Flexible and tractable modeling of multivariate data using composite Bayesian networks
The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the...
        Saved in:
      
    
          | Published in | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 24; no. 4; pp. 608 - 614 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            ITMO University
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2226-1494 2500-0373 2500-0373  | 
| DOI | 10.17586/2226-1494-2024-24-4-608-614 | 
Cover
| Abstract | The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the problem of data inconsistency with traditional assumptions about dependencies. The presented method consists in selecting a variety of machine learning models at the stage of training composite Bayesian networks. This allows you to flexibly customize the nature of the dependencies in accordance with the requirements and dictated characteristics of the modeled object. The software implementation is made in the form of a specialized framework that describes all the necessary functionality. The results of experiments to evaluate the effectiveness of modeling dependencies between features are presented. Data for the experiments was taken from the bnlearn repository for benchmarks and from the UCI repository for real data. The performance of composite Bayesian networks was validated by comparing the likelihood and F1 score with classical Bayesian networks trained with the Hill-Climbing algorithm, demonstrating high accuracy in representing multivariate distributions. The improvement in benchmarks is insignificant since they contain linear dependencies that are well modeled by the classical algorithm. An average 30 % improvement in likelihood was obtained on real UCI datasets. The obtained data can be applied in areas that require modeling complex dependencies between features, for example, in machine learning, statistics, data analysis, as well as in specific subject areas. | 
    
|---|---|
| AbstractList | The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning models into Bayesian networks while maintaining their fundamental principles. The novelty of the approach is that it allows us to solve the problem of data inconsistency with traditional assumptions about dependencies. The presented method consists in selecting a variety of machine learning models at the stage of training composite Bayesian networks. This allows you to flexibly customize the nature of the dependencies in accordance with the requirements and dictated characteristics of the modeled object. The software implementation is made in the form of a specialized framework that describes all the necessary functionality. The results of experiments to evaluate the effectiveness of modeling dependencies between features are presented. Data for the experiments was taken from the bnlearn repository for benchmarks and from the UCI repository for real data. The performance of composite Bayesian networks was validated by comparing the likelihood and F1 score with classical Bayesian networks trained with the Hill-Climbing algorithm, demonstrating high accuracy in representing multivariate distributions. The improvement in benchmarks is insignificant since they contain linear dependencies that are well modeled by the classical algorithm. An average 30 % improvement in likelihood was obtained on real UCI datasets. The obtained data can be applied in areas that require modeling complex dependencies between features, for example, in machine learning, statistics, data analysis, as well as in specific subject areas. | 
    
| Author | Kaminsky, Yu.K. Shakhkyan, K.A. Deeva, I.Yu  | 
    
| Author_xml | – sequence: 1 givenname: I.Yu orcidid: 0000-0001-8679-5868 surname: Deeva fullname: Deeva, I.Yu – sequence: 2 givenname: K.A. orcidid: 0009-0003-2606-431X surname: Shakhkyan fullname: Shakhkyan, K.A. – sequence: 3 givenname: Yu.K. orcidid: 0009-0006-6418-6117 surname: Kaminsky fullname: Kaminsky, Yu.K.  | 
    
| BookMark | eNqVkE9LxDAQxYMoqKvfoQev1WmSpinoQcV_IHhRr2E2nUi02yxJV91vb-qqdyFMXibzHsNvn20PYSDGjio4rppaqxPOuSor2cqSA89FlrJUoEtVyS22x2uAEkQjtrP-ndxlhym9AkDV5ML5Hnu-7unTz3sqcOiKMaIdcXotQke9H16K4IrFqh_9O0aPIxUdjlis0vRlw2IZks_NC1xT8jgUA40fIb6lA7bjsE90-HPP2NP11ePlbXn_cHN3eX5f2qoR07oAjqvWclvXREp0jXWyIQGoSLhOzF3daiWVJA1uLrFVNLdKZ4VY21rM2N0mtwv4apbRLzCuTUBvvhshvhiMo7c9GWqVq0jqmmstQSnUwJXW2FkrrROQs842WathiesP7Pu_wArMN3MzkTQTSTMxN_lIk5mbzDz7Tzd-G0NKkdz_7F_A0Ymn | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.17586/2226-1494-2024-24-4-608-614 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2500-0373 | 
    
| EndPage | 614 | 
    
| ExternalDocumentID | oai_doaj_org_article_e96f1e4852884066a802688adcc4cf30 10.17586/2226-1494-2024-24-4-608-614 10_17586_2226_1494_2024_24_4_608_614  | 
    
| GroupedDBID | 642 AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BPHCQ BYOGL CITATION GROUPED_DOAJ KQ8 PIMPY PQQKQ PROAC VCL VIT ABJCF ABUWG ADTOC BGLVJ CCPQU IPNFZ M7S PHGZM PHGZT PQGLB PTHSS PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c1734-6000f269c2c55ee63d7cf47e30a6e3fd3bf5986464e80fb4a96ebc68b4aaa5c53 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2226-1494 2500-0373  | 
    
| IngestDate | Tue Oct 07 09:25:23 EDT 2025 Mon Sep 15 10:15:14 EDT 2025 Wed Oct 01 03:20:23 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1734-6000f269c2c55ee63d7cf47e30a6e3fd3bf5986464e80fb4a96ebc68b4aaa5c53 | 
    
| ORCID | 0009-0003-2606-431X 0009-0006-6418-6117 0000-0001-8679-5868  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.17586/2226-1494-2024-24-4-608-614 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e96f1e4852884066a802688adcc4cf30 unpaywall_primary_10_17586_2226_1494_2024_24_4_608_614 crossref_primary_10_17586_2226_1494_2024_24_4_608_614  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki | 
    
| PublicationYear | 2024 | 
    
| Publisher | ITMO University | 
    
| Publisher_xml | – name: ITMO University | 
    
| SSID | ssj0001700022 ssib026971427  | 
    
| Score | 2.278142 | 
    
| Snippet | The article presents a new approach to modeling nonlinear dependencies called composite Bayesian networks. The main emphasis is on integrating machine learning... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 608 | 
    
| SubjectTerms | байесовские сети вероятностные графовые модели генетический алгоритм модели машинного обучения обучение параметров  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6yg7qD-BPnL3LwWpa2SZYenTiGoCcnu4U0fRFkdEM3Zf-976VzzJMIQmlLaUn79bV5X_vle4xdp8HgS19AAtp7JCgqJA7TjKRE5pOqkr7l0B_dh0c9HMn7sRpvlPoiTVhjD9wA14VChxSkUZlBLqK1M8gajHGV99KHPLJ1YYoNMoWRlOmil8qVv-VrYxJDvRVVmsN8I0FaILfxRPGNgfmy7q43YtBkOJOJTLQwyKvkj_4q2vq32c6inrnlp5tMNvqiwT7bWyWR_KY5-QO2BfUha29YCx6x5wE5XZYT4K6u-JzGQtEgKR4r3-AefBp4FBN-IFnGfJOTVJSTCv6Fk8yctFzA-24JNMqS141a_P2YjQZ3T7fDZFVDIfFpL6erECIgHD7zSgHovOr5IHuQC6chD1VehujQriUYEUrpCg2l1wbXnFNe5SesVU9rOGXc4PNepaWjQqfSgDMgtVEO-ZzAZSY6TH0jZWeNVYYlikEIW0LYEsKWELY4SYsIW0S4w_oE6_oYMryOGzAM7CoM7G9h0GF6fVP-1PrZf7R-znZj4ESZywVrzd8WcInJyry8inH5BSCB3BU priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | Flexible and tractable modeling of multivariate data using composite Bayesian networks | 
    
| URI | https://doi.org/10.17586/2226-1494-2024-24-4-608-614 https://doaj.org/article/e96f1e4852884066a802688adcc4cf30  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbWFOjjsPU1rHsUOuzqzo4kRjm2w4JiwIodlqI7CZJM9dDAKbqkQ_frRzpOkfXUDjBswZAtmZIlftJHEuBjlR0P-iUVhCkxQLG5CKxmFJGRT2WjrOXIju63czwbm6-X9rIzChNbmNX9e1Zl8RPPX1iwGm-4Pft8MoUpsHQMecwarKNlDbwH6-Pz7yc_JY7cMrekrRhN64He4Co94XX_zEytA_9t2Jw3N-H-d5hMVmad0SsYL-u7IJtcH89n8Tj9eeTK8bkftAMvOzVUnSz6zS68oGYPtlecE-7DxUh8ZcYJqdDUaibWVGJmpdrYOZxDTbNq6Yh3DLdZY1VCNlXCo79SQlQXNhip03BPYqepmgXf_NcBjEdffnw-K7ooDEWqBlrqVpa5j8PUT9YSoa4HKZsB6TIg6VzrmFsf72jIlTmaMESKCR2nQrDJ6tfQa6YNvQHleMSoqxgkVKpxFBwZdDYwIiz52i8PwS5bwN8snG14ASkiNy9y8yI3L3LzfBjPcvMst0M4leZ6eEZcZrc3WPC--wM9DTFXZLgcx6AWMTiGn86FOiWTsubC8aGxn1X62_998B1stV2gJce8h97sdk4fWMWZxaN2aeCo69d_AZAR6Aw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6NIvHjgY0BGmNDfthrIKntq_sI0yqEBNoDndiTZTvnPVClaGs3sb9-d2mKyp7GpCixIjt2zo59X_zdHcCHKjue9EsqCFNigGJzEVjNKCIjn8pG-ZcjO7pX13gxNpe39rYzChNbmNX9e1Zl8ZTXLyxYjTfcn30-mcIUWDqGPGYN1tGyBt6D9fH157OvEkdumVvSVoym9UBvcJP-4XFPVqbWgf82bM6b-_DwK0wmK6vO6CWMl-1dkE3uTuazeJJ-_-XK8bkv9Ap2OjVUnS3GzS68oOY1bK84J9yDLyPxlRknpEJTq5lYU4mZlWpj53AONc2qpSP-ZLjNGqsSsqkSHv03JUR1YYOROg8PJHaaqlnwzX_sw3j06ebjRdFFYShSNdDStrLMfRymfrKWCHU9SNkMSJcBSedax9z6eEdDrszRhCFSTOg4FYJNVh9Ar5k29AaU4xmjrmKQUKnGUXBk0NnAiLDka788BLvsAX-_cLbhBaSI3LzIzYvcvMjN82E8y82z3A7hXLrrsYy4zG5vsOB99wV6GmKuyHA9jkEtYnAMP50LdUomZc2V42NnP6v2t_9b8Ai22iHQkmPeQW_2fU7vWcWZxeNuRP8BJUnnFw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+tractable+modeling+of+multivariate+data+using+composite+Bayesian+networks&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=Deeva%2C+I.Yu&rft.au=Shakhkyan%2C+K.A.&rft.au=Kaminsky%2C+Yu.K.&rft.date=2024-12-01&rft.issn=2226-1494&rft.volume=24&rft.issue=4&rft.spage=608&rft.epage=614&rft_id=info:doi/10.17586%2F2226-1494-2024-24-4-608-614&rft.externalDBID=n%2Fa&rft.externalDocID=10_17586_2226_1494_2024_24_4_608_614 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon |