Traction Resistance Estimation Based on Multi-Method Fusion for Distributed Drive Agricultural Vehicles
This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decou...
Saved in:
| Published in | IEEE sensors journal Vol. 22; no. 10; pp. 9580 - 9588 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2022.3162652 |
Cover
| Abstract | This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9985 </tex-math></inline-formula>, root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R}=0.9655 </tex-math></inline-formula>, RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9371 </tex-math></inline-formula>, RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time. |
|---|---|
| AbstractList | This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9985 </tex-math></inline-formula>, root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R}=0.9655 </tex-math></inline-formula>, RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9371 </tex-math></inline-formula>, RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time. This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were [Formula Omitted], root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were [Formula Omitted], RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were [Formula Omitted], RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time. |
| Author | Zhou, Jun Zhao, Jianlei Sun, Chenyang |
| Author_xml | – sequence: 1 givenname: Chenyang surname: Sun fullname: Sun, Chenyang email: 2018212014@njau.edu.cn organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China – sequence: 2 givenname: Jun surname: Zhou fullname: Zhou, Jun email: zhoujun@njau.edu.cn organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China – sequence: 3 givenname: Jianlei surname: Zhao fullname: Zhao, Jianlei email: 2019112025@stu.njau.edu.cn organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China |
| BookMark | eNo9kFtLw0AQhRepYFv9AeJLwOfUvW_yWHvxQqugVXxbNptJu6UmdTcR_Pcmtvg0h5nvzDBngHplVQJClwSPCMHpzePr7GlEMaUjRiSVgp6gPhEiiYniSa_TDMecqY8zNAhhizFJlVB9tF55Y2tXldELBBdqU1qIZqF2n-ave2sC5FErls2udvES6k2VR_MmdMOi8tG0NXmXNXWLTb37hmi89s62dOPNLnqHjbM7COfotDC7ABfHOkRv89lqch8vnu8eJuNFbIkSdZwAN6AyVnCeJhgMK1JDrMw4x3lh0gLnRGEhgclEGmKEpcbkwkqu0pxnVLAhuj7s3fvqq4FQ623V-LI9qamUTHKWMNxS5EBZX4XgodB7337sfzTBustTd3nqLk99zLP1XB08DgD--VRxxpKU_QIleHRt |
| CODEN | ISJEAZ |
| Cites_doi | 10.13031/2013.19392 10.1016/j.automatica.2006.06.025 10.1016/j.compag.2020.105695 10.1177/1687814019846989 10.3390/app10134667 10.1016/j.compag.2018.11.008 10.15832/ankutbd.493339 10.3390/electronics10131526 10.1177/0954407013511797 10.1016/j.compag.2021.106217 10.1109/ACCESS.2020.2983424 10.1080/00423110801958550 10.1016/j.still.2019.104338 10.1109/TCST.2008.922503 10.1049/iet-cta.2020.0516 10.1109/TVT.2020.3026106 10.13031/aea.32.11500 10.1109/TTE.2020.3048405 10.3390/agronomy10040451 10.1109/TVT.2013.2260190 10.1016/j.mechmachtheory.2019.103586 10.1016/j.compag.2017.09.023 10.1109/ACCESS.2021.3075325 10.1016/j.energy.2015.10.066 10.3390/s21020339 10.1109/CDC.2006.376777 10.1109/CAC51589.2020.9327119 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2022.3162652 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 9588 |
| ExternalDocumentID | 10_1109_JSEN_2022_3162652 9743389 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Sub-project of National Key Research and Development Project grantid: 2019YFD0900701 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c175t-8e4ae7b3f44980ea3f9a1c6b440dfa9f0d17056e3686a1a5c2aad5c6479d4b253 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Mon Jun 30 10:18:30 EDT 2025 Wed Oct 01 05:05:44 EDT 2025 Wed Aug 27 02:37:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c175t-8e4ae7b3f44980ea3f9a1c6b440dfa9f0d17056e3686a1a5c2aad5c6479d4b253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2663643830 |
| PQPubID | 75733 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9743389 proquest_journals_2663643830 crossref_primary_10_1109_JSEN_2022_3162652 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref12 ref34 Tian (ref1) 2013; 44 ref15 ref37 ref31 ref11 ref33 ref10 ref32 ref17 ref16 ref19 ref18 (ref29) 2013 (ref30) 2013 Alimardani (ref36) 2009; 7 Jin (ref13) 2016; 46 ref24 ref23 ref26 Shi (ref2) 2021; 34 ref20 Chu (ref4) 2011; 33 ref22 (ref25) 2015 Al-Hamed (ref21) 2013; 23 ref28 ref27 ref8 ref7 ref9 ref3 ref6 Zhao (ref14) 2014; 46 ref5 |
| References_xml | – ident: ref37 doi: 10.13031/2013.19392 – ident: ref5 doi: 10.1016/j.automatica.2006.06.025 – ident: ref16 doi: 10.1016/j.compag.2020.105695 – volume: 44 start-page: 210 issue: 7 year: 2013 ident: ref1 article-title: Real-time motion detection for intelligent agricultural vehicle based on stereo vision publication-title: Trans. Chin. Soc. Agricult. Machinery – volume-title: Agricultural Machinery Management Data year: 2013 ident: ref29 – ident: ref26 doi: 10.1177/1687814019846989 – ident: ref19 doi: 10.3390/app10134667 – ident: ref18 doi: 10.1016/j.compag.2018.11.008 – ident: ref31 doi: 10.15832/ankutbd.493339 – ident: ref10 doi: 10.3390/electronics10131526 – ident: ref20 doi: 10.1177/0954407013511797 – ident: ref11 doi: 10.1016/j.compag.2021.106217 – ident: ref27 doi: 10.1109/ACCESS.2020.2983424 – volume-title: Agricultural Machinery Management Data year: 2015 ident: ref25 – ident: ref12 doi: 10.1080/00423110801958550 – ident: ref33 doi: 10.1016/j.still.2019.104338 – ident: ref7 doi: 10.1109/TCST.2008.922503 – ident: ref32 doi: 10.1049/iet-cta.2020.0516 – ident: ref17 doi: 10.1109/TVT.2020.3026106 – ident: ref34 doi: 10.13031/aea.32.11500 – ident: ref24 doi: 10.1109/TTE.2020.3048405 – ident: ref35 doi: 10.3390/agronomy10040451 – volume: 46 start-page: 992 issue: 5 year: 2016 ident: ref13 article-title: State observation of distributed drive electric vehicle using square root cubature Kalman filter publication-title: J. Southeast Univ. Natural Sci. Ed. – ident: ref15 doi: 10.1109/TVT.2013.2260190 – ident: ref28 doi: 10.1016/j.mechmachtheory.2019.103586 – volume-title: Agricultural Machinery Management Data year: 2013 ident: ref30 – ident: ref22 doi: 10.1016/j.compag.2017.09.023 – ident: ref3 doi: 10.1109/ACCESS.2021.3075325 – ident: ref23 doi: 10.1016/j.energy.2015.10.066 – volume: 33 start-page: 962 issue: 11 year: 2011 ident: ref4 article-title: Speed estimation for all-wheel drive vehicles based on multi-information fusion publication-title: Automot. Eng. – volume: 23 start-page: 1714 issue: 6 year: 2013 ident: ref21 article-title: Artificial neural network model for predicting draft and energy requirement of a disk plow publication-title: J. Animal Plant Sci. – ident: ref9 doi: 10.3390/s21020339 – volume: 46 start-page: 42 issue: 11 year: 2014 ident: ref14 article-title: Real-time road condition estimation for four-wheel-drive vehicle publication-title: J. Harbin Inst. Technol. – ident: ref6 doi: 10.1109/CDC.2006.376777 – ident: ref8 doi: 10.1109/CAC51589.2020.9327119 – volume: 34 start-page: 245 issue: 3 year: 2021 ident: ref2 article-title: Bus ESC adaptive neural network sliding mode control based on disturbance observation publication-title: China J. Highway Transport. – volume: 7 start-page: 537 issue: 3 year: 2009 ident: ref36 article-title: Prediction of draft force and energy of subsoiling operation using ANN model publication-title: J. Food, Agricult. Environ. |
| SSID | ssj0019757 |
| Score | 2.3421686 |
| Snippet | This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 9580 |
| SubjectTerms | Agricultural vehicles Algorithms distributed driven agricultural vehicles dynamics model Estimation Kinematics kinematics model Load tests Mathematical models Real-time systems recursive least square method Resistance Root-mean-square errors Tires Traction Traction resistance Vehicle dynamics Vehicles Wheels |
| Title | Traction Resistance Estimation Based on Multi-Method Fusion for Distributed Drive Agricultural Vehicles |
| URI | https://ieeexplore.ieee.org/document/9743389 https://www.proquest.com/docview/2663643830 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gF_XgAzSiaHrwZFzYR7dLjygQQgIHBcNt0227kJiAgeWgv95pdyG-Dt6abLtpOu30m87MNwC3EU8omh2o_VQQOVSkyuEJkw6XXCaIv7UXmATn4Yj1J3QwDacluN_lwmitbfCZbpim9eWrpdyYp7ImYl-0qPge7EUtludq7TwGPLKsnniAXYcG0bTwYHoubw6euyO0BH0fDVTE76H_7Q6yRVV-aWJ7vfSOYbidWB5V8trYZElDfvzgbPzvzE_gqMCZpJ1vjFMo6UUFDr-wD1ZgvyiAPn-vwmy8yjMcyJNeG0iJe4F08fjnmY3kAS87RbBhE3adoa07TXob89ZGEPeSjiHgNbWzsFtnhSqUtGerHa8HedFzG393BpNed_zYd4oaDI5EYJE5LU2FjpIgpZS3XC2ClAtPsoRSV6WCp64yfDxMB6zFhCdC6QuhQsloxBVN_DA4h_JiudAXQKgnlQhxtOSoKSR-RZEJX3PqpmnKohrcbaUSv-VUG7E1UVweGxHGRoRxIcIaVM0q7zoWC1yD-laOcXEY1zFikIAZSlb38u9RV3Bg_m2CArywDuVstdHXiDWy5MZusk880NIc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TgMxEB2FUAAFV0CE0wUVYsMetjcuORKFIykgoHQrr-1NJKQE5Sjg6xl7NxFXQWdpba3lscdvPDNvAE5jkVI0O1D76Sj2qMy0J1KuPKGEShF_myCyCc7tDm8907se65XgfJELY4xxwWemZpvOl69Hamafyi4Q-6JFJZZgmVFKWZ6ttfAZiNjxeuIR9j0axb3Chxn44uLuqdFBWzAM0URFBM_Cb7eQK6vySxe7C6a5Ae351PK4ktfabJrW1McP1sb_zn0T1gukSS7zrbEFJTPchrUv_IPbsFKUQB-8V6DfHec5DuTRTCyoxN1AGqgA8txGcoXXnSbYcCm7XttVnibNmX1tI4h8yY2l4LXVs7DbzRiVKLnsjxfMHuTFDFwE3g48Nxvd65ZXVGHwFEKLqVc3VJo4jTJKRd03MsqEDBRPKfV1JkXma8vIw03E61wGkqlQSs0Up7HQNA1ZtAvl4Who9oDQQGnJcLQSqCsUfkWRydAI6mdZxuMqnM2lkrzlZBuJM1J8kVgRJlaESSHCKlTsKi86FgtchcO5HJPiOE4SRCERt6Ss_v7fo05gpdVtPyQPt537A1i1_7EhAgE7hPJ0PDNHiDym6bHbcJ9lldVp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traction+Resistance+Estimation+Based+on+Multi-Method+Fusion+for+Distributed+Drive+Agricultural+Vehicles&rft.jtitle=IEEE+sensors+journal&rft.au=Sun%2C+Chenyang&rft.au=Zhou%2C+Jun&rft.au=Zhao%2C+Jianlei&rft.date=2022-05-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=10&rft.spage=9580&rft.epage=9588&rft_id=info:doi/10.1109%2FJSEN.2022.3162652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3162652 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |