Two-stage algorithm for underwater image recovery for marine exploration

The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to t...

Full description

Saved in:
Bibliographic Details
Published inNauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 25; no. 3; pp. 417 - 427
Main Authors Semernik, I. V., Samonova, Ch. V.
Format Journal Article
LanguageEnglish
Published ITMO University 03.07.2025
Subjects
Online AccessGet full text
ISSN2226-1494
2500-0373
2500-0373
DOI10.17586/2226-1494-2025-25-3-417-427

Cover

Abstract The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to the large variability of the parameters of the aquatic environment and photography conditions. The proposed method, unlike other underwater image recovery algorithms based on an imaging model, is not based on a simplified exponential Beer-Lambert law for estimating optical radiation attenuation in water, but on a more accurate physical approach that simulates the propagation of optical rays in water using the Monte Carlo method, taking into account the main parameters the water environment and the camera. The results of numerical simulation of optical ray propagation in an aquatic environment are used for image processing in the spatial domain by editing the histograms of each image channel in the RGB color space. To test the developed algorithm, 6 real underwater images were selected obtained under various lighting conditions (natural and artificial) and various parameters of the aquatic environment (clear ocean and turbid coastal water). For the purpose of qualitative and quantitative analysis of the obtained results, the following similar underwater image processing methods were used: Fusion, UDCP IATP, Retinex, HE, and UWB VCSE. The Underwater Colour Image Quality Evaluation Metric (UCIQE) and Underwater Image Quality Measure (UIQM) indicators were used to quantify the results obtained. The results of the qualitative assessment demonstrate the high efficiency of the proposed method: regardless of the conditions of the initial image parameters, the application of the developed method improves visual perception and does not lead to excessive contrast enhancement, color distortion, loss of detail, the appearance of artifacts, etc. Quantification of underwater image processing results demonstrates comparable and superior results when comparing the efficiency of the algorithm with similar methods. For the UCIQE parameter, the developed method provided an improvement from 9 % to 51 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 82 %. For the UIQM parameter, the developed method provided an improvement from 24 % to 99 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 123 %. Unlike analogues, the developed method did not demonstrate the worst values of the UCIQE and UIQM parameters for any processed image, which indicates the stability of the method regardless of the parameters of the aquatic environment and shooting conditions. By dividing the developed method into preliminary and main stages, high image processing speed is ensured: 0.073 seconds for images with a resolution of 400 × 300 pixels and from 8.02 to 8.23 seconds for images with a resolution of 5184 × 3456 pixels. Similar methods demonstrated values from 0.19 to 10.81 seconds for an image with a resolution of 400 × 300 pixels and from 7.65 to 937.83 seconds for an image with a resolution of 5184 × 3456 pixels. The introduction of the proposed method into the geological exploration will increase their efficiency and reliability, and will provide more accurate data for further exploration of solid mineral deposits. Such technique integrated into the machine vision system of underwater vehicles will significantly expand their functionality by enabling automation of operations and improving the efficiency of recognition systems.
AbstractList The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze, etc., arising from the interaction of optical radiation with the aquatic environment. Restoring underwater images is a non-trivial task due to the large variability of the parameters of the aquatic environment and photography conditions. The proposed method, unlike other underwater image recovery algorithms based on an imaging model, is not based on a simplified exponential Beer-Lambert law for estimating optical radiation attenuation in water, but on a more accurate physical approach that simulates the propagation of optical rays in water using the Monte Carlo method, taking into account the main parameters the water environment and the camera. The results of numerical simulation of optical ray propagation in an aquatic environment are used for image processing in the spatial domain by editing the histograms of each image channel in the RGB color space. To test the developed algorithm, 6 real underwater images were selected obtained under various lighting conditions (natural and artificial) and various parameters of the aquatic environment (clear ocean and turbid coastal water). For the purpose of qualitative and quantitative analysis of the obtained results, the following similar underwater image processing methods were used: Fusion, UDCP IATP, Retinex, HE, and UWB VCSE. The Underwater Colour Image Quality Evaluation Metric (UCIQE) and Underwater Image Quality Measure (UIQM) indicators were used to quantify the results obtained. The results of the qualitative assessment demonstrate the high efficiency of the proposed method: regardless of the conditions of the initial image parameters, the application of the developed method improves visual perception and does not lead to excessive contrast enhancement, color distortion, loss of detail, the appearance of artifacts, etc. Quantification of underwater image processing results demonstrates comparable and superior results when comparing the efficiency of the algorithm with similar methods. For the UCIQE parameter, the developed method provided an improvement from 9 % to 51 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 82 %. For the UIQM parameter, the developed method provided an improvement from 24 % to 99 % relative to the parameter value for the original image, while similar methods demonstrated results from minus 10 % to 123 %. Unlike analogues, the developed method did not demonstrate the worst values of the UCIQE and UIQM parameters for any processed image, which indicates the stability of the method regardless of the parameters of the aquatic environment and shooting conditions. By dividing the developed method into preliminary and main stages, high image processing speed is ensured: 0.073 seconds for images with a resolution of 400 × 300 pixels and from 8.02 to 8.23 seconds for images with a resolution of 5184 × 3456 pixels. Similar methods demonstrated values from 0.19 to 10.81 seconds for an image with a resolution of 400 × 300 pixels and from 7.65 to 937.83 seconds for an image with a resolution of 5184 × 3456 pixels. The introduction of the proposed method into the geological exploration will increase their efficiency and reliability, and will provide more accurate data for further exploration of solid mineral deposits. Such technique integrated into the machine vision system of underwater vehicles will significantly expand their functionality by enabling automation of operations and improving the efficiency of recognition systems.
Author Samonova, Ch. V.
Semernik, I. V.
Author_xml – sequence: 1
  givenname: I. V.
  orcidid: 0000-0002-0238-4154
  surname: Semernik
  fullname: Semernik, I. V.
  organization: JSC Yuzhmorgeologia
– sequence: 2
  givenname: Ch. V.
  orcidid: 0000-0002-2449-9921
  surname: Samonova
  fullname: Samonova, Ch. V.
  organization: JSC Yuzhmorgeologia
BookMark eNqVkF1LwzAUhoNMcM79h154G81Xmxb0Qoa6wcCbeR1O05PZ0TUj7Zz796abei85JCEn78PhuSaj1rdIyC1nd1yneXYvhMgoV4WigomUxpJUcU2V0BdkLFLGKJNajuL99-cVmXbdhjHGddyEGJP56uBp18MaE2jWPtT9xzZxPiT7tsJwgB5DUm-HdkDrPzEcT90thLrFBL92jQ_Q1769IZcOmg6nP-eEvL88r2Zzunx7XcyeltRyLTWFUgvJlUqVdTorZYnOMVmUShZFnto4E4qsFJkq8sqlOYKsmMrR6SrjjEmUE7I4cysPG7MLcbhwNB5qc3rwYW0g9LVt0Ehuqwqc1DkIJcuiqBBBsbh0RJY2sh7PrH27g-MBmuYPyJk5WTaDOzO4M4NlE0uaaNlEyzH_cM7b4LsuoPtf_Bu3QYRI
Cites_doi 10.3390/jmse11030470
10.1109/TIP.2023.3276332
10.1109/ISPACS.2017.8266583
10.1109/TIP.2015.2491020
10.1109/JOE.2022.3223733
10.1155/2020/6549410
10.1109/CVPR.2012.6247661
10.1364/AO.32.007484
10.1109/ICSMC.2010.5642311
10.1109/TPAMI.2010.168
10.1109/CVPR.2018.00703
10.1109/ACCESS.2022.3213340
10.1109/LSP.2015.2487369
10.1109/TIP.2017.2663846
10.1109/RSEMW58451.2023.10202133
10.1109/ACCESS.2020.3034275
10.1109/JOE.2005.850871
10.1109/ACCESS.2019.2959560
10.17513/mjpfi.12883
10.1109/ACCESS.2018.2875344
10.1631/FITEE.2000190
10.3390/math12243904
10.1186/s13640-020-00528-0
10.3390/jmse10030430
10.1109/ICIP.2014.7025927
10.1109/TIP.2019.2955241
10.1109/JOE.2015.2469915
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.17586/2226-1494-2025-25-3-417-427
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 427
ExternalDocumentID oai_doaj_org_article_31cddaf378a243b99deea40404748ebc
10.17586/2226-1494-2025-25-3-417-427
10_17586_2226_1494_2025_25_3_417_427
GroupedDBID 642
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BPHCQ
BYOGL
CITATION
GROUPED_DOAJ
KQ8
PIMPY
PQQKQ
PROAC
VCL
VIT
ABJCF
ABUWG
ADTOC
BGLVJ
CCPQU
IPNFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c1737-ab72314454cf76b3beff039b439985c022e26b26498df58ea3d048ef7d61003e3
IEDL.DBID UNPAY
ISSN 2226-1494
2500-0373
IngestDate Tue Oct 07 09:25:06 EDT 2025
Wed Oct 01 16:40:51 EDT 2025
Wed Oct 01 05:47:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ntv.elpub.ru/jour/about/editorialPolicies#openAccessPolicy
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1737-ab72314454cf76b3beff039b439985c022e26b26498df58ea3d048ef7d61003e3
ORCID 0000-0002-2449-9921
0000-0002-0238-4154
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ntv.elpub.ru/jour/article/download/465/465
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_31cddaf378a243b99deea40404748ebc
unpaywall_primary_10_17586_2226_1494_2025_25_3_417_427
crossref_primary_10_17586_2226_1494_2025_25_3_417_427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-03
PublicationDateYYYYMMDD 2025-07-03
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-03
  day: 03
PublicationDecade 2020
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2025
Publisher ITMO University
Publisher_xml – name: ITMO University
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.3390/jmse11030470
– ident: ref26
  doi: 10.1109/TIP.2023.3276332
– ident: ref30
  doi: 10.1109/ISPACS.2017.8266583
– ident: ref21
  doi: 10.1109/TIP.2015.2491020
– ident: ref1
  doi: 10.1109/JOE.2022.3223733
– ident: ref14
  doi: 10.1155/2020/6549410
– ident: ref24
– ident: ref27
  doi: 10.1109/CVPR.2012.6247661
– ident: ref25
– ident: ref18
  doi: 10.1364/AO.32.007484
– ident: ref9
  doi: 10.1109/ICSMC.2010.5642311
– ident: ref6
  doi: 10.1109/TPAMI.2010.168
– ident: ref16
  doi: 10.1109/CVPR.2018.00703
– ident: ref17
  doi: 10.1109/ACCESS.2022.3213340
– ident: ref23
  doi: 10.1109/LSP.2015.2487369
– ident: ref13
  doi: 10.1109/TIP.2017.2663846
– ident: ref19
  doi: 10.1109/RSEMW58451.2023.10202133
– ident: ref31
  doi: 10.1109/ACCESS.2020.3034275
– ident: ref15
  doi: 10.1109/JOE.2005.850871
– ident: ref5
  doi: 10.1109/ACCESS.2019.2959560
– ident: ref11
– ident: ref3
  doi: 10.17513/mjpfi.12883
– ident: ref28
  doi: 10.1109/ACCESS.2018.2875344
– ident: ref4
  doi: 10.1631/FITEE.2000190
– ident: ref20
  doi: 10.3390/math12243904
– ident: ref7
  doi: 10.1186/s13640-020-00528-0
– ident: ref2
  doi: 10.3390/jmse10030430
– ident: ref29
  doi: 10.1109/ICIP.2014.7025927
– ident: ref12
  doi: 10.1109/TIP.2019.2955241
– ident: ref22
  doi: 10.1109/JOE.2015.2469915
– ident: ref10
SSID ssj0001700022
ssib026971427
Score 2.298757
Snippet The paper explores the problems of restoring underwater images exposed to distortions in the form of color and contrast deformations, the presence of haze,...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 417
SubjectTerms восстановление подводных изображений
восстановление цвета
метод монте-карло
моделирование распространения света в воде
обработка подводных изображений
реальные глубоководные фотографии
улучшение подводных изображений
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JasMwEBUlhy6H0pWmGz7kKhJbspZjWxpCoT0lkJvQ5jQlGyEh5O87Y6fBt1Io6CQhZN6MNG-M9IaQlgDCpoGIUmGjo7xglto0eCp9xhyEY8EEvh1-_xC9AX8b5sNaqS-8E1bJA1fAtVnqQ7AFk8pmHKbrEKPl4HpcchWdx9O3o3QtmQJPyoSWKd_pW35VIjEYrbDSHPANCmkBPyQtPDGAL4v2vhOcJsspNEY5HN8ci83U4lUp639Cjtazhd1u7GRSi0XdM3K6I5HJU_Xx5-Qgzi7ISU1a8JL0-ps5BeY3iomdjObL8epzmgBBTfDR2HIDDHOZjKc4jCkx-PO2HJ1afA2YxPJmXmm0KzLovvZfenRXNYH6VDJJrZPA2TjPuS-kcMzFougw7TDxULkHFGImHPAgrUKRq2hZgF0cCxmASXVYZNekMZvP4g1JHPdOMp_bAnJXG7RSqbBodJUHLXRskvwHG7OoxDEMJhWIqUFMDWJqEFMDjRnA1ACmTfKMQO7noMR12QGGNzvDm98M3yRib4Y_rX77H6vfkePSVfBHL7snjdVyHR-AnqzcY-mJ30Ko2bo
  priority: 102
  providerName: Directory of Open Access Journals
Title Two-stage algorithm for underwater image recovery for marine exploration
URI https://ntv.elpub.ru/jour/article/download/465/465
https://doaj.org/article/31cddaf378a243b99deea40404748ebc
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNjaw97FskfhQ6-KE-tlH9thRTBgxQ4N0J0EvZwVS-zCdRp0v76k4wbBbh0gXywJlvnR4kdZpABOFBK2AokoUzY6JkpumZ0Ez7TPuENzrLii2OEfF2o6E9-v5NUeZI-xMFV7N4oLHMqoWaUkzrSXYBooeXxtQyqUpOsZ7CuJ_HsA-7OLn6e_6BQ55BIMKT_9SkbTPmZjrvlzOKGZAXmxSrcNUDkyybBwJnCaFnSozI5d6tL3H8KLVXVj79d2sdixOeevNnGAt12qQtpq8me0at3I__0nkePTXuc1vOwpaHK6afIG9mL1Fg53EhO-g-nlumbIG-cxsYt53Vy3v5cJ0tuEQs6aNfLTJrleUjU51Pg13He1S0uxhEns9vV1kL-H2fm3y69T1p-5wPxEc82s08j4hJDCl1o57mJZjnnhyG3JpUeLHzPlkEUVeShlHi0POAfEUgfkYWMe-REMqrqKHyBxwjvNvbQler42FHk-UZZUJpehUEUcgnyUuLnZpNYw5JIQUoaQMoSUIaQMFm4QKYNIDeGM4Nn2oQTZ3Y26mZtevIZPfAi25Dq3mUCtK0KMVuCMJTQO1_khqC24T3r6x__t-AkOOqWjpWH-GQZts4pfkNC07rhbCDju9fgB-4fuHg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5SB9rmkL6Jk7bokOtatvYlHZPSYAoNPcSQnpZ9yQ2xpaDKMemv74ysGNNbCtJFu4tW841mvpF2ZgFOFRK2AokoUzY6JkpumZ0Ez7TPuEN3rLii3OHvl2o6E9-u5fUeZI-5MFV7P4oLnMqoWaUkzrSXYBqoeHxtQyqUpPMZ7CuJ_HsA-7PLH2c_aRc55BIMKT_9SkbXPmZjrvlzOCXLgLxYpdsOqByZZHhwJtBMC9pUZscvdeX7D-DFqrqzD2u7WOz4nItXmzzA312pQlpqcjtatW7k__xTyPFpj_MaDnsKmpxturyBvVi9hYOdwoTvYHq1rhnyxnlM7GJeNzftr2WC9DahlLNmjfy0SW6W1EwBNb4ND13r0lIuYRK7dX0d5O9hdvH16suU9XsuMD_RXDPrNDI-IaTwpVaOu1iWY144Clty6dHjx0w5ZFFFHkqZR8sD2oBY6oA8bMwj_wCDqq7iESROeKe5l7bEyNeGIs8nypLK5DIUqohDkI8SN3eb0hqGQhJCyhBShpAyhJTBgxtEyiBSQzgneLZjqEB2d6Fu5qYXr-ETH4Ituc5tJlDrihCjFWixhMbpOj8EtQX3SXc__t-BJ_CyUzr6NMw_wqBtVvETEprWfe41-C9sU-0p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+algorithm+for+underwater+image+recovery+for+marine+exploration&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Semernik%2C+I.+V.&rft.au=Samonova%2C+Ch.+V.&rft.date=2025-07-03&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=25&rft.issue=3&rft.spage=417&rft.epage=427&rft_id=info:doi/10.17586%2F2226-1494-2025-25-3-417-427&rft.externalDBID=n%2Fa&rft.externalDocID=10_17586_2226_1494_2025_25_3_417_427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon