Two-stage algorithm for underwater image recovery for marine exploration
The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to t...
Saved in:
| Published in | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 25; no. 3; pp. 417 - 427 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
ITMO University
03.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2226-1494 2500-0373 2500-0373 |
| DOI | 10.17586/2226-1494-2025-25-3-417-427 |
Cover
| Abstract | The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to the large variability of the parameters of the aquatic environment and photography conditions. The proposed method, unlike other underwater image recovery algorithms based on an imaging model, is not based on a simplified exponential Beer-Lambert law for estimating optical radiation attenuation in water, but on a more accurate physical approach that simulates the propagation of optical rays in water using the Monte Carlo method, taking into account the main parameters the water environment and the camera. The results of numerical simulation of optical ray propagation in an aquatic environment are used for image processing in the spatial domain by editing the histograms of each image channel in the RGB color space. To test the developed algorithm, 6 real underwater images were selected obtained under various lighting conditions (natural and artificial) and various parameters of the aquatic environment (clear ocean and turbid coastal water). For the purpose of qualitative and quantitative analysis of the obtained results, the following similar underwater image processing methods were used: Fusion, UDCP IATP, Retinex, HE, and UWB VCSE. The Underwater Colour Image Quality Evaluation Metric (UCIQE) and Underwater Image Quality Measure (UIQM) indicators were used to quantify the results obtained. The results of the qualitative assessment demonstrate the high efficiency of the proposed method: regardless of the conditions of the initial image parameters, the application of the developed method improves visual perception and does not lead to excessive contrast enhancement, color distortion, loss of detail, the appearance of artifacts, etc. Quantification of underwater image processing results demonstrates comparable and superior results when comparing the efficiency of the algorithm with similar methods. For the UCIQE parameter, the developed method provided an improvement from 9 % to 51 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 82 %. For the UIQM parameter, the developed method provided an improvement from 24 % to 99 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 123 %. Unlike analogues, the developed method did not demonstrate the worst values of the UCIQE and UIQM parameters for any processed image, which indicates the stability of the method regardless of the parameters of the aquatic environment and shooting conditions. By dividing the developed method into preliminary and main stages, high image processing speed is ensured: 0.073 seconds for images with a resolution of 400 × 300 pixels and from 8.02 to 8.23 seconds for images with a resolution of 5184 × 3456 pixels. Similar methods demonstrated values from 0.19 to 10.81 seconds for an image with a resolution of 400 × 300 pixels and from 7.65 to 937.83 seconds for an image with a resolution of 5184 × 3456 pixels. The introduction of the proposed method into the geological exploration will increase their efficiency and reliability, and will provide more accurate data for further exploration of solid mineral deposits. Such technique integrated into the machine vision system of underwater vehicles will significantly expand their functionality by enabling automation of operations and improving the efficiency of recognition systems. |
|---|---|
| AbstractList | The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to the large variability of the parameters of the aquatic environment and photography conditions. The proposed method, unlike other underwater image recovery algorithms based on an imaging model, is not based on a simplified exponential Beer-Lambert law for estimating optical radiation attenuation in water, but on a more accurate physical approach that simulates the propagation of optical rays in water using the Monte Carlo method, taking into account the main parameters the water environment and the camera. The results of numerical simulation of optical ray propagation in an aquatic environment are used for image processing in the spatial domain by editing the histograms of each image channel in the RGB color space. To test the developed algorithm, 6 real underwater images were selected obtained under various lighting conditions (natural and artificial) and various parameters of the aquatic environment (clear ocean and turbid coastal water). For the purpose of qualitative and quantitative analysis of the obtained results, the following similar underwater image processing methods were used: Fusion, UDCP IATP, Retinex, HE, and UWB VCSE. The Underwater Colour Image Quality Evaluation Metric (UCIQE) and Underwater Image Quality Measure (UIQM) indicators were used to quantify the results obtained. The results of the qualitative assessment demonstrate the high efficiency of the proposed method: regardless of the conditions of the initial image parameters, the application of the developed method improves visual perception and does not lead to excessive contrast enhancement, color distortion, loss of detail, the appearance of artifacts, etc. Quantification of underwater image processing results demonstrates comparable and superior results when comparing the efficiency of the algorithm with similar methods. For the UCIQE parameter, the developed method provided an improvement from 9 % to 51 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 82 %. For the UIQM parameter, the developed method provided an improvement from 24 % to 99 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 123 %. Unlike analogues, the developed method did not demonstrate the worst values of the UCIQE and UIQM parameters for any processed image, which indicates the stability of the method regardless of the parameters of the aquatic environment and shooting conditions. By dividing the developed method into preliminary and main stages, high image processing speed is ensured: 0.073 seconds for images with a resolution of 400 × 300 pixels and from 8.02 to 8.23 seconds for images with a resolution of 5184 × 3456 pixels. Similar methods demonstrated values from 0.19 to 10.81 seconds for an image with a resolution of 400 × 300 pixels and from 7.65 to 937.83 seconds for an image with a resolution of 5184 × 3456 pixels. The introduction of the proposed method into the geological exploration will increase their efficiency and reliability, and will provide more accurate data for further exploration of solid mineral deposits. Such technique integrated into the machine vision system of underwater vehicles will significantly expand their functionality by enabling automation of operations and improving the efficiency of recognition systems. |
| Author | Samonova, Ch. V. Semernik, I. V. |
| Author_xml | – sequence: 1 givenname: I. V. orcidid: 0000-0002-0238-4154 surname: Semernik fullname: Semernik, I. V. organization: JSC Yuzhmorgeologia – sequence: 2 givenname: Ch. V. orcidid: 0000-0002-2449-9921 surname: Samonova fullname: Samonova, Ch. V. organization: JSC Yuzhmorgeologia |
| BookMark | eNqVkF1LwzAUhoNMcM79h154G81Xmxb0Qoa6wcCbeR1O05PZ0TUj7Zz796abei85JCEn78PhuSaj1rdIyC1nd1yneXYvhMgoV4WigomUxpJUcU2V0BdkLFLGKJNajuL99-cVmXbdhjHGddyEGJP56uBp18MaE2jWPtT9xzZxPiT7tsJwgB5DUm-HdkDrPzEcT90thLrFBL92jQ_Q1769IZcOmg6nP-eEvL88r2Zzunx7XcyeltRyLTWFUgvJlUqVdTorZYnOMVmUShZFnto4E4qsFJkq8sqlOYKsmMrR6SrjjEmUE7I4cysPG7MLcbhwNB5qc3rwYW0g9LVt0Ehuqwqc1DkIJcuiqBBBsbh0RJY2sh7PrH27g-MBmuYPyJk5WTaDOzO4M4NlE0uaaNlEyzH_cM7b4LsuoPtf_Bu3QYRI |
| Cites_doi | 10.3390/jmse11030470 10.1109/TIP.2023.3276332 10.1109/ISPACS.2017.8266583 10.1109/TIP.2015.2491020 10.1109/JOE.2022.3223733 10.1155/2020/6549410 10.1109/CVPR.2012.6247661 10.1364/AO.32.007484 10.1109/ICSMC.2010.5642311 10.1109/TPAMI.2010.168 10.1109/CVPR.2018.00703 10.1109/ACCESS.2022.3213340 10.1109/LSP.2015.2487369 10.1109/TIP.2017.2663846 10.1109/RSEMW58451.2023.10202133 10.1109/ACCESS.2020.3034275 10.1109/JOE.2005.850871 10.1109/ACCESS.2019.2959560 10.17513/mjpfi.12883 10.1109/ACCESS.2018.2875344 10.1631/FITEE.2000190 10.3390/math12243904 10.1186/s13640-020-00528-0 10.3390/jmse10030430 10.1109/ICIP.2014.7025927 10.1109/TIP.2019.2955241 10.1109/JOE.2015.2469915 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.17586/2226-1494-2025-25-3-417-427 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2500-0373 |
| EndPage | 427 |
| ExternalDocumentID | oai_doaj_org_article_31cddaf378a243b99deea40404748ebc 10.17586/2226-1494-2025-25-3-417-427 10_17586_2226_1494_2025_25_3_417_427 |
| GroupedDBID | 642 AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BPHCQ BYOGL CITATION GROUPED_DOAJ KQ8 PIMPY PQQKQ PROAC VCL VIT ABJCF ABUWG ADTOC BGLVJ CCPQU IPNFZ M7S PHGZM PHGZT PQGLB PTHSS PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c1737-ab72314454cf76b3beff039b439985c022e26b26498df58ea3d048ef7d61003e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2226-1494 2500-0373 |
| IngestDate | Tue Oct 07 09:25:06 EDT 2025 Wed Oct 01 16:40:51 EDT 2025 Wed Oct 01 05:47:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ntv.elpub.ru/jour/about/editorialPolicies#openAccessPolicy cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1737-ab72314454cf76b3beff039b439985c022e26b26498df58ea3d048ef7d61003e3 |
| ORCID | 0000-0002-2449-9921 0000-0002-0238-4154 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ntv.elpub.ru/jour/article/download/465/465 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_31cddaf378a243b99deea40404748ebc unpaywall_primary_10_17586_2226_1494_2025_25_3_417_427 crossref_primary_10_17586_2226_1494_2025_25_3_417_427 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-03 |
| PublicationDateYYYYMMDD | 2025-07-03 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki |
| PublicationYear | 2025 |
| Publisher | ITMO University |
| Publisher_xml | – name: ITMO University |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref8 doi: 10.3390/jmse11030470 – ident: ref26 doi: 10.1109/TIP.2023.3276332 – ident: ref30 doi: 10.1109/ISPACS.2017.8266583 – ident: ref21 doi: 10.1109/TIP.2015.2491020 – ident: ref1 doi: 10.1109/JOE.2022.3223733 – ident: ref14 doi: 10.1155/2020/6549410 – ident: ref24 – ident: ref27 doi: 10.1109/CVPR.2012.6247661 – ident: ref25 – ident: ref18 doi: 10.1364/AO.32.007484 – ident: ref9 doi: 10.1109/ICSMC.2010.5642311 – ident: ref6 doi: 10.1109/TPAMI.2010.168 – ident: ref16 doi: 10.1109/CVPR.2018.00703 – ident: ref17 doi: 10.1109/ACCESS.2022.3213340 – ident: ref23 doi: 10.1109/LSP.2015.2487369 – ident: ref13 doi: 10.1109/TIP.2017.2663846 – ident: ref19 doi: 10.1109/RSEMW58451.2023.10202133 – ident: ref31 doi: 10.1109/ACCESS.2020.3034275 – ident: ref15 doi: 10.1109/JOE.2005.850871 – ident: ref5 doi: 10.1109/ACCESS.2019.2959560 – ident: ref11 – ident: ref3 doi: 10.17513/mjpfi.12883 – ident: ref28 doi: 10.1109/ACCESS.2018.2875344 – ident: ref4 doi: 10.1631/FITEE.2000190 – ident: ref20 doi: 10.3390/math12243904 – ident: ref7 doi: 10.1186/s13640-020-00528-0 – ident: ref2 doi: 10.3390/jmse10030430 – ident: ref29 doi: 10.1109/ICIP.2014.7025927 – ident: ref12 doi: 10.1109/TIP.2019.2955241 – ident: ref22 doi: 10.1109/JOE.2015.2469915 – ident: ref10 |
| SSID | ssj0001700022 ssib026971427 |
| Score | 2.298757 |
| Snippet | The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze,... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 417 |
| SubjectTerms | восстановление подводных изображений восстановление цвета метод монте-карло моделирование распространения света в воде обработка подводных изображений реальные глубоководные фотографии улучшение подводных изображений |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEBUlhy6H0pWmGz7kKhJbspZjWxpCoT0lkJvQ5jQlGyEh5O87Y6fBt1Io6CQhZN6MNG-M9IaQlgDCpoGIUmGjo7xglto0eCp9xhyEY8EEvh1-_xC9AX8b5sNaqS-8E1bJA1fAtVnqQ7AFk8pmHKbrEKPl4HpcchWdx9O3o3QtmQJPyoSWKd_pW35VIjEYrbDSHPANCmkBPyQtPDGAL4v2vhOcJsspNEY5HN8ci83U4lUp639Cjtazhd1u7GRSi0XdM3K6I5HJU_Xx5-Qgzi7ISU1a8JL0-ps5BeY3iomdjObL8epzmgBBTfDR2HIDDHOZjKc4jCkx-PO2HJ1afA2YxPJmXmm0KzLovvZfenRXNYH6VDJJrZPA2TjPuS-kcMzFougw7TDxULkHFGImHPAgrUKRq2hZgF0cCxmASXVYZNekMZvP4g1JHPdOMp_bAnJXG7RSqbBodJUHLXRskvwHG7OoxDEMJhWIqUFMDWJqEFMDjRnA1ACmTfKMQO7noMR12QGGNzvDm98M3yRib4Y_rX77H6vfkePSVfBHL7snjdVyHR-AnqzcY-mJ30Ko2bo priority: 102 providerName: Directory of Open Access Journals |
| Title | Two-stage algorithm for underwater image recovery for marine exploration |
| URI | https://ntv.elpub.ru/jour/article/download/465/465 https://doaj.org/article/31cddaf378a243b99deea40404748ebc |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNjaw97FskfhQ6-KE-tlH9thRTBgxQ4N0J0EvZwVS-zCdRp0v76k4wbBbh0gXywJlvnR4kdZpABOFBK2AokoUzY6JkpumZ0Ez7TPuENzrLii2OEfF2o6E9-v5NUeZI-xMFV7N4oLHMqoWaUkzrSXYBooeXxtQyqUpOsZ7CuJ_HsA-7OLn6e_6BQ55BIMKT_9SkbTPmZjrvlzOKGZAXmxSrcNUDkyybBwJnCaFnSozI5d6tL3H8KLVXVj79d2sdixOeevNnGAt12qQtpq8me0at3I__0nkePTXuc1vOwpaHK6afIG9mL1Fg53EhO-g-nlumbIG-cxsYt53Vy3v5cJ0tuEQs6aNfLTJrleUjU51Pg13He1S0uxhEns9vV1kL-H2fm3y69T1p-5wPxEc82s08j4hJDCl1o57mJZjnnhyG3JpUeLHzPlkEUVeShlHi0POAfEUgfkYWMe-REMqrqKHyBxwjvNvbQler42FHk-UZZUJpehUEUcgnyUuLnZpNYw5JIQUoaQMoSUIaQMFm4QKYNIDeGM4Nn2oQTZ3Y26mZtevIZPfAi25Dq3mUCtK0KMVuCMJTQO1_khqC24T3r6x__t-AkOOqWjpWH-GQZts4pfkNC07rhbCDju9fgB-4fuHg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5SB9rmkL6Jk7bokOtatvYlHZPSYAoNPcSQnpZ9yQ2xpaDKMemv74ysGNNbCtJFu4tW841mvpF2ZgFOFRK2AokoUzY6JkpumZ0Ez7TPuEN3rLii3OHvl2o6E9-u5fUeZI-5MFV7P4oLnMqoWaUkzrSXYBqoeHxtQyqUpPMZ7CuJ_HsA-7PLH2c_aRc55BIMKT_9SkbXPmZjrvlzOCXLgLxYpdsOqByZZHhwJtBMC9pUZscvdeX7D-DFqrqzD2u7WOz4nItXmzzA312pQlpqcjtatW7k__xTyPFpj_MaDnsKmpxturyBvVi9hYOdwoTvYHq1rhnyxnlM7GJeNzftr2WC9DahlLNmjfy0SW6W1EwBNb4ND13r0lIuYRK7dX0d5O9hdvH16suU9XsuMD_RXDPrNDI-IaTwpVaOu1iWY144Clty6dHjx0w5ZFFFHkqZR8sD2oBY6oA8bMwj_wCDqq7iESROeKe5l7bEyNeGIs8nypLK5DIUqohDkI8SN3eb0hqGQhJCyhBShpAyhJTBgxtEyiBSQzgneLZjqEB2d6Fu5qYXr-ETH4Ituc5tJlDrihCjFWixhMbpOj8EtQX3SXc__t-BJ_CyUzr6NMw_wqBtVvETEprWfe41-C9sU-0p |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+algorithm+for+underwater+image+recovery+for+marine+exploration&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Semernik%2C+I.+V.&rft.au=Samonova%2C+Ch.+V.&rft.date=2025-07-03&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=25&rft.issue=3&rft.spage=417&rft.epage=427&rft_id=info:doi/10.17586%2F2226-1494-2025-25-3-417-427&rft.externalDBID=n%2Fa&rft.externalDocID=10_17586_2226_1494_2025_25_3_417_427 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon |