493425 – ident: ref5 doi: 10.1016/j.compbiomed.2021.104696 – ident: ref6 doi: 10.1109/TCYB.2018.2797176 – ident: ref24 doi: 10.1016/j.knosys.2024.112669 – ident: ref12 doi: 10.1007/978-981-97-7007-6_13 – ident: ref27 doi: 10.1016/j.knosys.2021.107982 – ident: ref32 doi: 10.1109/ICCV.2019.00814 – volume: 7700 volume-title: Neural Networks: Tricks of the Trade year: 2012 ident: ref37 doi: 10.1007/978-3-642-35289-8 – ident: ref22 doi: 10.1016/j.neunet.2023.03.039 – ident: ref33 doi: 10.1109/NER.2019.8716943 – ident: ref3 doi: 10.1016/j.compbiomed.2023.106860 – ident: ref4 doi: 10.1016/j.cmpb.2018.04.005 – ident: ref23 doi: 10.1109/TIM.2023.3302938 – ident: ref20 doi: 10.1016/j.neucom.2021.05.064 – ident: ref29 doi: 10.1016/j.ins.2019.01.025 – ident: ref21 doi: 10.1109/JBHI.2022.3210158 – ident: ref2 doi: 10.1016/j.compbiomed.2022.105907 – ident: ref15 doi: 10.1109/TAFFC.2024.3392791 – ident: ref19 doi: 10.1109/TCYB.2019.2904052 – ident: ref31 doi: 10.1007/s11571-024-10123-y – ident: ref36 doi: 10.1109/TCDS.2019.2949306  | 
    
| SSID | ssj0007647 | 
    
| Score | 2.4273624 | 
    
| Snippet | Multimodal physiological data from electroencephalogram (EEG) and eye movement (EM) signals have been shown to be useful in effectively recognizing human... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Adaptation Alignment Brain modeling Data mining Deep learning electroencephalogram (EEG) Electroencephalography Emotion recognition Emotional factors Emotions eye movement (EM) Eye movements Feature extraction Knowledge transfer Learning Magnetic heads multimodal semi-supervised domain adaptation (SSDA) Neural networks Proposals Signal to noise ratio Training  | 
    
| Title | Multimodal Semi-Supervised Domain Adaptation Using Cross-Modal Learning and Joint Distribution Alignment for Cross-Subject Emotion Recognition | 
    
| URI | https://ieeexplore.ieee.org/document/10929649 https://www.proquest.com/docview/3185347129  | 
    
| Volume | 74 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6aQKA9NE2a0m2SokMvPXjrlyzruORBGtgcmgRyMxo9wtKuvXS9l_6I_uaOJDukKYEeDAZ7jMxIM9-8AT6VaE2Rpy6xvs9QiRUmaKUgIOcyriukh94POb-qLm7Lyzt-NxSrh1oYa21IPrNTfxti-abTG-8qoxMufZRQbsGWqKtYrPUgdkVVxgaZGZ1gggVjTDKVX26-zskSzPmUlKs3OP7SQWGoyj-SOKiX8124GhcWs0q-Tzc9TvWvJz0b_3vlb-D1ADTZLO6MPXhh23149aj94D7shPRPvX4Lv0Md7rIzRHFtl4vkerPyQmRtDTvtlmrRsplRqxi2ZyHNgJ34f0vmgWbo0nrPVGvYZbdoe3bqO_IOw7TY7MfiPqQdMMLIAyWJLO8DYmdxkBD7NqYyde0B3J6f3ZxcJMOkhkQT_OgT1C7D1LjMKSUEd1nJjSqcTCuDXChNoA6lcgQG6BJFhWRk5doa5-qU144X72C77Vr7HhhBCCWzGrFQ0vciRI5CCFSF1bkua5zA55F3zSo25GiCIZPKhvjceD43A58ncOBZ8ei9yIUJHI3cboYju258GXlBqjqXH54hO4SX_uvRAXME2_3PjT0mSNLjx7AV_wBWEOBr | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BEQIOPEoRgQJ74MLBwa_1Zo9RH0pLkwNNpd6snX1UEcSOiHPhR_Cbmd21UQEhcbBkyR55rdmd-eYN8L5Ea4o8dYn1fYZKrDBBKwUBOZdxXSE99H7I-aKaXZXn1_y6L1YPtTDW2pB8Zsf-NsTyTat33lVGJ1z6KKG8C_d4WZY8lmv9EryiKmOLzIzOMAGDISqZyo_LsznZgjkfk3r1JsdvWiiMVflLFgcFc_oEFsPSYl7Jl_Guw7H-_kfXxv9e-1N43ENNNo174xncsc0-PLrVgHAf7ocEUL19Dj9CJe66NURxader5HK38WJkaw07btdq1bCpUZsYuGch0YAd-X9L5oGm79N6w1Rj2Hm7ajp27Hvy9uO02PTr6iYkHjBCyT0lCS3vBWIncZQQ-zwkM7XNAVydniyPZkk_qyHRBEC6BLXLMDUuc0oJwV1WcqMKJ9PKIBdKE6xDqRzBAbpEUSGZWbm2xrlJyieOFy9gr2kb-xIYgQglswlioaTvRogchRCoCqtzXU5wBB8G3tWb2JKjDqZMKmvic-35XPd8HsGBZ8Wt9yIXRnA4cLvuD-229oXkBSnrXL76B9k7eDBbzi_qi7PFp9fw0H8pumMOYa_7trNvCKB0-DZsy586NOO4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+Semi-Supervised+Domain+Adaptation+Using+Cross-Modal+Learning+and+Joint+Distribution+Alignment+for+Cross-Subject+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Jimenez-Guarneros%2C+Magdiel&rft.au=Fuentes-Pineda%2C+Gibran&rft.au=Grande-Barreto%2C+Jonas&rft.date=2025&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=74&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FTIM.2025.3551924&rft.externalDocID=10929649 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |