Highly regioselective bioconversion of ginsenoside Re into 20(S/R)-Rf2 by an optimized culture of Cordyceps sinensis
The hydroxylation of C25 on dammarane ginsenosides profoundly influences their therapeutic effect. The resulting 25-OH derivatives have been proven to be more efficacious than their original forms against many diseases. However, this type of ginsenoside is scarce in nature, which hinders their furth...
Saved in:
| Published in | New journal of chemistry Vol. 44; no. 33; pp. 14005 - 14014 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Royal Society of Chemistry
07.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1144-0546 1369-9261 |
| DOI | 10.1039/D0NJ01828G |
Cover
| Abstract | The hydroxylation of C25 on dammarane ginsenosides profoundly influences their therapeutic effect. The resulting 25-OH derivatives have been proven to be more efficacious than their original forms against many diseases. However, this type of ginsenoside is scarce in nature, which hinders their further applications. Furthermore, current strategies for their chemical modification always result in undesirable side products. Nevertheless, although biocatalysis may be suitable for this task, to date, there has been no reports in the literature on this subject. Herein, ginsenoside Re was thoroughly converted into 20(S/R)-Rg2 and their 25-OH derivatives 20(S/R)-Rf2 using
Cordyceps sinensis
in an optimized medium composed of 20 g L
−1
glucose, 5 g L
−1
ammonium sulfate, and 1 mM FeCl
3
. The chemical correctness of both ginsenoside Rf2 enantiomers was validated
via
LC-IT-TOF-MSn and
13
C-NMR methods. Time-course experiments indicated reaction equilibrium after 6 days of biocatalysis. The transformation pathway was established to be Re → 20(S/R)-Rg2 → 20(S/R)-Rf2. The absolute quantity for both enantiomers of Rf2 was determined by multiple reaction monitoring modes of LC-QQQ-MS and their molar bioconversion rate was calculated to be 83.1%, of which 20(S)-Rf2 accounted for 46.8%, while 20(R)-Rf2 36.3%. These two 25-OH derivatives are the direct hydration products from 20(S/R)-Rg2 with no other side metabolites, suggesting that this is a highly regioselective catalytic system. Owing to the high yield of the target compound and simple chemical background in the reaction mixture, this biocatalytic system can be employed for the facile preparation of several 25-OH ginsenosides. |
|---|---|
| AbstractList | The hydroxylation of C25 on dammarane ginsenosides profoundly influences their therapeutic effect. The resulting 25-OH derivatives have been proven to be more efficacious than their original forms against many diseases. However, this type of ginsenoside is scarce in nature, which hinders their further applications. Furthermore, current strategies for their chemical modification always result in undesirable side products. Nevertheless, although biocatalysis may be suitable for this task, to date, there has been no reports in the literature on this subject. Herein, ginsenoside Re was thoroughly converted into 20(S/R)-Rg2 and their 25-OH derivatives 20(S/R)-Rf2 using
Cordyceps sinensis
in an optimized medium composed of 20 g L
−1
glucose, 5 g L
−1
ammonium sulfate, and 1 mM FeCl
3
. The chemical correctness of both ginsenoside Rf2 enantiomers was validated
via
LC-IT-TOF-MSn and
13
C-NMR methods. Time-course experiments indicated reaction equilibrium after 6 days of biocatalysis. The transformation pathway was established to be Re → 20(S/R)-Rg2 → 20(S/R)-Rf2. The absolute quantity for both enantiomers of Rf2 was determined by multiple reaction monitoring modes of LC-QQQ-MS and their molar bioconversion rate was calculated to be 83.1%, of which 20(S)-Rf2 accounted for 46.8%, while 20(R)-Rf2 36.3%. These two 25-OH derivatives are the direct hydration products from 20(S/R)-Rg2 with no other side metabolites, suggesting that this is a highly regioselective catalytic system. Owing to the high yield of the target compound and simple chemical background in the reaction mixture, this biocatalytic system can be employed for the facile preparation of several 25-OH ginsenosides. The hydroxylation of C25 on dammarane ginsenosides profoundly influences their therapeutic effect. The resulting 25-OH derivatives have been proven to be more efficacious than their original forms against many diseases. However, this type of ginsenoside is scarce in nature, which hinders their further applications. Furthermore, current strategies for their chemical modification always result in undesirable side products. Nevertheless, although biocatalysis may be suitable for this task, to date, there has been no reports in the literature on this subject. Herein, ginsenoside Re was thoroughly converted into 20(S/R)-Rg2 and their 25-OH derivatives 20(S/R)-Rf2 using Cordyceps sinensis in an optimized medium composed of 20 g L−1 glucose, 5 g L−1 ammonium sulfate, and 1 mM FeCl3. The chemical correctness of both ginsenoside Rf2 enantiomers was validated via LC-IT-TOF-MSn and 13C-NMR methods. Time-course experiments indicated reaction equilibrium after 6 days of biocatalysis. The transformation pathway was established to be Re → 20(S/R)-Rg2 → 20(S/R)-Rf2. The absolute quantity for both enantiomers of Rf2 was determined by multiple reaction monitoring modes of LC-QQQ-MS and their molar bioconversion rate was calculated to be 83.1%, of which 20(S)-Rf2 accounted for 46.8%, while 20(R)-Rf2 36.3%. These two 25-OH derivatives are the direct hydration products from 20(S/R)-Rg2 with no other side metabolites, suggesting that this is a highly regioselective catalytic system. Owing to the high yield of the target compound and simple chemical background in the reaction mixture, this biocatalytic system can be employed for the facile preparation of several 25-OH ginsenosides. |
| Author | Song, Yan He, Tianzhu Qiu, Zhidong Qiu, Ye Qu, Mo Wang, Weinan Liu, Jishuang Xin, Yu |
| Author_xml | – sequence: 1 givenname: Weinan orcidid: 0000-0003-3845-6057 surname: Wang fullname: Wang, Weinan organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 2 givenname: Jishuang surname: Liu fullname: Liu, Jishuang organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 3 givenname: Yu surname: Xin fullname: Xin, Yu organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 4 givenname: Tianzhu surname: He fullname: He, Tianzhu organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 5 givenname: Ye surname: Qiu fullname: Qiu, Ye organization: National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China – sequence: 6 givenname: Mo surname: Qu fullname: Qu, Mo organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 7 givenname: Yan surname: Song fullname: Song, Yan organization: Changchun University of Chinese Medicine, Changchun 130117, China – sequence: 8 givenname: Zhidong surname: Qiu fullname: Qiu, Zhidong organization: Changchun University of Chinese Medicine, Changchun 130117, China |
| BookMark | eNptkNFKwzAUhoNMcJve-AQBb1SoS5o0bS9l6qYMhanXpU1PZkaXzCQd1Ke3Y4IgXp1z8X3n8P8jNDDWAELnlNxQwvLJHXl-IjSLs9kRGlIm8iiPBR30O-U8IgkXJ2jk_ZoQSlNBhyjM9eqj6bCDlbYeGpBB7wBX2kprduC8tgZbhVfaeDDW6xrwErA2weKYXL5OllfRUsW46nDZg9ugN_oLaizbJrQO9urUurqTsPXYawPGa3-KjlXZeDj7mWP0_nD_Np1Hi5fZ4_R2EUma8hCVElSepCynSmWilkBzpniZMSkTATxmJZVVxXMBVSVTJbI-JOvNpM4SAhVhY3RxuLt19rMFH4q1bZ3pXxYxZ4LxPEuzniIHSjrrvQNVSB3K0AcPrtRNQUmx77b47bZXrv8oW6c3pev-g78Bypt8Lw |
| CitedBy_id | crossref_primary_10_1021_acsomega_2c00557 crossref_primary_10_1039_D2RA01470J crossref_primary_10_1016_j_phytochem_2024_114099 crossref_primary_10_1021_acsomega_4c00837 crossref_primary_10_1016_j_procbio_2023_12_017 crossref_primary_10_1002_cbdv_202200421 crossref_primary_10_1016_j_biteb_2023_101419 |
| Cites_doi | 10.1186/1749-8546-5-20 10.1021/jf302638f 10.1254/jphs.FMJ04001X4 10.1007/BF02975384 10.1039/c0cc04153j 10.1080/21501203.2011.654354 10.1128/AEM.61.1.165-169.1995 10.1016/j.biopha.2018.01.039 10.1007/s10068-010-0091-1 10.1155/2016/5738694 10.1038/srep08598 10.1039/C5CS00423C 10.1016/j.jgr.2014.05.002 10.1111/j.1365-2672.2005.02640.x 10.1016/j.biotechadv.2015.03.001 10.3390/molecules201019291 10.1016/j.jconrel.2010.12.016 10.1124/dmd.31.8.1065 10.3109/07388551.2015.1083942 10.1039/c3sc22349c 10.1111/j.1574-6968.2002.tb11473.x 10.3390/molecules21050645 10.1016/j.etap.2016.04.013 10.3389/fphar.2012.00025 10.1039/C5MD00382B 10.1007/s10529-015-1964-4 10.1002/pros.20742 10.1039/C6NJ01702A 10.1016/j.jgr.2016.08.004 10.1016/j.bbrc.2017.10.056 10.1016/S0162-0134(00)00171-9 10.1016/j.jare.2014.11.009 10.3389/fmicb.2016.02087 10.1002/hlca.200490116 10.1007/s13318-010-0022-9 10.1016/j.steroids.2013.11.018 10.1016/j.bmcl.2014.10.050 10.1016/j.canlet.2009.01.005 10.1016/j.bmc.2017.06.043 10.1371/journal.pone.0002697 10.1016/j.ejmech.2012.07.012 10.1007/s00253-014-6256-8 10.1021/np070053v |
| ContentType | Journal Article |
| Copyright | Copyright Royal Society of Chemistry 2020 |
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
| DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
| DOI | 10.1039/D0NJ01828G |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
| DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
| DatabaseTitleList | CrossRef Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1369-9261 |
| EndPage | 14014 |
| ExternalDocumentID | 10_1039_D0NJ01828G |
| GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29N 2WC 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- P2P R56 R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT 7SR 8BQ 8FD H9R JG9 KA0 |
| ID | FETCH-LOGICAL-c174t-acef957391ff86dce193f4a83cc56e423a1cbb496ebbc7f6811431745d850eb03 |
| ISSN | 1144-0546 |
| IngestDate | Mon Jun 30 09:34:09 EDT 2025 Tue Jul 01 02:50:39 EDT 2025 Thu Apr 24 23:00:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c174t-acef957391ff86dce193f4a83cc56e423a1cbb496ebbc7f6811431745d850eb03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3845-6057 |
| PQID | 2436349878 |
| PQPubID | 2048886 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2436349878 crossref_citationtrail_10_1039_D0NJ01828G crossref_primary_10_1039_D0NJ01828G |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-07 |
| PublicationDateYYYYMMDD | 2020-09-07 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | New journal of chemistry |
| PublicationYear | 2020 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Seyednejad (D0NJ01828G-(cit42)/*[position()=1]) 2011; 152 Feng (D0NJ01828G-(cit13)/*[position()=1]) 2017; 494 Xia (D0NJ01828G-(cit33)/*[position()=1]) 2014; 80 Quan (D0NJ01828G-(cit12)/*[position()=1]) 2015; 5 Hegazy (D0NJ01828G-(cit9)/*[position()=1]) 2015; 6 Beaulieu (D0NJ01828G-(cit18)/*[position()=1]) 1995; 61 Kim (D0NJ01828G-(cit1)/*[position()=1]) 2017; 41 Nag (D0NJ01828G-(cit14)/*[position()=1]) 2012; 3 Hoffmann (D0NJ01828G-(cit21)/*[position()=1]) 2016; 45 Park (D0NJ01828G-(cit23)/*[position()=1]) 1998; 21 Chen (D0NJ01828G-(cit32)/*[position()=1]) 2016; 4 Yang (D0NJ01828G-(cit22)/*[position()=1]) 2015; 46 Shin (D0NJ01828G-(cit11)/*[position()=1]) 2016; 36 Yi (D0NJ01828G-(cit6)/*[position()=1]) 2010; 19 Hao (D0NJ01828G-(cit34)/*[position()=1]) 2011; 35 Knop (D0NJ01828G-(cit28)/*[position()=1]) 2015; 99 Leung (D0NJ01828G-(cit2)/*[position()=1]) 2010; 5 Hao (D0NJ01828G-(cit40)/*[position()=1]) 2008; 3 Jin (D0NJ01828G-(cit45)/*[position()=1]) 2011; 47 Hasegawa (D0NJ01828G-(cit4)/*[position()=1]) 2004; 95 Zhang (D0NJ01828G-(cit25)/*[position()=1]) 2012; 3 Wang (D0NJ01828G-(cit38)/*[position()=1]) 2018; 99 Ku (D0NJ01828G-(cit7)/*[position()=1]) 2016; 21 Dong (D0NJ01828G-(cit26)/*[position()=1]) 2005; 99 Qu (D0NJ01828G-(cit43)/*[position()=1]) 2015; 6 Singh (D0NJ01828G-(cit16)/*[position()=1]) 2017; 7 Yang (D0NJ01828G-(cit24)/*[position()=1]) 2014; 38 Tawab (D0NJ01828G-(cit3)/*[position()=1]) 2003; 31 Barrios-González (D0NJ01828G-(cit17)/*[position()=1]) 2018 Kilpin (D0NJ01828G-(cit19)/*[position()=1]) 2013; 4 Chen (D0NJ01828G-(cit30)/*[position()=1]) 2007; 70 Kim (D0NJ01828G-(cit8)/*[position()=1]) 2015; 33 Wang (D0NJ01828G-(cit44)/*[position()=1]) 2012; 55 Xiu (D0NJ01828G-(cit29)/*[position()=1]) 2016; 40 Zhao (D0NJ01828G-(cit35)/*[position()=1]) 2016; 38 Wang (D0NJ01828G-(cit41)/*[position()=1]) 2008; 68 Yu (D0NJ01828G-(cit36)/*[position()=1]) 2016; 44 Teng (D0NJ01828G-(cit5)/*[position()=1]) 2004; 87 Wu (D0NJ01828G-(cit31)/*[position()=1]) 2012; 60 Jernejc (D0NJ01828G-(cit20)/*[position()=1]) 2002; 217 Sun (D0NJ01828G-(cit10)/*[position()=1]) 2018; 26 Wang (D0NJ01828G-(cit15)/*[position()=1]) 2015; 20 Qu (D0NJ01828G-(cit37)/*[position()=1]) 2014; 24 Endo (D0NJ01828G-(cit27)/*[position()=1]) 2001; 83 Wang (D0NJ01828G-(cit39)/*[position()=1]) 2009; 278 |
| References_xml | – volume: 5 start-page: 20 year: 2010 ident: D0NJ01828G-(cit2)/*[position()=1] publication-title: China's Med. doi: 10.1186/1749-8546-5-20 – volume: 60 start-page: 10007 year: 2012 ident: D0NJ01828G-(cit31)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf302638f – volume: 95 start-page: 153 year: 2004 ident: D0NJ01828G-(cit4)/*[position()=1] publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.FMJ04001X4 – volume: 21 start-page: 615 year: 1998 ident: D0NJ01828G-(cit23)/*[position()=1] publication-title: Arch. Pharmacal Res. doi: 10.1007/BF02975384 – volume: 47 start-page: 2502 year: 2011 ident: D0NJ01828G-(cit45)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc04153j – volume: 46 start-page: 3137 year: 2015 ident: D0NJ01828G-(cit22)/*[position()=1] publication-title: Zhongcaoyao – volume: 3 start-page: 2 year: 2012 ident: D0NJ01828G-(cit25)/*[position()=1] publication-title: Mycology doi: 10.1080/21501203.2011.654354 – volume: 61 start-page: 165 year: 1995 ident: D0NJ01828G-(cit18)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.61.1.165-169.1995 – volume: 99 start-page: 33 year: 2018 ident: D0NJ01828G-(cit38)/*[position()=1] publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.01.039 – volume: 19 start-page: 647 year: 2010 ident: D0NJ01828G-(cit6)/*[position()=1] publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-010-0091-1 – volume: 4 start-page: 5738694 year: 2016 ident: D0NJ01828G-(cit32)/*[position()=1] publication-title: J. Evidence-Based Complementary Altern. Med. doi: 10.1155/2016/5738694 – volume: 5 start-page: 8598 year: 2015 ident: D0NJ01828G-(cit12)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08598 – volume: 45 start-page: 577 year: 2016 ident: D0NJ01828G-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00423C – volume: 38 start-page: 194 year: 2014 ident: D0NJ01828G-(cit24)/*[position()=1] publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2014.05.002 – volume: 99 start-page: 483 year: 2005 ident: D0NJ01828G-(cit26)/*[position()=1] publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2005.02640.x – volume: 33 start-page: 717 year: 2015 ident: D0NJ01828G-(cit8)/*[position()=1] publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.03.001 – volume: 20 start-page: 19291 year: 2015 ident: D0NJ01828G-(cit15)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules201019291 – volume: 152 start-page: 168 year: 2011 ident: D0NJ01828G-(cit42)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2010.12.016 – volume: 31 start-page: 1065 year: 2003 ident: D0NJ01828G-(cit3)/*[position()=1] publication-title: Drug Metab. doi: 10.1124/dmd.31.8.1065 – volume: 36 start-page: 1036 year: 2016 ident: D0NJ01828G-(cit11)/*[position()=1] publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2015.1083942 – volume: 4 start-page: 1410 year: 2013 ident: D0NJ01828G-(cit19)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/c3sc22349c – volume: 217 start-page: 185 year: 2002 ident: D0NJ01828G-(cit20)/*[position()=1] publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2002.tb11473.x – volume: 21 start-page: 645 year: 2016 ident: D0NJ01828G-(cit7)/*[position()=1] publication-title: Molecules doi: 10.3390/molecules21050645 – volume: 44 start-page: 93 year: 2016 ident: D0NJ01828G-(cit36)/*[position()=1] publication-title: Environ. Toxicol. Pharmacol. doi: 10.1016/j.etap.2016.04.013 – volume: 3 start-page: 25 year: 2012 ident: D0NJ01828G-(cit14)/*[position()=1] publication-title: Front. Pharmacol. doi: 10.3389/fphar.2012.00025 – volume: 6 start-page: 2004 year: 2015 ident: D0NJ01828G-(cit43)/*[position()=1] publication-title: Med. Chem. Commun. doi: 10.1039/C5MD00382B – volume: 38 start-page: 43 year: 2016 ident: D0NJ01828G-(cit35)/*[position()=1] publication-title: Biotechnol. Lett. doi: 10.1007/s10529-015-1964-4 – volume: 68 start-page: 809 year: 2008 ident: D0NJ01828G-(cit41)/*[position()=1] publication-title: Prostate doi: 10.1002/pros.20742 – volume: 40 start-page: 9073 year: 2016 ident: D0NJ01828G-(cit29)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C6NJ01702A – volume: 41 start-page: 435 year: 2017 ident: D0NJ01828G-(cit1)/*[position()=1] publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.08.004 – volume: 494 start-page: 556 year: 2017 ident: D0NJ01828G-(cit13)/*[position()=1] publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.056 – volume: 83 start-page: 247 year: 2001 ident: D0NJ01828G-(cit27)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/S0162-0134(00)00171-9 – volume: 6 start-page: 17 year: 2015 ident: D0NJ01828G-(cit9)/*[position()=1] publication-title: J. Adv. Res. doi: 10.1016/j.jare.2014.11.009 – volume: 7 start-page: 2087 year: 2017 ident: D0NJ01828G-(cit16)/*[position()=1] publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.02087 – volume-title: Current Developments in Biotechnology and Bioengineering year: 2018 ident: D0NJ01828G-(cit17)/*[position()=1] – volume: 87 start-page: 1270 year: 2004 ident: D0NJ01828G-(cit5)/*[position()=1] publication-title: Helvetica doi: 10.1002/hlca.200490116 – volume: 35 start-page: 109 year: 2011 ident: D0NJ01828G-(cit34)/*[position()=1] publication-title: Eur. J. Drug Metab. Pharmacokinet. doi: 10.1007/s13318-010-0022-9 – volume: 80 start-page: 24 year: 2014 ident: D0NJ01828G-(cit33)/*[position()=1] publication-title: Steroids doi: 10.1016/j.steroids.2013.11.018 – volume: 24 start-page: 5390 year: 2014 ident: D0NJ01828G-(cit37)/*[position()=1] publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2014.10.050 – volume: 278 start-page: 241 year: 2009 ident: D0NJ01828G-(cit39)/*[position()=1] publication-title: Cancer Lett. doi: 10.1016/j.canlet.2009.01.005 – volume: 26 start-page: 1275 year: 2018 ident: D0NJ01828G-(cit10)/*[position()=1] publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2017.06.043 – volume: 3 start-page: e2697 year: 2008 ident: D0NJ01828G-(cit40)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0002697 – volume: 55 start-page: 137 year: 2012 ident: D0NJ01828G-(cit44)/*[position()=1] publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2012.07.012 – volume: 99 start-page: 1025 year: 2015 ident: D0NJ01828G-(cit28)/*[position()=1] publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6256-8 – volume: 70 start-page: 1203 year: 2007 ident: D0NJ01828G-(cit30)/*[position()=1] publication-title: J. Nat. Prod. doi: 10.1021/np070053v |
| SSID | ssj0011761 |
| Score | 2.3503458 |
| Snippet | The hydroxylation of C25 on dammarane ginsenosides profoundly influences their therapeutic effect. The resulting 25-OH derivatives have been proven to be more... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 14005 |
| SubjectTerms | Ammonium sulfate Bioconversion Derivatives Enantiomers Ferric chloride Hydroxylation Iron chlorides Metabolites NMR Nuclear magnetic resonance Regioselectivity |
| Title | Highly regioselective bioconversion of ginsenoside Re into 20(S/R)-Rf2 by an optimized culture of Cordyceps sinensis |
| URI | https://www.proquest.com/docview/2436349878 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry P&R customDbUrl: https://pubs.rsc.org eissn: 1369-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011761 issn: 1144-0546 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wAviKsYG8gSFzFVYW5s5_I4jY4ylSJ1rehbFDsOC9raQtqH9k_xFzknTtJUqhDwElWu07Q-X-3vHH8-h5DXQZLG3UQmjpRGOMKNQ0fFfujASqgUCo9DgQeFPw-9_kRcTuW01frVUC2tluq93uw9V_I_VoU2sCuekv0Hy9YfCg3wGuwLV7AwXP_KxijSuFl3sLjCPC8K2hRa9GxeaMmLQBiSQYwpY07wLMEiDZghYt5xGVDLK3j06I0bOqPURR6KZSpgCrnNNkBDbU6OIqRwDh7qWptF3kGV_CzP8ianRYlkIwGFrkrIbWP1dj75alB1UyuAslWBoCy_XsXl8lkUCMPWaVb369u0wIDizfWqGaMAhxR3XPwaVTYSUslQC5lJ85vYmRc8Owf4Y5kX27ZxD1Dj2mzt1XRt00WWsOS8MfmCr8hkYyVH31HsXSYYxyyrCZt9Z-BfBd-2i2ElABh-iS4mg0E07k3Hbxc_HCxThtv5Zc2WO-TAhWWEtcnBWW_8aVBvXHV9m6K3-jVVRlwenm4ft8uBdilAwWvGD8j90iGhZxZdD0nLzB6Ru_XQPSZLizK6izK6gzI6T2kDZXRkKKKMuuzd1enoBPFF1ZrG0LHCFy3xhbfW-KIVvp6QyUVvfN53ylodjgafdunE2qSh9HnYTdPAS7QBxyAVccC1lp4Bzh53tVIi9IxS2k-9AEYIqKuQSSCZUYw_Je3ZfGaeEcp8pYH0yxjuFMxgDIOppIuOt3SVLw7JSTV6kS4T2WM9lZuoEFTwMPrAhpfFSH88JK_qvgubvmVvr-PKCFH5f8kjV3CPizDwg-d_fvuI3Nti_pi0lz9X5gUw1aV6WaLjNw7CmGY |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+regioselective+bioconversion+of+ginsenoside+Re+into+20%28S%2FR%29-Rf2+by+an+optimized+culture+of+Cordyceps+sinensis&rft.jtitle=New+journal+of+chemistry&rft.au=Wang%2C+Weinan&rft.au=Liu%2C+Jishuang&rft.au=Yu%2C+Xin&rft.au=He%2C+Tianzhu&rft.date=2020-09-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=44&rft.issue=33&rft.spage=14005&rft.epage=14014&rft_id=info:doi/10.1039%2Fd0nj01828g&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |