Undergraduate students’ understanding of the application of integral calculus in kinematics

In calculus, students can integrate functions that require procedures or algorithmic rules, but they grapple with contextual problems involving real-life motion of physical bodies. When undergraduate students learn the application of integration, they are expected to comprehend the concept of integr...

Full description

Saved in:
Bibliographic Details
Published inEurasia Journal of Mathematics, Science and Technology Education Vol. 21; no. 3; p. em2601
Main Author Tatira, Benjamin
Format Journal Article
LanguageEnglish
Published East Sussex 01.03.2025
Subjects
Online AccessGet full text
ISSN1305-8215
1305-8223
DOI10.29333/ejmste/16049

Cover

Abstract In calculus, students can integrate functions that require procedures or algorithmic rules, but they grapple with contextual problems involving real-life motion of physical bodies. When undergraduate students learn the application of integration, they are expected to comprehend the concept of integration and apply it to optimization. This study used the action-process-object-schema (APOS) theory to determine undergraduate students’ construction of the application of integral calculus to kinematics. This study was qualitative and involved a case study of 150 secondary mathematics students registered for a Bachelor of Education degree at a university in South Africa. Data were collected through a written test by all the students and semi-structured interviews with eight students. The eight students were selected purposively, and the interview questions were meant to clarify some of the responses raised in the test. The content analysis of the written responses was done to reveal the stages of students’ concept development of kinematics. The findings revealed that students had significant challenges performing second- and third-level integration. These involve substituting the initial conditions at least once to find the constant integration for each level. Furthermore, students’ connection with displacement, velocity and acceleration concepts was weak, coupled with their failure to consider the point when the object was momentarily at rest.
AbstractList In calculus, students can integrate functions that require procedures or algorithmic rules, but they grapple with contextual problems involving real-life motion of physical bodies. When undergraduate students learn the application of integration, they are expected to comprehend the concept of integration and apply it to optimization. This study used the action-process-object-schema (APOS) theory to determine undergraduate students’ construction of the application of integral calculus to kinematics. This study was qualitative and involved a case study of 150 secondary mathematics students registered for a Bachelor of Education degree at a university in South Africa. Data were collected through a written test by all the students and semi-structured interviews with eight students. The eight students were selected purposively, and the interview questions were meant to clarify some of the responses raised in the test. The content analysis of the written responses was done to reveal the stages of students’ concept development of kinematics. The findings revealed that students had significant challenges performing second- and third-level integration. These involve substituting the initial conditions at least once to find the constant integration for each level. Furthermore, students’ connection with displacement, velocity and acceleration concepts was weak, coupled with their failure to consider the point when the object was momentarily at rest.
Author Tatira, Benjamin
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0002-0118-3676
  surname: Tatira
  fullname: Tatira, Benjamin
BookMark eNo9kL9OwzAQhy1UJErpyB6JOdTnS5x4RBVQpEosdESR7TglJXWC_wxsvAavx5OQtojpTr_77k76LsnE9tYQcg30lglEXJjd3gezAE4zcUamgDRPS8Zw8t9DfkHm3reKgihBMM6n5HVja-O2TtZRBpP4EGtjg__5-k7iYeKDtHVrt0nfJOHNJHIYulbL0Pb2ELU2mHG5S7TsdOyiH5PkvbVmPyLaX5HzRnbezP_qjGwe7l-Wq3T9_Pi0vFunGopcpFhQDnnJRIE1ZxkrtGJcF0XWNEblgEJwBaBKSZUQkAvFFQrMaiVUZkQBOCM3p7uD6z-i8aHa9dHZ8WWFUCJAhiUdqfREadd770xTDa7dS_dZAa2OEquTxOooEX8BlYlo7Q
Cites_doi 10.1016/j.jmathb.2019.01.006
10.20319/pijss.2016.s21.310324
10.1080/0020739X.2013.798875
10.21891/jeseh.581588
10.1016/j.jmathb.2017.05.003
10.1007/s10649-009-9201-5
10.29333/ejmste/106166
10.1088/1742-6596/2309/1/012062
10.1080/14926156.2013.816389
10.1063/1.5139842
10.1063/1.3680036
10.1007/978-1-4614-7966-6
10.1016/j.jmathb.2015.01.001
10.33423/jhetp.v23i4.5897
10.1103/PhysRevSTPER.7.010112
10.21890/ijres.00515
10.1007/s11858-021-01270-1
10.22342/jme.v14i1.pp129-148
10.1007/s11858-014-0571-5
10.4471/redimat.2014.40
10.1007/s10649-005-2531-z
10.1007/BF00704699
10.1023/A:1009738109343
10.1111/j.2044-8279.1962.tb01748.x
10.1063/5.0112656
10.1090/cbmath/006/01
10.20431/2349-0381.0809002
10.1016/j.jmathb.2012.12.004
10.4102/pythagoras.v40i1.484
10.1051/bioconf/20237905008
10.1080/07468342.2001.11921861
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.29333/ejmste/16049
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1305-8223
ExternalDocumentID 10_29333_ejmste_16049
GroupedDBID .GO
2WC
AAFWJ
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
E3Z
EBS
EJD
GX1
OK1
PHGZM
PHGZT
PIMPY
ABUWG
ACHQT
AZQEC
DWQXO
M~E
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c1759-37061582973d62427cb26c774ffeb513996b11b8a0b99159b6b3934db9b4e9713
IEDL.DBID BENPR
ISSN 1305-8215
IngestDate Mon Jun 30 11:58:52 EDT 2025
Sun Jul 06 05:07:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1759-37061582973d62427cb26c774ffeb513996b11b8a0b99159b6b3934db9b4e9713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0118-3676
OpenAccessLink https://www.proquest.com/docview/3183114380?pq-origsite=%requestingapplication%&accountid=15518
PQID 3183114380
PQPubID 6299053
ParticipantIDs proquest_journals_3183114380
crossref_primary_10_29333_ejmste_16049
PublicationCentury 2000
PublicationDate 20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 20250301
  day: 01
PublicationDecade 2020
PublicationPlace East Sussex
PublicationPlace_xml – name: East Sussex
PublicationTitle Eurasia Journal of Mathematics, Science and Technology Education
PublicationYear 2025
References 480399
480410
480398
480397
480396
480395
480394
480393
480392
480418
480417
480416
480415
480414
480413
480412
480411
480419
480388
480421
480387
480420
480407
480406
480405
480404
480403
480402
480401
480389
480400
480409
480408
480391
480390
References_xml – ident: 480391
  doi: 10.1016/j.jmathb.2019.01.006
– ident: 480395
  doi: 10.20319/pijss.2016.s21.310324
– ident: 480396
– ident: 480403
  doi: 10.1080/0020739X.2013.798875
– ident: 480397
  doi: 10.21891/jeseh.581588
– ident: 480400
  doi: 10.1016/j.jmathb.2017.05.003
– ident: 480420
  doi: 10.1007/s10649-009-9201-5
– ident: 480390
  doi: 10.29333/ejmste/106166
– ident: 480417
  doi: 10.1088/1742-6596/2309/1/012062
– ident: 480393
  doi: 10.1080/14926156.2013.816389
– ident: 480412
  doi: 10.1063/1.5139842
– ident: 480401
  doi: 10.1063/1.3680036
– ident: 480387
  doi: 10.1007/978-1-4614-7966-6
– ident: 480399
  doi: 10.1016/j.jmathb.2015.01.001
– ident: 480405
  doi: 10.33423/jhetp.v23i4.5897
– ident: 480408
– ident: 480409
  doi: 10.1103/PhysRevSTPER.7.010112
– ident: 480413
  doi: 10.21890/ijres.00515
– ident: 480419
  doi: 10.1007/s11858-021-01270-1
– ident: 480402
– ident: 480410
  doi: 10.22342/jme.v14i1.pp129-148
– ident: 480404
  doi: 10.1007/s11858-014-0571-5
– ident: 480406
  doi: 10.4471/redimat.2014.40
– ident: 480394
  doi: 10.1007/s10649-005-2531-z
– ident: 480411
  doi: 10.1007/BF00704699
– ident: 480389
  doi: 10.1023/A:1009738109343
– ident: 480414
  doi: 10.1111/j.2044-8279.1962.tb01748.x
– ident: 480418
  doi: 10.1063/5.0112656
– ident: 480388
  doi: 10.1090/cbmath/006/01
– ident: 480416
– ident: 480421
  doi: 10.20431/2349-0381.0809002
– ident: 480398
  doi: 10.1016/j.jmathb.2012.12.004
– ident: 480407
  doi: 10.4102/pythagoras.v40i1.484
– ident: 480415
  doi: 10.1051/bioconf/20237905008
– ident: 480392
  doi: 10.1080/07468342.2001.11921861
SSID ssib019819266
ssj0060402
ssib023166678
Score 2.3306801
Snippet In calculus, students can integrate functions that require procedures or algorithmic rules, but they grapple with contextual problems involving real-life...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage em2601
SubjectTerms Calculus
College students
Kinematics
Title Undergraduate students’ understanding of the application of integral calculus in kinematics
URI https://www.proquest.com/docview/3183114380
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB76uHgRRcVqLTmIt6X7TDcHEZWWIrSIWOhFlmSTFXy0tdtexb_h3_OXOJPdpfXiNUsuM7PffJNkvgE47_naTcPYc2QsORYo3DhSG-Vw3wSxDrJMxtSNPBrz4SS8m0bTGoyrXhh6VllhogVqPU_pjLxLsefRrG73avHh0NQoul2tRmjIcrSCvrQSY3VoIiTHGPfNm_74_qGKMKywkdFsCAySG6TvFq4RyyMnxgRYCHFiFgyCrnl5R1t3Pe6S1uZ24vqL2zYZDfZgt2SR7Lpw-z7UzOwAnuwMo-el1GskkCwvVCvzn69vtt5uYWHzjCHtY1t317RUCke8MfQanQnmuMJekYRaUdf8ECaD_uPt0CmnJzgpUgKByEFshTpnA01NIL1U-TxFtpdlRkVI_ARXnqdi6SrkiJFQXAUiCLUSKjQCa9cjaMzmM3MMzFN-T_ZwN6ftMlRGCKmVm0UySrUXtuCiMk2yKEQyEiwurA2TwoaJtWEL2pXhkvJfyZONZ0_-_3wKOz5N37UvwNrQWC3X5gwpwUp1Sj93oD767P8C-wG4Tg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcAFgQCx4wNwi5rVjQ8VYmlV6CKEitQLCnbsILG00LRC3PgNfoaP4UsYO4laLtx6deQcZsZ-b2zPPIDDiivt2A8di4ecYoJClcWlEhZ1lRdKL0l4qKuR2x3auPWvekFvDr6LWhj9rLLYE81GLQexPiMv69hztFa3ffL6ZmnVKH27Wkho8FxaQVZNi7G8sKOpPt4xhUurlxfo7yPXrde65w0rVxmwYoROhitMo7quMPWkLpaoxMKlMbKiJFEiQILEqHAcEXJbIJcKmKDCY54vBRO-Ypjj4X_nYQFpB_NLsHBW61zfFBGNGT0yqAlhQjKF6YKBB8SOwAoRcLPGn4i6nldWjy_o27JDbd3bcxoo_-KEAb_6CiznrJWcZmG2CnOqvwZ3RjPpYcjlGAkrSbMumenP5xcZT5fMkEFCkGaSqbtyPZQ3qngmGCX6DDLFEfKEpNc0kU3X4XYmdtyAUn_QV5tAHOFWeAVnUz2d-0IxxqWwk4AHsXT8LTguTBO9Zk05IkxmjA2jzIaRseEW7BaGi_K1mUaTSNr-__MBLDa67VbUuuw0d2DJ1cq_5vXZLpRGw7HaQzoyEvu5zwnczzrMfgHu8fFJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Undergraduate+students%E2%80%99+understanding+of+the+application+of+integral+calculus+in+kinematics&rft.jtitle=Eurasia+journal+of+mathematics%2C+science+and+technology+education&rft.au=Tatira%2C+Benjamin&rft.date=2025-03-01&rft.issn=1305-8215&rft.eissn=1305-8223&rft.volume=21&rft.issue=3&rft.spage=em2601&rft_id=info:doi/10.29333%2Fejmste%2F16049&rft.externalDBID=n%2Fa&rft.externalDocID=10_29333_ejmste_16049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1305-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1305-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1305-8215&client=summon