AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammali...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental cell
Main Authors Cormerais, Yann, Lapp, Samuel C., Kalafut, Krystle C., Cissé, Madi Y., Shin, Jong, Stefadu, Benjamin, Personnaz, Jean, Schrötter, Sandra, Freed, Jessica, D’Amore, Angelica, Martin, Emma R., Salussolia, Catherine L., Sahin, Mustafa, Menon, Suchithra, Byles, Vanessa, Manning, Brendan D.
Format Journal Article
LanguageEnglish
Published United States 30.05.2025
Subjects
Online AccessGet full text
ISSN1534-5807
1878-1551
1878-1551
DOI10.1016/j.devcel.2025.05.008

Cover

Abstract Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1.
AbstractList Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1.Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1.
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1.
Author Byles, Vanessa
Lapp, Samuel C.
Stefadu, Benjamin
Cormerais, Yann
D’Amore, Angelica
Menon, Suchithra
Shin, Jong
Martin, Emma R.
Cissé, Madi Y.
Sahin, Mustafa
Personnaz, Jean
Schrötter, Sandra
Freed, Jessica
Manning, Brendan D.
Kalafut, Krystle C.
Salussolia, Catherine L.
Author_xml – sequence: 1
  givenname: Yann
  surname: Cormerais
  fullname: Cormerais, Yann
– sequence: 2
  givenname: Samuel C.
  surname: Lapp
  fullname: Lapp, Samuel C.
– sequence: 3
  givenname: Krystle C.
  surname: Kalafut
  fullname: Kalafut, Krystle C.
– sequence: 4
  givenname: Madi Y.
  surname: Cissé
  fullname: Cissé, Madi Y.
– sequence: 5
  givenname: Jong
  surname: Shin
  fullname: Shin, Jong
– sequence: 6
  givenname: Benjamin
  surname: Stefadu
  fullname: Stefadu, Benjamin
– sequence: 7
  givenname: Jean
  surname: Personnaz
  fullname: Personnaz, Jean
– sequence: 8
  givenname: Sandra
  surname: Schrötter
  fullname: Schrötter, Sandra
– sequence: 9
  givenname: Jessica
  surname: Freed
  fullname: Freed, Jessica
– sequence: 10
  givenname: Angelica
  surname: D’Amore
  fullname: D’Amore, Angelica
– sequence: 11
  givenname: Emma R.
  surname: Martin
  fullname: Martin, Emma R.
– sequence: 12
  givenname: Catherine L.
  surname: Salussolia
  fullname: Salussolia, Catherine L.
– sequence: 13
  givenname: Mustafa
  surname: Sahin
  fullname: Sahin, Mustafa
– sequence: 14
  givenname: Suchithra
  surname: Menon
  fullname: Menon, Suchithra
– sequence: 15
  givenname: Vanessa
  surname: Byles
  fullname: Byles, Vanessa
– sequence: 16
  givenname: Brendan D.
  orcidid: 0000-0003-3895-5956
  surname: Manning
  fullname: Manning, Brendan D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40480230$$D View this record in MEDLINE/PubMed
BookMark eNo9kc1OwzAQhC0EolB4A4R85JKwtuPEOaKKP4FUCcrZchI7dZXYxU5AvD0pBaRZ7Ry-3cPMKTp03mmELgikBEh-vUkb_VHrLqVAeQqTQBygEyIKkRDOyeHkOcsSLqCYodMYNzCdEQHHaJZBJoAyOEH9zdMq6XVj1aAbvF37OE346tRgvcPe4NXrguLauyH4LuI42H7sxphg5Ro82BhHncStrq2xNe5Xy5cFwdG2TnXWtT-QD61yuA3-c1ifoSOjuqjPf_ccvd3drhYPyfPy_nFx85zUpGBDQnVFCtBaQVVUUGagIAfDjKgYNUxnIme8IYyXnJakoSZr8ryBmmS1MbmGks3R1f7vNvj3UcdB9jZOWXXKaT9GySjJ85IzsUMvf9GxmnKQ22B7Fb7kX0QTkO2BOvgYgzb_CAG5a0Ju5L4JuWtCwiQQ7BsJbH2U
Cites_doi 10.1074/jbc.M702636200
10.1113/JP283686
10.1038/nmeth.2089
10.1093/hmg/ddp025
10.1073/pnas.0405659101
10.1016/j.molcel.2024.10.008
10.1083/jcb.200903131
10.1016/j.cell.2005.02.031
10.1038/s43587-023-00416-y
10.1523/JNEUROSCI.5540-06.2007
10.1038/ncb1753
10.1083/jcb.jcb.200206108
10.1016/j.molcel.2007.03.003
10.1016/j.devcel.2006.10.007
10.1126/science.1232044
10.1016/j.devcel.2010.11.020
10.1016/j.cmet.2008.10.002
10.1096/fj.202100823R
10.1038/ncomms15637
10.1038/ncb839
10.1038/ncomms15755
10.1126/science.1207056
10.1016/j.nbd.2014.02.006
10.1016/j.devcel.2021.02.022
10.1093/hmg/11.5.525
10.1126/scisignal.2002739
10.21769/BioProtoc.908
10.1093/hmg/ddn192
10.1371/journal.pone.0006305
10.1083/jcb.200408161
10.4161/auto.25722
10.1002/dvg.20271
10.1172/JCI7319
10.1096/fj.10-168799
10.1128/MCB.00985-10
10.1186/s13395-016-0084-8
10.1038/s41586-020-2444-0
10.1074/jbc.M501707200
10.1523/JNEUROSCI.3294-12.2013
10.1126/sciadv.adr5807
10.1074/jbc.M210837200
10.1016/j.cell.2006.06.055
10.1038/nature09584
10.1016/j.molcel.2008.03.003
10.1126/science.1157535
10.1038/ncb1547
10.1038/s42255-019-0038-7
10.1016/S0092-8674(03)00929-2
10.1074/jbc.M704406200
10.1016/j.molcel.2012.06.009
10.1128/MCB.01695-07
10.1007/978-1-0716-2675-7_9
10.1042/bj3440427
10.1074/jbc.M504045200
10.1074/jbc.M506850200
10.1093/nar/23.24.5080
10.1002/jcsm.12846
10.1002/ana.10283
10.1074/jbc.M202678200
10.1016/j.stem.2011.09.008
10.1016/j.cell.2010.02.024
10.1073/pnas.1904774116
10.1016/j.immuni.2006.04.005
10.1016/j.cell.2013.11.049
10.1016/j.cell.2020.12.024
10.1016/j.nbd.2011.08.024
10.1016/j.celrep.2022.110824
10.1152/japplphysiol.00700.2021
10.1042/BJ20131673
10.1074/jbc.M702376200
10.1038/nmeth.1314
10.1016/j.cell.2017.04.001
10.1016/j.cmet.2011.06.002
10.1074/jbc.M201142200
10.1007/s13402-020-00584-8
10.1016/j.molmet.2021.101309
10.1101/gad.1240504
10.1038/nature11745
10.1016/S1097-2765(02)00568-3
10.1152/physrev.1997.77.3.731
10.1038/s41580-019-0199-y
10.1073/pnas.151033798
ContentType Journal Article
Copyright Copyright © 2025 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2025 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.devcel.2025.05.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
ExternalDocumentID 40480230
10_1016_j_devcel_2025_05_008
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R35 CA197459
– fundername: NCI NIH HHS
  grantid: P01 CA120964
– fundername: NIDDK NIH HHS
  grantid: F31 DK128873
– fundername: NIDDK NIH HHS
  grantid: T32 DK128781
GroupedDBID ---
--K
0R~
1~5
29F
2WC
4.4
457
4G.
53G
5GY
5VS
62-
7-5
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAQFI
AAQXK
AAVLU
AAXUO
AAYWO
AAYXX
ABDGV
ABJNI
ABMAC
ABWVN
ACGFO
ACGFS
ACNCT
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEFWE
AENEX
AETEA
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGHFR
AGKMS
AGQPQ
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
EFKBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
HVGLF
HZ~
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
OZT
P2P
R2-
ROL
RPZ
SDG
SES
SSZ
TR2
UHS
NPM
7X8
ID FETCH-LOGICAL-c173t-2eb170eea0b7b0940a060f3f8b32f3e48635d13595291d2f4d66d0c14cff6e093
ISSN 1534-5807
1878-1551
IngestDate Fri Sep 05 15:54:38 EDT 2025
Thu Jul 17 02:13:47 EDT 2025
Wed Sep 10 06:04:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords microcephaly
lean mass
PI3K
insulin
RHEB
feeding
myotubes
lysosome
neurons
phosphoinositide 3-kinase
Language English
License Copyright © 2025 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c173t-2eb170eea0b7b0940a060f3f8b32f3e48635d13595291d2f4d66d0c14cff6e093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3895-5956
PMID 40480230
PQID 3216695389
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3216695389
pubmed_primary_40480230
crossref_primary_10_1016_j_devcel_2025_05_008
PublicationCentury 2000
PublicationDate 2025-May-30
PublicationDateYYYYMMDD 2025-05-30
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2025
References Baraldo (10.1016/j.devcel.2025.05.008_bib70) 2022; 600
Kim (10.1016/j.devcel.2025.05.008_bib27) 2008; 10
Inoki (10.1016/j.devcel.2025.05.008_bib23) 2003; 115
Kobayashi (10.1016/j.devcel.2025.05.008_bib38) 1999; 59
Acharya (10.1016/j.devcel.2025.05.008_bib59) 2024; 84
Way (10.1016/j.devcel.2025.05.008_bib67) 2009; 18
Yang (10.1016/j.devcel.2025.05.008_bib46) 2021; 56
Vander Haar (10.1016/j.devcel.2025.05.008_bib12) 2007; 9
Liu (10.1016/j.devcel.2025.05.008_bib76) 2020; 21
Hernandez (10.1016/j.devcel.2025.05.008_bib40) 2007; 45
Wright (10.1016/j.devcel.2025.05.008_bib78) 2021; 35
Efeyan (10.1016/j.devcel.2025.05.008_bib32) 2013; 493
Valvezan (10.1016/j.devcel.2025.05.008_bib1) 2019; 1
Padi (10.1016/j.devcel.2025.05.008_bib71) 2019; 116
Navé (10.1016/j.devcel.2025.05.008_bib3) 1999; 344
Napolitano (10.1016/j.devcel.2025.05.008_bib58) 2020; 585
Inoki (10.1016/j.devcel.2025.05.008_bib15) 2002; 4
Dibble (10.1016/j.devcel.2025.05.008_bib19) 2012; 47
Menon (10.1016/j.devcel.2025.05.008_bib51) 2012; 5
Byles (10.1016/j.devcel.2025.05.008_bib79) 2021; 53
Wu (10.1016/j.devcel.2025.05.008_bib81) 2022; 132
Rosner (10.1016/j.devcel.2025.05.008_bib5) 2008; 17
Jaeschke (10.1016/j.devcel.2025.05.008_bib21) 2002; 159
Schneider (10.1016/j.devcel.2025.05.008_bib83) 2012; 9
Kobayashi (10.1016/j.devcel.2025.05.008_bib35) 2001; 98
Sasaki (10.1016/j.devcel.2025.05.008_bib53) 2006; 24
Shigeyama (10.1016/j.devcel.2025.05.008_bib41) 2008; 28
Jaiswal (10.1016/j.devcel.2025.05.008_bib63) 2022; 13
Sancak (10.1016/j.devcel.2025.05.008_bib28) 2008; 320
Guridi (10.1016/j.devcel.2025.05.008_bib52) 2016; 6
Holz (10.1016/j.devcel.2025.05.008_bib6) 2005; 280
Fonseca (10.1016/j.devcel.2025.05.008_bib10) 2007; 282
Cloëtta (10.1016/j.devcel.2025.05.008_bib60) 2013; 33
Inoki (10.1016/j.devcel.2025.05.008_bib24) 2006; 126
Goodman (10.1016/j.devcel.2025.05.008_bib85) 2011; 25
Roux (10.1016/j.devcel.2025.05.008_bib18) 2004; 101
Magri (10.1016/j.devcel.2025.05.008_bib68) 2011; 9
Lai (10.1016/j.devcel.2025.05.008_bib56) 2014; 460
Esper (10.1016/j.devcel.2025.05.008_bib82) 2023; 2566
Rolfe (10.1016/j.devcel.2025.05.008_bib62) 1997; 77
Zhang (10.1016/j.devcel.2025.05.008_bib80) 2009; 4
Horman (10.1016/j.devcel.2025.05.008_bib26) 2006; 281
Mannick (10.1016/j.devcel.2025.05.008_bib75) 2023; 3
SenGupta (10.1016/j.devcel.2025.05.008_bib49) 2010; 468
Sancak (10.1016/j.devcel.2025.05.008_bib11) 2007; 25
Oshiro (10.1016/j.devcel.2025.05.008_bib9) 2007; 282
Guertin (10.1016/j.devcel.2025.05.008_bib36) 2006; 11
Xiong (10.1016/j.devcel.2025.05.008_bib66) 2014; 66
Sekulić (10.1016/j.devcel.2025.05.008_bib4) 2000; 60
Ni (10.1016/j.devcel.2025.05.008_bib47) 2017; 8
Reynolds (10.1016/j.devcel.2025.05.008_bib2) 2002; 277
Onda (10.1016/j.devcel.2025.05.008_bib34) 1999; 104
Bentzinger (10.1016/j.devcel.2025.05.008_bib50) 2008; 8
Goorden (10.1016/j.devcel.2025.05.008_bib37) 2011; 31
Gwinn (10.1016/j.devcel.2025.05.008_bib25) 2008; 30
Goncharova (10.1016/j.devcel.2025.05.008_bib22) 2002; 277
Menon (10.1016/j.devcel.2025.05.008_bib16) 2014; 156
Meikle (10.1016/j.devcel.2025.05.008_bib43) 2007; 27
Wang (10.1016/j.devcel.2025.05.008_bib13) 2007; 282
Zoncu (10.1016/j.devcel.2025.05.008_bib30) 2011; 334
Uhlmann (10.1016/j.devcel.2025.05.008_bib44) 2002; 52
Bar-Peled (10.1016/j.devcel.2025.05.008_bib31) 2013; 340
Carson (10.1016/j.devcel.2025.05.008_bib61) 2012; 45
Prentzell (10.1016/j.devcel.2025.05.008_bib72) 2021; 184
Kwiatkowski (10.1016/j.devcel.2025.05.008_bib20) 2002; 11
Sancak (10.1016/j.devcel.2025.05.008_bib29) 2010; 141
Lemos (10.1016/j.devcel.2025.05.008_bib57) 2021; 44
Schleich (10.1016/j.devcel.2025.05.008_bib65) 2009; 4
Dong (10.1016/j.devcel.2025.05.008_bib64) 2004; 18
Kovacina (10.1016/j.devcel.2025.05.008_bib8) 2003; 278
Manning (10.1016/j.devcel.2025.05.008_bib55) 2004; 167
Castets (10.1016/j.devcel.2025.05.008_bib45) 2013; 9
Manning (10.1016/j.devcel.2025.05.008_bib14) 2002; 10
Bakula (10.1016/j.devcel.2025.05.008_bib73) 2017; 8
Schrötter (10.1016/j.devcel.2025.05.008_bib39) 2022; 39
Chiang (10.1016/j.devcel.2025.05.008_bib7) 2005; 280
Manning (10.1016/j.devcel.2025.05.008_bib33) 2017; 169
Risson (10.1016/j.devcel.2025.05.008_bib69) 2009; 187
Bayly-Jones (10.1016/j.devcel.2025.05.008_bib74) 2024; 10
Schwenk (10.1016/j.devcel.2025.05.008_bib54) 1995; 23
Durkin (10.1016/j.devcel.2025.05.008_bib77) 2013; 3
Ma (10.1016/j.devcel.2025.05.008_bib17) 2005; 121
Yecies (10.1016/j.devcel.2025.05.008_bib42) 2011; 14
Zou (10.1016/j.devcel.2025.05.008_bib48) 2011; 20
Schmidt (10.1016/j.devcel.2025.05.008_bib84) 2009; 6
39386441 - bioRxiv. 2024 Sep 23:2024.09.23.614519. doi: 10.1101/2024.09.23.614519.
References_xml – volume: 282
  start-page: 20329
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib9
  article-title: The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702636200
– volume: 600
  start-page: 5055
  year: 2022
  ident: 10.1016/j.devcel.2025.05.008_bib70
  article-title: Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation
  publication-title: J. Physiol.
  doi: 10.1113/JP283686
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.devcel.2025.05.008_bib83
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 18
  start-page: 1252
  year: 2009
  ident: 10.1016/j.devcel.2025.05.008_bib67
  article-title: Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp025
– volume: 101
  start-page: 13489
  year: 2004
  ident: 10.1016/j.devcel.2025.05.008_bib18
  article-title: Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0405659101
– volume: 84
  start-page: 4385
  year: 2024
  ident: 10.1016/j.devcel.2025.05.008_bib59
  article-title: mTORC1 activity licenses its own release from the lysosomal surface
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.10.008
– volume: 187
  start-page: 859
  year: 2009
  ident: 10.1016/j.devcel.2025.05.008_bib69
  article-title: Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200903131
– volume: 121
  start-page: 179
  year: 2005
  ident: 10.1016/j.devcel.2025.05.008_bib17
  article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2005.02.031
– volume: 3
  start-page: 642
  year: 2023
  ident: 10.1016/j.devcel.2025.05.008_bib75
  article-title: Targeting the biology of aging with mTOR inhibitors
  publication-title: Nat. Aging
  doi: 10.1038/s43587-023-00416-y
– volume: 27
  start-page: 5546
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib43
  article-title: A Mouse Model of Tuberous Sclerosis: Neuronal Loss of Tsc1 Causes Dysplastic and Ectopic Neurons, Reduced Myelination, Seizure Activity, and Limited Survival
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5540-06.2007
– volume: 10
  start-page: 935
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib27
  article-title: Regulation of TORC1 by Rag GTPases in nutrient response
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1753
– volume: 159
  start-page: 217
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib21
  article-title: Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.jcb.200206108
– volume: 25
  start-page: 903
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib11
  article-title: PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.03.003
– volume: 11
  start-page: 859
  year: 2006
  ident: 10.1016/j.devcel.2025.05.008_bib36
  article-title: Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCα, but Not S6K1
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.10.007
– volume: 340
  start-page: 1100
  year: 2013
  ident: 10.1016/j.devcel.2025.05.008_bib31
  article-title: A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
  publication-title: Science
  doi: 10.1126/science.1232044
– volume: 59
  start-page: 1206
  year: 1999
  ident: 10.1016/j.devcel.2025.05.008_bib38
  article-title: Renal Carcinogenesis, Hepatic Hemangiomatosis, and Embryonic Lethality Caused by a Germ-Line Tsc2 Mutation in Mice
  publication-title: Cancer Res.
– volume: 20
  start-page: 97
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib48
  article-title: Rheb1 Is Required for mTORC1 and Myelination in Postnatal Brain Development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.11.020
– volume: 8
  start-page: 411
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib50
  article-title: Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.10.002
– volume: 35
  year: 2021
  ident: 10.1016/j.devcel.2025.05.008_bib78
  article-title: Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation
  publication-title: FASEB J.
  doi: 10.1096/fj.202100823R
– volume: 8
  year: 2017
  ident: 10.1016/j.devcel.2025.05.008_bib73
  article-title: WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15637
– volume: 4
  start-page: 648
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib15
  article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb839
– volume: 8
  year: 2017
  ident: 10.1016/j.devcel.2025.05.008_bib47
  article-title: Raptor regulates functional maturation of murine beta cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15755
– volume: 334
  start-page: 678
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib30
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
  doi: 10.1126/science.1207056
– volume: 66
  start-page: 43
  year: 2014
  ident: 10.1016/j.devcel.2025.05.008_bib66
  article-title: PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2014.02.006
– volume: 56
  start-page: 811
  year: 2021
  ident: 10.1016/j.devcel.2025.05.008_bib46
  article-title: Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.02.022
– volume: 11
  start-page: 525
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib20
  article-title: A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/11.5.525
– volume: 5
  start-page: ra24
  year: 2012
  ident: 10.1016/j.devcel.2025.05.008_bib51
  article-title: Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002739
– volume: 3
  year: 2013
  ident: 10.1016/j.devcel.2025.05.008_bib77
  article-title: Isolation of Mouse Embryo Fibroblasts
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.908
– volume: 17
  start-page: 2934
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib5
  article-title: Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn192
– volume: 4
  year: 2009
  ident: 10.1016/j.devcel.2025.05.008_bib65
  article-title: Akt Phosphorylates Both Tsc1 and Tsc2 in Drosophila, but Neither Phosphorylation Is Required for Normal Animal Growth
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006305
– volume: 167
  start-page: 399
  year: 2004
  ident: 10.1016/j.devcel.2025.05.008_bib55
  article-title: Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200408161
– volume: 9
  start-page: 1435
  year: 2013
  ident: 10.1016/j.devcel.2025.05.008_bib45
  article-title: MTORC1 determines autophagy through ULK1 regulation in skeletal muscle
  publication-title: Autophagy
  doi: 10.4161/auto.25722
– volume: 45
  start-page: 101
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib40
  article-title: Generation of a conditional disruption of the Tsc2 gene
  publication-title: Genesis
  doi: 10.1002/dvg.20271
– volume: 104
  start-page: 687
  year: 1999
  ident: 10.1016/j.devcel.2025.05.008_bib34
  article-title: Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI7319
– volume: 25
  start-page: 1028
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib85
  article-title: Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique
  publication-title: FASEB J.
  doi: 10.1096/fj.10-168799
– volume: 31
  start-page: 1672
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib37
  article-title: Rheb Is Essential for Murine Development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00985-10
– volume: 6
  start-page: 13
  year: 2016
  ident: 10.1016/j.devcel.2025.05.008_bib52
  article-title: Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism
  publication-title: Skelet. Muscle
  doi: 10.1186/s13395-016-0084-8
– volume: 585
  start-page: 597
  year: 2020
  ident: 10.1016/j.devcel.2025.05.008_bib58
  article-title: A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome
  publication-title: Nature
  doi: 10.1038/s41586-020-2444-0
– volume: 280
  start-page: 25485
  year: 2005
  ident: 10.1016/j.devcel.2025.05.008_bib7
  article-title: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M501707200
– volume: 33
  start-page: 7799
  year: 2013
  ident: 10.1016/j.devcel.2025.05.008_bib60
  article-title: Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3294-12.2013
– volume: 10
  year: 2024
  ident: 10.1016/j.devcel.2025.05.008_bib74
  article-title: Structure of the human TSC:WIPI3 lysosomal recruitment complex
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adr5807
– volume: 278
  start-page: 10189
  year: 2003
  ident: 10.1016/j.devcel.2025.05.008_bib8
  article-title: Identification of a proline-rich Akt substrate as a 14-3-3 binding partner
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210837200
– volume: 126
  start-page: 955
  year: 2006
  ident: 10.1016/j.devcel.2025.05.008_bib24
  article-title: TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.055
– volume: 468
  start-page: 1100
  year: 2010
  ident: 10.1016/j.devcel.2025.05.008_bib49
  article-title: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
  publication-title: Nature
  doi: 10.1038/nature09584
– volume: 60
  start-page: 3504
  year: 2000
  ident: 10.1016/j.devcel.2025.05.008_bib4
  article-title: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells
  publication-title: Cancer Res.
– volume: 30
  start-page: 214
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib25
  article-title: AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.03.003
– volume: 320
  start-page: 1496
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib28
  article-title: The rag GTPases bind raptor and mediate amino acid signaling to mTORC1
  publication-title: Science
  doi: 10.1126/science.1157535
– volume: 9
  start-page: 316
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib12
  article-title: Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1547
– volume: 1
  start-page: 321
  year: 2019
  ident: 10.1016/j.devcel.2025.05.008_bib1
  article-title: Molecular logic of mTORC1 signalling as a metabolic rheostat
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0038-7
– volume: 115
  start-page: 577
  year: 2003
  ident: 10.1016/j.devcel.2025.05.008_bib23
  article-title: TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
– volume: 282
  start-page: 24514
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib10
  article-title: PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704406200
– volume: 47
  start-page: 535
  year: 2012
  ident: 10.1016/j.devcel.2025.05.008_bib19
  article-title: TBC1D7 Is a Third Subunit of the TSC1-TSC2 Complex Upstream of mTORC1
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.06.009
– volume: 28
  start-page: 2971
  year: 2008
  ident: 10.1016/j.devcel.2025.05.008_bib41
  article-title: Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01695-07
– volume: 4
  year: 2009
  ident: 10.1016/j.devcel.2025.05.008_bib80
  article-title: Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway
  publication-title: PLoS One
– volume: 2566
  start-page: 113
  year: 2023
  ident: 10.1016/j.devcel.2025.05.008_bib82
  article-title: Immunofluorescence Labeling of Skeletal Muscle in Development, Regeneration, and Disease
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-2675-7_9
– volume: 344
  start-page: 427
  year: 1999
  ident: 10.1016/j.devcel.2025.05.008_bib3
  article-title: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation
  publication-title: Biochem. J.
  doi: 10.1042/bj3440427
– volume: 280
  start-page: 26089
  year: 2005
  ident: 10.1016/j.devcel.2025.05.008_bib6
  article-title: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504045200
– volume: 281
  start-page: 5335
  year: 2006
  ident: 10.1016/j.devcel.2025.05.008_bib26
  article-title: Insulin Antagonizes Ischemia-induced Thr172 Phosphorylation of AMP-activated Protein Kinase α-Subunits in Heart via Hierarchical Phosphorylation of Ser485/491
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506850200
– volume: 23
  start-page: 5080
  year: 1995
  ident: 10.1016/j.devcel.2025.05.008_bib54
  article-title: A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.24.5080
– volume: 13
  start-page: 495
  year: 2022
  ident: 10.1016/j.devcel.2025.05.008_bib63
  article-title: AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12846
– volume: 52
  start-page: 285
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib44
  article-title: Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.10283
– volume: 277
  start-page: 30958
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib22
  article-title: Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M202678200
– volume: 9
  start-page: 447
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib68
  article-title: Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.09.008
– volume: 141
  start-page: 290
  year: 2010
  ident: 10.1016/j.devcel.2025.05.008_bib29
  article-title: Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.024
– volume: 116
  start-page: 20505
  year: 2019
  ident: 10.1016/j.devcel.2025.05.008_bib71
  article-title: Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1904774116
– volume: 24
  start-page: 729
  year: 2006
  ident: 10.1016/j.devcel.2025.05.008_bib53
  article-title: Canonical NF-κB Activity, Dispensable for B Cell Development, Replaces BAFF-Receptor Signals and Promotes B Cell Proliferation upon Activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.04.005
– volume: 156
  start-page: 771
  year: 2014
  ident: 10.1016/j.devcel.2025.05.008_bib16
  article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.049
– volume: 184
  start-page: 655
  year: 2021
  ident: 10.1016/j.devcel.2025.05.008_bib72
  article-title: G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2020.12.024
– volume: 45
  start-page: 369
  year: 2012
  ident: 10.1016/j.devcel.2025.05.008_bib61
  article-title: Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.08.024
– volume: 39
  year: 2022
  ident: 10.1016/j.devcel.2025.05.008_bib39
  article-title: The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110824
– volume: 132
  start-page: 1020
  year: 2022
  ident: 10.1016/j.devcel.2025.05.008_bib81
  article-title: Optimization of a pericyte therapy to improve muscle recovery after limb immobilization
  publication-title: J. Appl. Physiol. (1985)
  doi: 10.1152/japplphysiol.00700.2021
– volume: 460
  start-page: 363
  year: 2014
  ident: 10.1016/j.devcel.2025.05.008_bib56
  article-title: A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators
  publication-title: Biochem. J.
  doi: 10.1042/BJ20131673
– volume: 282
  start-page: 20036
  year: 2007
  ident: 10.1016/j.devcel.2025.05.008_bib13
  article-title: PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702376200
– volume: 6
  start-page: 275
  year: 2009
  ident: 10.1016/j.devcel.2025.05.008_bib84
  article-title: SUnSET, a nonradioactive method to monitor protein synthesis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1314
– volume: 169
  start-page: 381
  year: 2017
  ident: 10.1016/j.devcel.2025.05.008_bib33
  article-title: AKT/PKB Signaling: Navigating the Network
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.001
– volume: 14
  start-page: 21
  year: 2011
  ident: 10.1016/j.devcel.2025.05.008_bib42
  article-title: Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.06.002
– volume: 277
  start-page: 17657
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib2
  article-title: Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201142200
– volume: 44
  start-page: 581
  year: 2021
  ident: 10.1016/j.devcel.2025.05.008_bib57
  article-title: The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models
  publication-title: Cell. Oncol. (Dordr)
  doi: 10.1007/s13402-020-00584-8
– volume: 53
  year: 2021
  ident: 10.1016/j.devcel.2025.05.008_bib79
  article-title: Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2021.101309
– volume: 18
  start-page: 2479
  year: 2004
  ident: 10.1016/j.devcel.2025.05.008_bib64
  article-title: Tsc2 is not a critical target of Akt during normal Drosophila development
  publication-title: Genes Dev.
  doi: 10.1101/gad.1240504
– volume: 493
  start-page: 679
  year: 2013
  ident: 10.1016/j.devcel.2025.05.008_bib32
  article-title: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
  publication-title: Nature
  doi: 10.1038/nature11745
– volume: 10
  start-page: 151
  year: 2002
  ident: 10.1016/j.devcel.2025.05.008_bib14
  article-title: Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00568-3
– volume: 77
  start-page: 731
  year: 1997
  ident: 10.1016/j.devcel.2025.05.008_bib62
  article-title: Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1997.77.3.731
– volume: 21
  start-page: 183
  year: 2020
  ident: 10.1016/j.devcel.2025.05.008_bib76
  article-title: mTOR at the nexus of nutrition, growth, ageing and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0199-y
– volume: 98
  start-page: 8762
  year: 2001
  ident: 10.1016/j.devcel.2025.05.008_bib35
  article-title: A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.151033798
– reference: 39386441 - bioRxiv. 2024 Sep 23:2024.09.23.614519. doi: 10.1101/2024.09.23.614519.
SSID ssj0016180
Score 2.4814434
SecondaryResourceType online_first
Snippet Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Title AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth
URI https://www.ncbi.nlm.nih.gov/pubmed/40480230
https://www.proquest.com/docview/3216695389
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBYjZbCXsfuyGxrszcjI8v2xmI2ysg26lLVPRrKltcVxQmIPsl-_IylW3HQb6yA2xg6y0PmscyR93xFC78ANhDovHUnB95AoqGIiKsGIlqYplYsgM3kLPn1Ojk6jj2fx2Y6QadQlnfCrn7_VlfyPVeEe2FWrZG9hWVco3IBrsC-cwcJw_icbQ4BGjPRDh43Li8UajtWmcVHg7GvBBjL62oOPed43_ZpY1qRpcaKVlpot5M1nX06KwNN8Dt4MykWz55P3HYbq3cU4jB1RjXR-Edk4nkYBMbBccZu54Jy3O8YPXy7tFPS8l41X-K6r5w1XfWd7nI1edR49LKCWdi3fCovqS-_cH89UsNgsstNrnWtE4szucnuj67azCFd-LX9AtX1dgMmpSrOdqxqW5_c8mOMVDpS1q9KWUupSSgo_rQc_YCnEVxN0cHh88u3YrTUlgdlfz9VuEFgaFuDN2lwPYP4wKjHRyewBur8dVuBDi5GH6I5sH6G7dqPRzWM0HyMF7yEFLxTWSMEDUrBDCgYQ4D2kYIsU7JBi_mSQgi1SnqDTD-9nxRHZbrRBqiANO8LAYadUSk5FKnRCRU4TqkKViZCpUEYZRKV1oCXcLA9qpqI6SWpaBVGlVCJpHj5Fk3bRyucIB0zkVPBEJHEdCQ5fe5RmIVzEFa1VzaaIDK1XLm0-lfJvVpuit0MTl9DxaUDzVi76dRmyIEly8Nf5FD2zbe9KjHSmBBhcv7jl216iezvgvkKTbtXL1xB0duLNFjW_AL2fgiA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AKT-mediated+phosphorylation+of+TSC2+controls+stimulus-+and+tissue-specific+mTORC1+signaling+and+organ+growth&rft.jtitle=Developmental+cell&rft.au=Cormerais%2C+Yann&rft.au=Lapp%2C+Samuel+C.&rft.au=Kalafut%2C+Krystle+C.&rft.au=Ciss%C3%A9%2C+Madi+Y.&rft.date=2025-05-30&rft.issn=1534-5807&rft_id=info:doi/10.1016%2Fj.devcel.2025.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_devcel_2025_05_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon