Flexible and tractable modeling of multivariate data using composite Bayesian networks

The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the...

Full description

Saved in:
Bibliographic Details
Published inNauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 24; no. 4; pp. 608 - 614
Main Authors Deeva, I.Yu, Shakhkyan, K.A., Kaminsky, Yu.K.
Format Journal Article
LanguageEnglish
Published ITMO University 01.12.2024
Subjects
Online AccessGet full text
ISSN2226-1494
2500-0373
2500-0373
DOI10.17586/2226-1494-2024-24-4-608-614

Cover

Abstract The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the problem of data inconsistency with traditional assumptions about dependencies. The presented method consists in selecting a variety of machine learning models at the stage of training composite Bayesian networks. This allows you to flexibly customize the nature of the dependencies in accordance with the requirements and dictated characteristics of the modeled object. The software implementation is made in the form of a specialized framework that describes all the necessary functionality. The results of experiments to evaluate the effectiveness of modeling dependencies between features are presented. Data for the experiments was taken from the bnlearn repository for benchmarks and from the UCI repository for real data. The performance of composite Bayesian networks was validated by comparing the likelihood and F1 score with classical Bayesian networks trained with the Hill-Climbing algorithm, demonstrating high accuracy in representing multivariate distributions. The improvement in benchmarks is insignificant since they contain linear dependencies that are well modeled by the classical algorithm. An average 30 % improvement in likelihood was obtained on real UCI datasets. The obtained data can be applied in areas that require modeling complex dependencies between features, for example, in machine learning, statistics, data analysis, as well as in specific subject areas.
AbstractList The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the problem of data inconsistency with traditional assumptions about dependencies. The presented method consists in selecting a variety of machine learning models at the stage of training composite Bayesian networks. This allows you to flexibly customize the nature of the dependencies in accordance with the requirements and dictated characteristics of the modeled object. The software implementation is made in the form of a specialized framework that describes all the necessary functionality. The results of experiments to evaluate the effectiveness of modeling dependencies between features are presented. Data for the experiments was taken from the bnlearn repository for benchmarks and from the UCI repository for real data. The performance of composite Bayesian networks was validated by comparing the likelihood and F1 score with classical Bayesian networks trained with the Hill-Climbing algorithm, demonstrating high accuracy in representing multivariate distributions. The improvement in benchmarks is insignificant since they contain linear dependencies that are well modeled by the classical algorithm. An average 30 % improvement in likelihood was obtained on real UCI datasets. The obtained data can be applied in areas that require modeling complex dependencies between features, for example, in machine learning, statistics, data analysis, as well as in specific subject areas.
Author Kaminsky, Yu.K.
Shakhkyan, K.A.
Deeva, I.Yu
Author_xml – sequence: 1
  givenname: I.Yu
  orcidid: 0000-0001-8679-5868
  surname: Deeva
  fullname: Deeva, I.Yu
– sequence: 2
  givenname: K.A.
  orcidid: 0009-0003-2606-431X
  surname: Shakhkyan
  fullname: Shakhkyan, K.A.
– sequence: 3
  givenname: Yu.K.
  orcidid: 0009-0006-6418-6117
  surname: Kaminsky
  fullname: Kaminsky, Yu.K.
BookMark eNqVkE9LxDAQxYMoqKvfoQev1WmSpinoQcV_IHhRr2E2nUi02yxJV91vb-qqdyFMXibzHsNvn20PYSDGjio4rppaqxPOuSor2cqSA89FlrJUoEtVyS22x2uAEkQjtrP-ndxlhym9AkDV5ML5Hnu-7unTz3sqcOiKMaIdcXotQke9H16K4IrFqh_9O0aPIxUdjlis0vRlw2IZks_NC1xT8jgUA40fIb6lA7bjsE90-HPP2NP11ePlbXn_cHN3eX5f2qoR07oAjqvWclvXREp0jXWyIQGoSLhOzF3daiWVJA1uLrFVNLdKZ4VY21rM2N0mtwv4apbRLzCuTUBvvhshvhiMo7c9GWqVq0jqmmstQSnUwJXW2FkrrROQs842WathiesP7Pu_wArMN3MzkTQTSTMxN_lIk5mbzDz7Tzd-G0NKkdz_7F_A0Ymn
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.17586/2226-1494-2024-24-4-608-614
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 614
ExternalDocumentID oai_doaj_org_article_e96f1e4852884066a802688adcc4cf30
10.17586/2226-1494-2024-24-4-608-614
10_17586_2226_1494_2024_24_4_608_614
GroupedDBID 642
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BPHCQ
BYOGL
CITATION
GROUPED_DOAJ
KQ8
PIMPY
PQQKQ
PROAC
VCL
VIT
ABJCF
ABUWG
ADTOC
BGLVJ
CCPQU
IPNFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c1734-6000f269c2c55ee63d7cf47e30a6e3fd3bf5986464e80fb4a96ebc68b4aaa5c53
IEDL.DBID UNPAY
ISSN 2226-1494
2500-0373
IngestDate Tue Oct 07 09:25:23 EDT 2025
Mon Sep 15 10:15:14 EDT 2025
Wed Oct 01 03:20:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1734-6000f269c2c55ee63d7cf47e30a6e3fd3bf5986464e80fb4a96ebc68b4aaa5c53
ORCID 0009-0003-2606-431X
0009-0006-6418-6117
0000-0001-8679-5868
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.17586/2226-1494-2024-24-4-608-614
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_e96f1e4852884066a802688adcc4cf30
unpaywall_primary_10_17586_2226_1494_2024_24_4_608_614
crossref_primary_10_17586_2226_1494_2024_24_4_608_614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2024
Publisher ITMO University
Publisher_xml – name: ITMO University
SSID ssj0001700022
ssib026971427
Score 2.278142
Snippet The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 608
SubjectTerms байесовские сети
вероятностные графовые модели
генетический алгоритм
модели машинного обучения
обучение параметров
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yg7qD-BPnL3LwWpa2SZYenTiGoCcnu4U0fRFkdEM3Zf-976VzzJMIQmlLaUn79bV5X_vle4xdp8HgS19AAtp7JCgqJA7TjKRE5pOqkr7l0B_dh0c9HMn7sRpvlPoiTVhjD9wA14VChxSkUZlBLqK1M8gajHGV99KHPLJ1YYoNMoWRlOmil8qVv-VrYxJDvRVVmsN8I0FaILfxRPGNgfmy7q43YtBkOJOJTLQwyKvkj_4q2vq32c6inrnlp5tMNvqiwT7bWyWR_KY5-QO2BfUha29YCx6x5wE5XZYT4K6u-JzGQtEgKR4r3-AefBp4FBN-IFnGfJOTVJSTCv6Fk8yctFzA-24JNMqS141a_P2YjQZ3T7fDZFVDIfFpL6erECIgHD7zSgHovOr5IHuQC6chD1VehujQriUYEUrpCg2l1wbXnFNe5SesVU9rOGXc4PNepaWjQqfSgDMgtVEO-ZzAZSY6TH0jZWeNVYYlikEIW0LYEsKWELY4SYsIW0S4w_oE6_oYMryOGzAM7CoM7G9h0GF6fVP-1PrZf7R-znZj4ESZywVrzd8WcInJyry8inH5BSCB3BU
  priority: 102
  providerName: Directory of Open Access Journals
Title Flexible and tractable modeling of multivariate data using composite Bayesian networks
URI https://doi.org/10.17586/2226-1494-2024-24-4-608-614
https://doaj.org/article/e96f1e4852884066a802688adcc4cf30
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbWFOjjsPU1rHsUOuzqzo4kRjm2w4JiwIodlqI7CZJM9dDAKbqkQ_frRzpOkfXUDjBswZAtmZIlftJHEuBjlR0P-iUVhCkxQLG5CKxmFJGRT2WjrOXIju63czwbm6-X9rIzChNbmNX9e1Zl8RPPX1iwGm-4Pft8MoUpsHQMecwarKNlDbwH6-Pz7yc_JY7cMrekrRhN64He4Co94XX_zEytA_9t2Jw3N-H-d5hMVmad0SsYL-u7IJtcH89n8Tj9eeTK8bkftAMvOzVUnSz6zS68oGYPtlecE-7DxUh8ZcYJqdDUaibWVGJmpdrYOZxDTbNq6Yh3DLdZY1VCNlXCo79SQlQXNhip03BPYqepmgXf_NcBjEdffnw-K7ooDEWqBlrqVpa5j8PUT9YSoa4HKZsB6TIg6VzrmFsf72jIlTmaMESKCR2nQrDJ6tfQa6YNvQHleMSoqxgkVKpxFBwZdDYwIiz52i8PwS5bwN8snG14ASkiNy9y8yI3L3LzfBjPcvMst0M4leZ6eEZcZrc3WPC--wM9DTFXZLgcx6AWMTiGn86FOiWTsubC8aGxn1X62_998B1stV2gJce8h97sdk4fWMWZxaN2aeCo69d_AZAR6Aw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NIvHjgY0BGmNDfthrIKntq_sI0yqEBNoDndiTZTvnPVClaGs3sb9-d2mKyp7GpCixIjt2zo59X_zdHcCHKjue9EsqCFNigGJzEVjNKCIjn8pG-ZcjO7pX13gxNpe39rYzChNbmNX9e1Zl8ZTXLyxYjTfcn30-mcIUWDqGPGYN1tGyBt6D9fH157OvEkdumVvSVoym9UBvcJP-4XFPVqbWgf82bM6b-_DwK0wmK6vO6CWMl-1dkE3uTuazeJJ-_-XK8bkv9Ap2OjVUnS3GzS68oOY1bK84J9yDLyPxlRknpEJTq5lYU4mZlWpj53AONc2qpSP-ZLjNGqsSsqkSHv03JUR1YYOROg8PJHaaqlnwzX_sw3j06ebjRdFFYShSNdDStrLMfRymfrKWCHU9SNkMSJcBSedax9z6eEdDrszRhCFSTOg4FYJNVh9Ar5k29AaU4xmjrmKQUKnGUXBk0NnAiLDka788BLvsAX-_cLbhBaSI3LzIzYvcvMjN82E8y82z3A7hXLrrsYy4zG5vsOB99wV6GmKuyHA9jkEtYnAMP50LdUomZc2V42NnP6v2t_9b8Ai22iHQkmPeQW_2fU7vWcWZxeNuRP8BJUnnFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+tractable+modeling+of+multivariate+data+using+composite+Bayesian+networks&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Deeva%2C+I.Yu&rft.au=Shakhkyan%2C+K.A.&rft.au=Kaminsky%2C+Yu.K.&rft.date=2024-12-01&rft.issn=2226-1494&rft.volume=24&rft.issue=4&rft.spage=608&rft.epage=614&rft_id=info:doi/10.17586%2F2226-1494-2024-24-4-608-614&rft.externalDBID=n%2Fa&rft.externalDocID=10_17586_2226_1494_2024_24_4_608_614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon