AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammali...
Saved in:
Published in | Developmental cell |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
30.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1534-5807 1878-1551 1878-1551 |
DOI | 10.1016/j.devcel.2025.05.008 |
Cover
Abstract | Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1. |
---|---|
AbstractList | Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1.Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1. Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling-established through biochemical and cell biological studies-function under physiological states in specific mammalian tissues is undefined. Here, we characterize a genetic mouse model lacking the five phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can activate mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as the brain and skeletal muscle, associated with cell-intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mice demonstrate that TSC2 phosphorylation is a primary mechanism of mTORC1 regulation in response to exogenous signals in some, but not all, tissues and provide a genetic tool to study the physiological regulation of mTORC1. |
Author | Byles, Vanessa Lapp, Samuel C. Stefadu, Benjamin Cormerais, Yann D’Amore, Angelica Menon, Suchithra Shin, Jong Martin, Emma R. Cissé, Madi Y. Sahin, Mustafa Personnaz, Jean Schrötter, Sandra Freed, Jessica Manning, Brendan D. Kalafut, Krystle C. Salussolia, Catherine L. |
Author_xml | – sequence: 1 givenname: Yann surname: Cormerais fullname: Cormerais, Yann – sequence: 2 givenname: Samuel C. surname: Lapp fullname: Lapp, Samuel C. – sequence: 3 givenname: Krystle C. surname: Kalafut fullname: Kalafut, Krystle C. – sequence: 4 givenname: Madi Y. surname: Cissé fullname: Cissé, Madi Y. – sequence: 5 givenname: Jong surname: Shin fullname: Shin, Jong – sequence: 6 givenname: Benjamin surname: Stefadu fullname: Stefadu, Benjamin – sequence: 7 givenname: Jean surname: Personnaz fullname: Personnaz, Jean – sequence: 8 givenname: Sandra surname: Schrötter fullname: Schrötter, Sandra – sequence: 9 givenname: Jessica surname: Freed fullname: Freed, Jessica – sequence: 10 givenname: Angelica surname: D’Amore fullname: D’Amore, Angelica – sequence: 11 givenname: Emma R. surname: Martin fullname: Martin, Emma R. – sequence: 12 givenname: Catherine L. surname: Salussolia fullname: Salussolia, Catherine L. – sequence: 13 givenname: Mustafa surname: Sahin fullname: Sahin, Mustafa – sequence: 14 givenname: Suchithra surname: Menon fullname: Menon, Suchithra – sequence: 15 givenname: Vanessa surname: Byles fullname: Byles, Vanessa – sequence: 16 givenname: Brendan D. orcidid: 0000-0003-3895-5956 surname: Manning fullname: Manning, Brendan D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40480230$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc1OwzAQhC0EolB4A4R85JKwtuPEOaKKP4FUCcrZchI7dZXYxU5AvD0pBaRZ7Ry-3cPMKTp03mmELgikBEh-vUkb_VHrLqVAeQqTQBygEyIKkRDOyeHkOcsSLqCYodMYNzCdEQHHaJZBJoAyOEH9zdMq6XVj1aAbvF37OE346tRgvcPe4NXrguLauyH4LuI42H7sxphg5Ro82BhHncStrq2xNe5Xy5cFwdG2TnXWtT-QD61yuA3-c1ifoSOjuqjPf_ccvd3drhYPyfPy_nFx85zUpGBDQnVFCtBaQVVUUGagIAfDjKgYNUxnIme8IYyXnJakoSZr8ryBmmS1MbmGks3R1f7vNvj3UcdB9jZOWXXKaT9GySjJ85IzsUMvf9GxmnKQ22B7Fb7kX0QTkO2BOvgYgzb_CAG5a0Ju5L4JuWtCwiQQ7BsJbH2U |
Cites_doi | 10.1074/jbc.M702636200 10.1113/JP283686 10.1038/nmeth.2089 10.1093/hmg/ddp025 10.1073/pnas.0405659101 10.1016/j.molcel.2024.10.008 10.1083/jcb.200903131 10.1016/j.cell.2005.02.031 10.1038/s43587-023-00416-y 10.1523/JNEUROSCI.5540-06.2007 10.1038/ncb1753 10.1083/jcb.jcb.200206108 10.1016/j.molcel.2007.03.003 10.1016/j.devcel.2006.10.007 10.1126/science.1232044 10.1016/j.devcel.2010.11.020 10.1016/j.cmet.2008.10.002 10.1096/fj.202100823R 10.1038/ncomms15637 10.1038/ncb839 10.1038/ncomms15755 10.1126/science.1207056 10.1016/j.nbd.2014.02.006 10.1016/j.devcel.2021.02.022 10.1093/hmg/11.5.525 10.1126/scisignal.2002739 10.21769/BioProtoc.908 10.1093/hmg/ddn192 10.1371/journal.pone.0006305 10.1083/jcb.200408161 10.4161/auto.25722 10.1002/dvg.20271 10.1172/JCI7319 10.1096/fj.10-168799 10.1128/MCB.00985-10 10.1186/s13395-016-0084-8 10.1038/s41586-020-2444-0 10.1074/jbc.M501707200 10.1523/JNEUROSCI.3294-12.2013 10.1126/sciadv.adr5807 10.1074/jbc.M210837200 10.1016/j.cell.2006.06.055 10.1038/nature09584 10.1016/j.molcel.2008.03.003 10.1126/science.1157535 10.1038/ncb1547 10.1038/s42255-019-0038-7 10.1016/S0092-8674(03)00929-2 10.1074/jbc.M704406200 10.1016/j.molcel.2012.06.009 10.1128/MCB.01695-07 10.1007/978-1-0716-2675-7_9 10.1042/bj3440427 10.1074/jbc.M504045200 10.1074/jbc.M506850200 10.1093/nar/23.24.5080 10.1002/jcsm.12846 10.1002/ana.10283 10.1074/jbc.M202678200 10.1016/j.stem.2011.09.008 10.1016/j.cell.2010.02.024 10.1073/pnas.1904774116 10.1016/j.immuni.2006.04.005 10.1016/j.cell.2013.11.049 10.1016/j.cell.2020.12.024 10.1016/j.nbd.2011.08.024 10.1016/j.celrep.2022.110824 10.1152/japplphysiol.00700.2021 10.1042/BJ20131673 10.1074/jbc.M702376200 10.1038/nmeth.1314 10.1016/j.cell.2017.04.001 10.1016/j.cmet.2011.06.002 10.1074/jbc.M201142200 10.1007/s13402-020-00584-8 10.1016/j.molmet.2021.101309 10.1101/gad.1240504 10.1038/nature11745 10.1016/S1097-2765(02)00568-3 10.1152/physrev.1997.77.3.731 10.1038/s41580-019-0199-y 10.1073/pnas.151033798 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Copyright © 2025 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.devcel.2025.05.008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1878-1551 |
ExternalDocumentID | 40480230 10_1016_j_devcel_2025_05_008 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R35 CA197459 – fundername: NCI NIH HHS grantid: P01 CA120964 – fundername: NIDDK NIH HHS grantid: F31 DK128873 – fundername: NIDDK NIH HHS grantid: T32 DK128781 |
GroupedDBID | --- --K 0R~ 1~5 29F 2WC 4.4 457 4G. 53G 5GY 5VS 62- 7-5 AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAQFI AAQXK AAVLU AAXUO AAYWO AAYXX ABDGV ABJNI ABMAC ABWVN ACGFO ACGFS ACNCT ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AENEX AETEA AEUPX AEXQZ AFFNX AFPUW AFTJW AGCQF AGHFR AGKMS AGQPQ AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CITATION CS3 D0L DIK DU5 E3Z EBS EFKBS EJD F5P FCP FDB FEDTE FGOYB FIRID HVGLF HZ~ IHE IXB J1W JIG M3Z M41 O-L O9- OK1 OZT P2P R2- ROL RPZ SDG SES SSZ TR2 UHS NPM 7X8 |
ID | FETCH-LOGICAL-c173t-2eb170eea0b7b0940a060f3f8b32f3e48635d13595291d2f4d66d0c14cff6e093 |
ISSN | 1534-5807 1878-1551 |
IngestDate | Fri Sep 05 15:54:38 EDT 2025 Thu Jul 17 02:13:47 EDT 2025 Wed Sep 10 06:04:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | microcephaly lean mass PI3K insulin RHEB feeding myotubes lysosome neurons phosphoinositide 3-kinase |
Language | English |
License | Copyright © 2025 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c173t-2eb170eea0b7b0940a060f3f8b32f3e48635d13595291d2f4d66d0c14cff6e093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3895-5956 |
PMID | 40480230 |
PQID | 3216695389 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3216695389 pubmed_primary_40480230 crossref_primary_10_1016_j_devcel_2025_05_008 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-30 |
PublicationDateYYYYMMDD | 2025-05-30 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Developmental cell |
PublicationTitleAlternate | Dev Cell |
PublicationYear | 2025 |
References | Baraldo (10.1016/j.devcel.2025.05.008_bib70) 2022; 600 Kim (10.1016/j.devcel.2025.05.008_bib27) 2008; 10 Inoki (10.1016/j.devcel.2025.05.008_bib23) 2003; 115 Kobayashi (10.1016/j.devcel.2025.05.008_bib38) 1999; 59 Acharya (10.1016/j.devcel.2025.05.008_bib59) 2024; 84 Way (10.1016/j.devcel.2025.05.008_bib67) 2009; 18 Yang (10.1016/j.devcel.2025.05.008_bib46) 2021; 56 Vander Haar (10.1016/j.devcel.2025.05.008_bib12) 2007; 9 Liu (10.1016/j.devcel.2025.05.008_bib76) 2020; 21 Hernandez (10.1016/j.devcel.2025.05.008_bib40) 2007; 45 Wright (10.1016/j.devcel.2025.05.008_bib78) 2021; 35 Efeyan (10.1016/j.devcel.2025.05.008_bib32) 2013; 493 Valvezan (10.1016/j.devcel.2025.05.008_bib1) 2019; 1 Padi (10.1016/j.devcel.2025.05.008_bib71) 2019; 116 Navé (10.1016/j.devcel.2025.05.008_bib3) 1999; 344 Napolitano (10.1016/j.devcel.2025.05.008_bib58) 2020; 585 Inoki (10.1016/j.devcel.2025.05.008_bib15) 2002; 4 Dibble (10.1016/j.devcel.2025.05.008_bib19) 2012; 47 Menon (10.1016/j.devcel.2025.05.008_bib51) 2012; 5 Byles (10.1016/j.devcel.2025.05.008_bib79) 2021; 53 Wu (10.1016/j.devcel.2025.05.008_bib81) 2022; 132 Rosner (10.1016/j.devcel.2025.05.008_bib5) 2008; 17 Jaeschke (10.1016/j.devcel.2025.05.008_bib21) 2002; 159 Schneider (10.1016/j.devcel.2025.05.008_bib83) 2012; 9 Kobayashi (10.1016/j.devcel.2025.05.008_bib35) 2001; 98 Sasaki (10.1016/j.devcel.2025.05.008_bib53) 2006; 24 Shigeyama (10.1016/j.devcel.2025.05.008_bib41) 2008; 28 Jaiswal (10.1016/j.devcel.2025.05.008_bib63) 2022; 13 Sancak (10.1016/j.devcel.2025.05.008_bib28) 2008; 320 Guridi (10.1016/j.devcel.2025.05.008_bib52) 2016; 6 Holz (10.1016/j.devcel.2025.05.008_bib6) 2005; 280 Fonseca (10.1016/j.devcel.2025.05.008_bib10) 2007; 282 Cloëtta (10.1016/j.devcel.2025.05.008_bib60) 2013; 33 Inoki (10.1016/j.devcel.2025.05.008_bib24) 2006; 126 Goodman (10.1016/j.devcel.2025.05.008_bib85) 2011; 25 Roux (10.1016/j.devcel.2025.05.008_bib18) 2004; 101 Magri (10.1016/j.devcel.2025.05.008_bib68) 2011; 9 Lai (10.1016/j.devcel.2025.05.008_bib56) 2014; 460 Esper (10.1016/j.devcel.2025.05.008_bib82) 2023; 2566 Rolfe (10.1016/j.devcel.2025.05.008_bib62) 1997; 77 Zhang (10.1016/j.devcel.2025.05.008_bib80) 2009; 4 Horman (10.1016/j.devcel.2025.05.008_bib26) 2006; 281 Mannick (10.1016/j.devcel.2025.05.008_bib75) 2023; 3 SenGupta (10.1016/j.devcel.2025.05.008_bib49) 2010; 468 Sancak (10.1016/j.devcel.2025.05.008_bib11) 2007; 25 Oshiro (10.1016/j.devcel.2025.05.008_bib9) 2007; 282 Guertin (10.1016/j.devcel.2025.05.008_bib36) 2006; 11 Xiong (10.1016/j.devcel.2025.05.008_bib66) 2014; 66 Sekulić (10.1016/j.devcel.2025.05.008_bib4) 2000; 60 Ni (10.1016/j.devcel.2025.05.008_bib47) 2017; 8 Reynolds (10.1016/j.devcel.2025.05.008_bib2) 2002; 277 Onda (10.1016/j.devcel.2025.05.008_bib34) 1999; 104 Bentzinger (10.1016/j.devcel.2025.05.008_bib50) 2008; 8 Goorden (10.1016/j.devcel.2025.05.008_bib37) 2011; 31 Gwinn (10.1016/j.devcel.2025.05.008_bib25) 2008; 30 Goncharova (10.1016/j.devcel.2025.05.008_bib22) 2002; 277 Menon (10.1016/j.devcel.2025.05.008_bib16) 2014; 156 Meikle (10.1016/j.devcel.2025.05.008_bib43) 2007; 27 Wang (10.1016/j.devcel.2025.05.008_bib13) 2007; 282 Zoncu (10.1016/j.devcel.2025.05.008_bib30) 2011; 334 Uhlmann (10.1016/j.devcel.2025.05.008_bib44) 2002; 52 Bar-Peled (10.1016/j.devcel.2025.05.008_bib31) 2013; 340 Carson (10.1016/j.devcel.2025.05.008_bib61) 2012; 45 Prentzell (10.1016/j.devcel.2025.05.008_bib72) 2021; 184 Kwiatkowski (10.1016/j.devcel.2025.05.008_bib20) 2002; 11 Sancak (10.1016/j.devcel.2025.05.008_bib29) 2010; 141 Lemos (10.1016/j.devcel.2025.05.008_bib57) 2021; 44 Schleich (10.1016/j.devcel.2025.05.008_bib65) 2009; 4 Dong (10.1016/j.devcel.2025.05.008_bib64) 2004; 18 Kovacina (10.1016/j.devcel.2025.05.008_bib8) 2003; 278 Manning (10.1016/j.devcel.2025.05.008_bib55) 2004; 167 Castets (10.1016/j.devcel.2025.05.008_bib45) 2013; 9 Manning (10.1016/j.devcel.2025.05.008_bib14) 2002; 10 Bakula (10.1016/j.devcel.2025.05.008_bib73) 2017; 8 Schrötter (10.1016/j.devcel.2025.05.008_bib39) 2022; 39 Chiang (10.1016/j.devcel.2025.05.008_bib7) 2005; 280 Manning (10.1016/j.devcel.2025.05.008_bib33) 2017; 169 Risson (10.1016/j.devcel.2025.05.008_bib69) 2009; 187 Bayly-Jones (10.1016/j.devcel.2025.05.008_bib74) 2024; 10 Schwenk (10.1016/j.devcel.2025.05.008_bib54) 1995; 23 Durkin (10.1016/j.devcel.2025.05.008_bib77) 2013; 3 Ma (10.1016/j.devcel.2025.05.008_bib17) 2005; 121 Yecies (10.1016/j.devcel.2025.05.008_bib42) 2011; 14 Zou (10.1016/j.devcel.2025.05.008_bib48) 2011; 20 Schmidt (10.1016/j.devcel.2025.05.008_bib84) 2009; 6 39386441 - bioRxiv. 2024 Sep 23:2024.09.23.614519. doi: 10.1101/2024.09.23.614519. |
References_xml | – volume: 282 start-page: 20329 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib9 article-title: The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702636200 – volume: 600 start-page: 5055 year: 2022 ident: 10.1016/j.devcel.2025.05.008_bib70 article-title: Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation publication-title: J. Physiol. doi: 10.1113/JP283686 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.devcel.2025.05.008_bib83 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 18 start-page: 1252 year: 2009 ident: 10.1016/j.devcel.2025.05.008_bib67 article-title: Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp025 – volume: 101 start-page: 13489 year: 2004 ident: 10.1016/j.devcel.2025.05.008_bib18 article-title: Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0405659101 – volume: 84 start-page: 4385 year: 2024 ident: 10.1016/j.devcel.2025.05.008_bib59 article-title: mTORC1 activity licenses its own release from the lysosomal surface publication-title: Mol. Cell doi: 10.1016/j.molcel.2024.10.008 – volume: 187 start-page: 859 year: 2009 ident: 10.1016/j.devcel.2025.05.008_bib69 article-title: Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy publication-title: J. Cell Biol. doi: 10.1083/jcb.200903131 – volume: 121 start-page: 179 year: 2005 ident: 10.1016/j.devcel.2025.05.008_bib17 article-title: Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis publication-title: Cell doi: 10.1016/j.cell.2005.02.031 – volume: 3 start-page: 642 year: 2023 ident: 10.1016/j.devcel.2025.05.008_bib75 article-title: Targeting the biology of aging with mTOR inhibitors publication-title: Nat. Aging doi: 10.1038/s43587-023-00416-y – volume: 27 start-page: 5546 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib43 article-title: A Mouse Model of Tuberous Sclerosis: Neuronal Loss of Tsc1 Causes Dysplastic and Ectopic Neurons, Reduced Myelination, Seizure Activity, and Limited Survival publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5540-06.2007 – volume: 10 start-page: 935 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib27 article-title: Regulation of TORC1 by Rag GTPases in nutrient response publication-title: Nat. Cell Biol. doi: 10.1038/ncb1753 – volume: 159 start-page: 217 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib21 article-title: Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent publication-title: J. Cell Biol. doi: 10.1083/jcb.jcb.200206108 – volume: 25 start-page: 903 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib11 article-title: PRAS40 Is an Insulin-Regulated Inhibitor of the mTORC1 Protein Kinase publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.03.003 – volume: 11 start-page: 859 year: 2006 ident: 10.1016/j.devcel.2025.05.008_bib36 article-title: Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCα, but Not S6K1 publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.10.007 – volume: 340 start-page: 1100 year: 2013 ident: 10.1016/j.devcel.2025.05.008_bib31 article-title: A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1 publication-title: Science doi: 10.1126/science.1232044 – volume: 59 start-page: 1206 year: 1999 ident: 10.1016/j.devcel.2025.05.008_bib38 article-title: Renal Carcinogenesis, Hepatic Hemangiomatosis, and Embryonic Lethality Caused by a Germ-Line Tsc2 Mutation in Mice publication-title: Cancer Res. – volume: 20 start-page: 97 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib48 article-title: Rheb1 Is Required for mTORC1 and Myelination in Postnatal Brain Development publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.11.020 – volume: 8 start-page: 411 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib50 article-title: Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.10.002 – volume: 35 year: 2021 ident: 10.1016/j.devcel.2025.05.008_bib78 article-title: Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation publication-title: FASEB J. doi: 10.1096/fj.202100823R – volume: 8 year: 2017 ident: 10.1016/j.devcel.2025.05.008_bib73 article-title: WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy publication-title: Nat. Commun. doi: 10.1038/ncomms15637 – volume: 4 start-page: 648 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib15 article-title: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling publication-title: Nat. Cell Biol. doi: 10.1038/ncb839 – volume: 8 year: 2017 ident: 10.1016/j.devcel.2025.05.008_bib47 article-title: Raptor regulates functional maturation of murine beta cells publication-title: Nat. Commun. doi: 10.1038/ncomms15755 – volume: 334 start-page: 678 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib30 article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase publication-title: Science doi: 10.1126/science.1207056 – volume: 66 start-page: 43 year: 2014 ident: 10.1016/j.devcel.2025.05.008_bib66 article-title: PRAS40 plays a pivotal role in protecting against stroke by linking the Akt and mTOR pathways publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2014.02.006 – volume: 56 start-page: 811 year: 2021 ident: 10.1016/j.devcel.2025.05.008_bib46 article-title: Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.02.022 – volume: 11 start-page: 525 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib20 article-title: A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.5.525 – volume: 5 start-page: ra24 year: 2012 ident: 10.1016/j.devcel.2025.05.008_bib51 article-title: Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice publication-title: Sci. Signal. doi: 10.1126/scisignal.2002739 – volume: 3 year: 2013 ident: 10.1016/j.devcel.2025.05.008_bib77 article-title: Isolation of Mouse Embryo Fibroblasts publication-title: Bio Protoc. doi: 10.21769/BioProtoc.908 – volume: 17 start-page: 2934 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib5 article-title: Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn192 – volume: 4 year: 2009 ident: 10.1016/j.devcel.2025.05.008_bib65 article-title: Akt Phosphorylates Both Tsc1 and Tsc2 in Drosophila, but Neither Phosphorylation Is Required for Normal Animal Growth publication-title: PLoS One doi: 10.1371/journal.pone.0006305 – volume: 167 start-page: 399 year: 2004 ident: 10.1016/j.devcel.2025.05.008_bib55 article-title: Balancing Akt with S6K: Implications for both metabolic diseases and tumorigenesis publication-title: J. Cell Biol. doi: 10.1083/jcb.200408161 – volume: 9 start-page: 1435 year: 2013 ident: 10.1016/j.devcel.2025.05.008_bib45 article-title: MTORC1 determines autophagy through ULK1 regulation in skeletal muscle publication-title: Autophagy doi: 10.4161/auto.25722 – volume: 45 start-page: 101 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib40 article-title: Generation of a conditional disruption of the Tsc2 gene publication-title: Genesis doi: 10.1002/dvg.20271 – volume: 104 start-page: 687 year: 1999 ident: 10.1016/j.devcel.2025.05.008_bib34 article-title: Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background publication-title: J. Clin. Invest. doi: 10.1172/JCI7319 – volume: 25 start-page: 1028 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib85 article-title: Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique publication-title: FASEB J. doi: 10.1096/fj.10-168799 – volume: 31 start-page: 1672 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib37 article-title: Rheb Is Essential for Murine Development publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00985-10 – volume: 6 start-page: 13 year: 2016 ident: 10.1016/j.devcel.2025.05.008_bib52 article-title: Alterations to mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism publication-title: Skelet. Muscle doi: 10.1186/s13395-016-0084-8 – volume: 585 start-page: 597 year: 2020 ident: 10.1016/j.devcel.2025.05.008_bib58 article-title: A substrate-specific mTORC1 pathway underlies Birt–Hogg–Dubé syndrome publication-title: Nature doi: 10.1038/s41586-020-2444-0 – volume: 280 start-page: 25485 year: 2005 ident: 10.1016/j.devcel.2025.05.008_bib7 article-title: Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501707200 – volume: 33 start-page: 7799 year: 2013 ident: 10.1016/j.devcel.2025.05.008_bib60 article-title: Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3294-12.2013 – volume: 10 year: 2024 ident: 10.1016/j.devcel.2025.05.008_bib74 article-title: Structure of the human TSC:WIPI3 lysosomal recruitment complex publication-title: Sci. Adv. doi: 10.1126/sciadv.adr5807 – volume: 278 start-page: 10189 year: 2003 ident: 10.1016/j.devcel.2025.05.008_bib8 article-title: Identification of a proline-rich Akt substrate as a 14-3-3 binding partner publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210837200 – volume: 126 start-page: 955 year: 2006 ident: 10.1016/j.devcel.2025.05.008_bib24 article-title: TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth publication-title: Cell doi: 10.1016/j.cell.2006.06.055 – volume: 468 start-page: 1100 year: 2010 ident: 10.1016/j.devcel.2025.05.008_bib49 article-title: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing publication-title: Nature doi: 10.1038/nature09584 – volume: 60 start-page: 3504 year: 2000 ident: 10.1016/j.devcel.2025.05.008_bib4 article-title: A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells publication-title: Cancer Res. – volume: 30 start-page: 214 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib25 article-title: AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.03.003 – volume: 320 start-page: 1496 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib28 article-title: The rag GTPases bind raptor and mediate amino acid signaling to mTORC1 publication-title: Science doi: 10.1126/science.1157535 – volume: 9 start-page: 316 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib12 article-title: Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1547 – volume: 1 start-page: 321 year: 2019 ident: 10.1016/j.devcel.2025.05.008_bib1 article-title: Molecular logic of mTORC1 signalling as a metabolic rheostat publication-title: Nat. Metab. doi: 10.1038/s42255-019-0038-7 – volume: 115 start-page: 577 year: 2003 ident: 10.1016/j.devcel.2025.05.008_bib23 article-title: TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival publication-title: Cell doi: 10.1016/S0092-8674(03)00929-2 – volume: 282 start-page: 24514 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib10 article-title: PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704406200 – volume: 47 start-page: 535 year: 2012 ident: 10.1016/j.devcel.2025.05.008_bib19 article-title: TBC1D7 Is a Third Subunit of the TSC1-TSC2 Complex Upstream of mTORC1 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.06.009 – volume: 28 start-page: 2971 year: 2008 ident: 10.1016/j.devcel.2025.05.008_bib41 article-title: Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01695-07 – volume: 4 year: 2009 ident: 10.1016/j.devcel.2025.05.008_bib80 article-title: Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway publication-title: PLoS One – volume: 2566 start-page: 113 year: 2023 ident: 10.1016/j.devcel.2025.05.008_bib82 article-title: Immunofluorescence Labeling of Skeletal Muscle in Development, Regeneration, and Disease publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2675-7_9 – volume: 344 start-page: 427 year: 1999 ident: 10.1016/j.devcel.2025.05.008_bib3 article-title: Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation publication-title: Biochem. J. doi: 10.1042/bj3440427 – volume: 280 start-page: 26089 year: 2005 ident: 10.1016/j.devcel.2025.05.008_bib6 article-title: Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504045200 – volume: 281 start-page: 5335 year: 2006 ident: 10.1016/j.devcel.2025.05.008_bib26 article-title: Insulin Antagonizes Ischemia-induced Thr172 Phosphorylation of AMP-activated Protein Kinase α-Subunits in Heart via Hierarchical Phosphorylation of Ser485/491 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M506850200 – volume: 23 start-page: 5080 year: 1995 ident: 10.1016/j.devcel.2025.05.008_bib54 article-title: A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.24.5080 – volume: 13 start-page: 495 year: 2022 ident: 10.1016/j.devcel.2025.05.008_bib63 article-title: AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12846 – volume: 52 start-page: 285 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib44 article-title: Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures publication-title: Ann. Neurol. doi: 10.1002/ana.10283 – volume: 277 start-page: 30958 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib22 article-title: Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202678200 – volume: 9 start-page: 447 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib68 article-title: Sustained activation of mTOR pathway in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.09.008 – volume: 141 start-page: 290 year: 2010 ident: 10.1016/j.devcel.2025.05.008_bib29 article-title: Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids publication-title: Cell doi: 10.1016/j.cell.2010.02.024 – volume: 116 start-page: 20505 year: 2019 ident: 10.1016/j.devcel.2025.05.008_bib71 article-title: Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1904774116 – volume: 24 start-page: 729 year: 2006 ident: 10.1016/j.devcel.2025.05.008_bib53 article-title: Canonical NF-κB Activity, Dispensable for B Cell Development, Replaces BAFF-Receptor Signals and Promotes B Cell Proliferation upon Activation publication-title: Immunity doi: 10.1016/j.immuni.2006.04.005 – volume: 156 start-page: 771 year: 2014 ident: 10.1016/j.devcel.2025.05.008_bib16 article-title: Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome publication-title: Cell doi: 10.1016/j.cell.2013.11.049 – volume: 184 start-page: 655 year: 2021 ident: 10.1016/j.devcel.2025.05.008_bib72 article-title: G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling publication-title: Cell doi: 10.1016/j.cell.2020.12.024 – volume: 45 start-page: 369 year: 2012 ident: 10.1016/j.devcel.2025.05.008_bib61 article-title: Neuronal and glia abnormalities in Tsc1-deficient forebrain and partial rescue by rapamycin publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2011.08.024 – volume: 39 year: 2022 ident: 10.1016/j.devcel.2025.05.008_bib39 article-title: The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110824 – volume: 132 start-page: 1020 year: 2022 ident: 10.1016/j.devcel.2025.05.008_bib81 article-title: Optimization of a pericyte therapy to improve muscle recovery after limb immobilization publication-title: J. Appl. Physiol. (1985) doi: 10.1152/japplphysiol.00700.2021 – volume: 460 start-page: 363 year: 2014 ident: 10.1016/j.devcel.2025.05.008_bib56 article-title: A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators publication-title: Biochem. J. doi: 10.1042/BJ20131673 – volume: 282 start-page: 20036 year: 2007 ident: 10.1016/j.devcel.2025.05.008_bib13 article-title: PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702376200 – volume: 6 start-page: 275 year: 2009 ident: 10.1016/j.devcel.2025.05.008_bib84 article-title: SUnSET, a nonradioactive method to monitor protein synthesis publication-title: Nat. Methods doi: 10.1038/nmeth.1314 – volume: 169 start-page: 381 year: 2017 ident: 10.1016/j.devcel.2025.05.008_bib33 article-title: AKT/PKB Signaling: Navigating the Network publication-title: Cell doi: 10.1016/j.cell.2017.04.001 – volume: 14 start-page: 21 year: 2011 ident: 10.1016/j.devcel.2025.05.008_bib42 article-title: Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.06.002 – volume: 277 start-page: 17657 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib2 article-title: Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201142200 – volume: 44 start-page: 581 year: 2021 ident: 10.1016/j.devcel.2025.05.008_bib57 article-title: The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models publication-title: Cell. Oncol. (Dordr) doi: 10.1007/s13402-020-00584-8 – volume: 53 year: 2021 ident: 10.1016/j.devcel.2025.05.008_bib79 article-title: Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin publication-title: Mol. Metab. doi: 10.1016/j.molmet.2021.101309 – volume: 18 start-page: 2479 year: 2004 ident: 10.1016/j.devcel.2025.05.008_bib64 article-title: Tsc2 is not a critical target of Akt during normal Drosophila development publication-title: Genes Dev. doi: 10.1101/gad.1240504 – volume: 493 start-page: 679 year: 2013 ident: 10.1016/j.devcel.2025.05.008_bib32 article-title: Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival publication-title: Nature doi: 10.1038/nature11745 – volume: 10 start-page: 151 year: 2002 ident: 10.1016/j.devcel.2025.05.008_bib14 article-title: Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00568-3 – volume: 77 start-page: 731 year: 1997 ident: 10.1016/j.devcel.2025.05.008_bib62 article-title: Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals publication-title: Physiol. Rev. doi: 10.1152/physrev.1997.77.3.731 – volume: 21 start-page: 183 year: 2020 ident: 10.1016/j.devcel.2025.05.008_bib76 article-title: mTOR at the nexus of nutrition, growth, ageing and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0199-y – volume: 98 start-page: 8762 year: 2001 ident: 10.1016/j.devcel.2025.05.008_bib35 article-title: A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.151033798 – reference: 39386441 - bioRxiv. 2024 Sep 23:2024.09.23.614519. doi: 10.1101/2024.09.23.614519. |
SSID | ssj0016180 |
Score | 2.4814434 |
SecondaryResourceType | online_first |
Snippet | Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse growth signals to regulate cell and tissue growth. How the molecular mechanisms... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
Title | AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40480230 https://www.proquest.com/docview/3216695389 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBYjZbCXsfuyGxrszcjI8v2xmI2ysg26lLVPRrKltcVxQmIPsl-_IylW3HQb6yA2xg6y0PmscyR93xFC78ANhDovHUnB95AoqGIiKsGIlqYplYsgM3kLPn1Ojk6jj2fx2Y6QadQlnfCrn7_VlfyPVeEe2FWrZG9hWVco3IBrsC-cwcJw_icbQ4BGjPRDh43Li8UajtWmcVHg7GvBBjL62oOPed43_ZpY1qRpcaKVlpot5M1nX06KwNN8Dt4MykWz55P3HYbq3cU4jB1RjXR-Edk4nkYBMbBccZu54Jy3O8YPXy7tFPS8l41X-K6r5w1XfWd7nI1edR49LKCWdi3fCovqS-_cH89UsNgsstNrnWtE4szucnuj67azCFd-LX9AtX1dgMmpSrOdqxqW5_c8mOMVDpS1q9KWUupSSgo_rQc_YCnEVxN0cHh88u3YrTUlgdlfz9VuEFgaFuDN2lwPYP4wKjHRyewBur8dVuBDi5GH6I5sH6G7dqPRzWM0HyMF7yEFLxTWSMEDUrBDCgYQ4D2kYIsU7JBi_mSQgi1SnqDTD-9nxRHZbrRBqiANO8LAYadUSk5FKnRCRU4TqkKViZCpUEYZRKV1oCXcLA9qpqI6SWpaBVGlVCJpHj5Fk3bRyucIB0zkVPBEJHEdCQ5fe5RmIVzEFa1VzaaIDK1XLm0-lfJvVpuit0MTl9DxaUDzVi76dRmyIEly8Nf5FD2zbe9KjHSmBBhcv7jl216iezvgvkKTbtXL1xB0duLNFjW_AL2fgiA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AKT-mediated+phosphorylation+of+TSC2+controls+stimulus-+and+tissue-specific+mTORC1+signaling+and+organ+growth&rft.jtitle=Developmental+cell&rft.au=Cormerais%2C+Yann&rft.au=Lapp%2C+Samuel+C.&rft.au=Kalafut%2C+Krystle+C.&rft.au=Ciss%C3%A9%2C+Madi+Y.&rft.date=2025-05-30&rft.issn=1534-5807&rft_id=info:doi/10.1016%2Fj.devcel.2025.05.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_devcel_2025_05_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-5807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-5807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-5807&client=summon |