Traction Resistance Estimation Based on Multi-Method Fusion for Distributed Drive Agricultural Vehicles

This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decou...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 22; no. 10; pp. 9580 - 9588
Main Authors Sun, Chenyang, Zhou, Jun, Zhao, Jianlei
Format Journal Article
LanguageEnglish
Published New York IEEE 15.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2022.3162652

Cover

Abstract This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9985 </tex-math></inline-formula>, root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R}=0.9655 </tex-math></inline-formula>, RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9371 </tex-math></inline-formula>, RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time.
AbstractList This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9985 </tex-math></inline-formula>, root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R}=0.9655 </tex-math></inline-formula>, RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were <inline-formula> <tex-math notation="LaTeX">{R} = 0.9371 </tex-math></inline-formula>, RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time.
This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive agricultural vehicles (DDAVs), because this coupling makes estimation measurements by agricultural vehicles difficult. Indeed, the proposed method decouples the vehicle mass and traction resistance. The vehicle mass was obtained using the recursive least square method and filtering the low-frequency parts of signals of driving force and longitudinal acceleration. After obtaining estimated vehicle mass, the dynamics method was coordinated and complemented with the kinematics method to observe the traction resistance. In the low-frequency load test, statistical performance criteria (SPCs) of the mass estimation were [Formula Omitted], root mean squared error ( RMSE) = 0.0551 kg, and average of prediction accuracy ( PA) = 98.02%. In addition, SPCs of the traction resistance estimation were [Formula Omitted], RMSE = 23.0472 N, and average of PA = 99.28%. In the high-frequency load test, the maximum PA of the mass estimation reached 98.78%, and SPCs of the traction resistance estimation were [Formula Omitted], RMSE = 1266.3933 N, and average of PA = 85.62%. Experimental tests proved that the proposed method is robust and can accurately estimate the vehicle mass and traction resistance in real time.
Author Zhou, Jun
Zhao, Jianlei
Sun, Chenyang
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Sun
  fullname: Sun, Chenyang
  email: 2018212014@njau.edu.cn
  organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China
– sequence: 2
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  email: zhoujun@njau.edu.cn
  organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China
– sequence: 3
  givenname: Jianlei
  surname: Zhao
  fullname: Zhao, Jianlei
  email: 2019112025@stu.njau.edu.cn
  organization: Jiangsu Province Key Laboratory of Intelligent Agricultural Equipment, School of Engineering, Nanjing Agricultural University, Nanjing, China
BookMark eNo9kFtLw0AQhRepYFv9AeJLwOfUvW_yWHvxQqugVXxbNptJu6UmdTcR_Pcmtvg0h5nvzDBngHplVQJClwSPCMHpzePr7GlEMaUjRiSVgp6gPhEiiYniSa_TDMecqY8zNAhhizFJlVB9tF55Y2tXldELBBdqU1qIZqF2n-ave2sC5FErls2udvES6k2VR_MmdMOi8tG0NXmXNXWLTb37hmi89s62dOPNLnqHjbM7COfotDC7ABfHOkRv89lqch8vnu8eJuNFbIkSdZwAN6AyVnCeJhgMK1JDrMw4x3lh0gLnRGEhgclEGmKEpcbkwkqu0pxnVLAhuj7s3fvqq4FQ623V-LI9qamUTHKWMNxS5EBZX4XgodB7337sfzTBustTd3nqLk99zLP1XB08DgD--VRxxpKU_QIleHRt
CODEN ISJEAZ
Cites_doi 10.13031/2013.19392
10.1016/j.automatica.2006.06.025
10.1016/j.compag.2020.105695
10.1177/1687814019846989
10.3390/app10134667
10.1016/j.compag.2018.11.008
10.15832/ankutbd.493339
10.3390/electronics10131526
10.1177/0954407013511797
10.1016/j.compag.2021.106217
10.1109/ACCESS.2020.2983424
10.1080/00423110801958550
10.1016/j.still.2019.104338
10.1109/TCST.2008.922503
10.1049/iet-cta.2020.0516
10.1109/TVT.2020.3026106
10.13031/aea.32.11500
10.1109/TTE.2020.3048405
10.3390/agronomy10040451
10.1109/TVT.2013.2260190
10.1016/j.mechmachtheory.2019.103586
10.1016/j.compag.2017.09.023
10.1109/ACCESS.2021.3075325
10.1016/j.energy.2015.10.066
10.3390/s21020339
10.1109/CDC.2006.376777
10.1109/CAC51589.2020.9327119
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2022.3162652
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 9588
ExternalDocumentID 10_1109_JSEN_2022_3162652
9743389
Genre orig-research
GrantInformation_xml – fundername: Sub-project of National Key Research and Development Project
  grantid: 2019YFD0900701
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c175t-8e4ae7b3f44980ea3f9a1c6b440dfa9f0d17056e3686a1a5c2aad5c6479d4b253
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:18:30 EDT 2025
Wed Oct 01 05:05:44 EDT 2025
Wed Aug 27 02:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c175t-8e4ae7b3f44980ea3f9a1c6b440dfa9f0d17056e3686a1a5c2aad5c6479d4b253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2663643830
PQPubID 75733
PageCount 9
ParticipantIDs ieee_primary_9743389
proquest_journals_2663643830
crossref_primary_10_1109_JSEN_2022_3162652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref34
Tian (ref1) 2013; 44
ref15
ref37
ref31
ref11
ref33
ref10
ref32
ref17
ref16
ref19
ref18
(ref29) 2013
(ref30) 2013
Alimardani (ref36) 2009; 7
Jin (ref13) 2016; 46
ref24
ref23
ref26
Shi (ref2) 2021; 34
ref20
Chu (ref4) 2011; 33
ref22
(ref25) 2015
Al-Hamed (ref21) 2013; 23
ref28
ref27
ref8
ref7
ref9
ref3
ref6
Zhao (ref14) 2014; 46
ref5
References_xml – ident: ref37
  doi: 10.13031/2013.19392
– ident: ref5
  doi: 10.1016/j.automatica.2006.06.025
– ident: ref16
  doi: 10.1016/j.compag.2020.105695
– volume: 44
  start-page: 210
  issue: 7
  year: 2013
  ident: ref1
  article-title: Real-time motion detection for intelligent agricultural vehicle based on stereo vision
  publication-title: Trans. Chin. Soc. Agricult. Machinery
– volume-title: Agricultural Machinery Management Data
  year: 2013
  ident: ref29
– ident: ref26
  doi: 10.1177/1687814019846989
– ident: ref19
  doi: 10.3390/app10134667
– ident: ref18
  doi: 10.1016/j.compag.2018.11.008
– ident: ref31
  doi: 10.15832/ankutbd.493339
– ident: ref10
  doi: 10.3390/electronics10131526
– ident: ref20
  doi: 10.1177/0954407013511797
– ident: ref11
  doi: 10.1016/j.compag.2021.106217
– ident: ref27
  doi: 10.1109/ACCESS.2020.2983424
– volume-title: Agricultural Machinery Management Data
  year: 2015
  ident: ref25
– ident: ref12
  doi: 10.1080/00423110801958550
– ident: ref33
  doi: 10.1016/j.still.2019.104338
– ident: ref7
  doi: 10.1109/TCST.2008.922503
– ident: ref32
  doi: 10.1049/iet-cta.2020.0516
– ident: ref17
  doi: 10.1109/TVT.2020.3026106
– ident: ref34
  doi: 10.13031/aea.32.11500
– ident: ref24
  doi: 10.1109/TTE.2020.3048405
– ident: ref35
  doi: 10.3390/agronomy10040451
– volume: 46
  start-page: 992
  issue: 5
  year: 2016
  ident: ref13
  article-title: State observation of distributed drive electric vehicle using square root cubature Kalman filter
  publication-title: J. Southeast Univ. Natural Sci. Ed.
– ident: ref15
  doi: 10.1109/TVT.2013.2260190
– ident: ref28
  doi: 10.1016/j.mechmachtheory.2019.103586
– volume-title: Agricultural Machinery Management Data
  year: 2013
  ident: ref30
– ident: ref22
  doi: 10.1016/j.compag.2017.09.023
– ident: ref3
  doi: 10.1109/ACCESS.2021.3075325
– ident: ref23
  doi: 10.1016/j.energy.2015.10.066
– volume: 33
  start-page: 962
  issue: 11
  year: 2011
  ident: ref4
  article-title: Speed estimation for all-wheel drive vehicles based on multi-information fusion
  publication-title: Automot. Eng.
– volume: 23
  start-page: 1714
  issue: 6
  year: 2013
  ident: ref21
  article-title: Artificial neural network model for predicting draft and energy requirement of a disk plow
  publication-title: J. Animal Plant Sci.
– ident: ref9
  doi: 10.3390/s21020339
– volume: 46
  start-page: 42
  issue: 11
  year: 2014
  ident: ref14
  article-title: Real-time road condition estimation for four-wheel-drive vehicle
  publication-title: J. Harbin Inst. Technol.
– ident: ref6
  doi: 10.1109/CDC.2006.376777
– ident: ref8
  doi: 10.1109/CAC51589.2020.9327119
– volume: 34
  start-page: 245
  issue: 3
  year: 2021
  ident: ref2
  article-title: Bus ESC adaptive neural network sliding mode control based on disturbance observation
  publication-title: China J. Highway Transport.
– volume: 7
  start-page: 537
  issue: 3
  year: 2009
  ident: ref36
  article-title: Prediction of draft force and energy of subsoiling operation using ANN model
  publication-title: J. Food, Agricult. Environ.
SSID ssj0019757
Score 2.3421686
Snippet This study proposes a multi-method fusion algorithm to solve the problem of coupled traction resistance with the vehicle mass for distributed drive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 9580
SubjectTerms Agricultural vehicles
Algorithms
distributed driven agricultural vehicles
dynamics model
Estimation
Kinematics
kinematics model
Load tests
Mathematical models
Real-time systems
recursive least square method
Resistance
Root-mean-square errors
Tires
Traction
Traction resistance
Vehicle dynamics
Vehicles
Wheels
Title Traction Resistance Estimation Based on Multi-Method Fusion for Distributed Drive Agricultural Vehicles
URI https://ieeexplore.ieee.org/document/9743389
https://www.proquest.com/docview/2663643830
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4gF_XgAzSiaHrwZFzYR7dLjygQQgIHBcNt0227kJiAgeWgv95pdyG-Dt6abLtpOu30m87MNwC3EU8omh2o_VQQOVSkyuEJkw6XXCaIv7UXmATn4Yj1J3QwDacluN_lwmitbfCZbpim9eWrpdyYp7ImYl-0qPge7EUtludq7TwGPLKsnniAXYcG0bTwYHoubw6euyO0BH0fDVTE76H_7Q6yRVV-aWJ7vfSOYbidWB5V8trYZElDfvzgbPzvzE_gqMCZpJ1vjFMo6UUFDr-wD1ZgvyiAPn-vwmy8yjMcyJNeG0iJe4F08fjnmY3kAS87RbBhE3adoa07TXob89ZGEPeSjiHgNbWzsFtnhSqUtGerHa8HedFzG393BpNed_zYd4oaDI5EYJE5LU2FjpIgpZS3XC2ClAtPsoRSV6WCp64yfDxMB6zFhCdC6QuhQsloxBVN_DA4h_JiudAXQKgnlQhxtOSoKSR-RZEJX3PqpmnKohrcbaUSv-VUG7E1UVweGxHGRoRxIcIaVM0q7zoWC1yD-laOcXEY1zFikIAZSlb38u9RV3Bg_m2CArywDuVstdHXiDWy5MZusk880NIc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV25TgMxEB2FUAAFV0CE0wUVYsMetjcuORKFIykgoHQrr-1NJKQE5Sjg6xl7NxFXQWdpba3lscdvPDNvAE5jkVI0O1D76Sj2qMy0J1KuPKGEShF_myCyCc7tDm8907se65XgfJELY4xxwWemZpvOl69Hamafyi4Q-6JFJZZgmVFKWZ6ttfAZiNjxeuIR9j0axb3Chxn44uLuqdFBWzAM0URFBM_Cb7eQK6vySxe7C6a5Ae351PK4ktfabJrW1McP1sb_zn0T1gukSS7zrbEFJTPchrUv_IPbsFKUQB-8V6DfHec5DuTRTCyoxN1AGqgA8txGcoXXnSbYcCm7XttVnibNmX1tI4h8yY2l4LXVs7DbzRiVKLnsjxfMHuTFDFwE3g48Nxvd65ZXVGHwFEKLqVc3VJo4jTJKRd03MsqEDBRPKfV1JkXma8vIw03E61wGkqlQSs0Up7HQNA1ZtAvl4Who9oDQQGnJcLQSqCsUfkWRydAI6mdZxuMqnM2lkrzlZBuJM1J8kVgRJlaESSHCKlTsKi86FgtchcO5HJPiOE4SRCERt6Ss_v7fo05gpdVtPyQPt537A1i1_7EhAgE7hPJ0PDNHiDym6bHbcJ9lldVp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traction+Resistance+Estimation+Based+on+Multi-Method+Fusion+for+Distributed+Drive+Agricultural+Vehicles&rft.jtitle=IEEE+sensors+journal&rft.au=Sun%2C+Chenyang&rft.au=Zhou%2C+Jun&rft.au=Zhao%2C+Jianlei&rft.date=2022-05-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=22&rft.issue=10&rft.spage=9580&rft.epage=9588&rft_id=info:doi/10.1109%2FJSEN.2022.3162652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2022_3162652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon