Comparing hybrid models for recognising objects in thermal images at nighttime
This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban la...
Saved in:
| Published in | Indonesian Journal of Electrical Engineering and Computer Science Vol. 34; no. 3; p. 1823 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.06.2024
|
| Online Access | Get full text |
| ISSN | 2502-4752 2502-4760 2502-4760 |
| DOI | 10.11591/ijeecs.v34.i3.pp1823-1831 |
Cover
| Abstract | This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban landscapes. The proposed method incorporates a binary generative adversarial network (GAN) generator that can switch bidirectionally between daytime colour (DC) and nighttime infrared (NTIR) images. memory-based visual image memory (MVAM), system extracts important descriptive information from urban landscape images, reducing problems related to small sample sizes. This discussion presents a comprehensive improvement and evaluation of a deep learning image classification pipeline using Google Colab, demonstrating advanced image processing. Using TensorFlow, Keres and scikit image libraries combined with advanced algorithms such as DenseNet121 and MobileNetV2 presents a clear approach. We created a Bidirectional GAN + MVAM for object recognition in this work. Our method performed well, with an accuracy of 81.43%, precision of 51.16, recall of 50.11, and F-score of 46.37. The systematic presentation of the code presents a careful strategy to ensure optimal performance, stability, and efficiency of deep learning and image processing tasks. |
|---|---|
| AbstractList | This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban landscapes. The proposed method incorporates a binary generative adversarial network (GAN) generator that can switch bidirectionally between daytime colour (DC) and nighttime infrared (NTIR) images. memory-based visual image memory (MVAM), system extracts important descriptive information from urban landscape images, reducing problems related to small sample sizes. This discussion presents a comprehensive improvement and evaluation of a deep learning image classification pipeline using Google Colab, demonstrating advanced image processing. Using TensorFlow, Keres and scikit image libraries combined with advanced algorithms such as DenseNet121 and MobileNetV2 presents a clear approach. We created a Bidirectional GAN + MVAM for object recognition in this work. Our method performed well, with an accuracy of 81.43%, precision of 51.16, recall of 50.11, and F-score of 46.37. The systematic presentation of the code presents a careful strategy to ensure optimal performance, stability, and efficiency of deep learning and image processing tasks. |
| Author | Rajakumari, Reeja Sundaran Bandi, Maheswari |
| Author_xml | – sequence: 1 givenname: Maheswari orcidid: 0009-0004-5045-9968 surname: Bandi fullname: Bandi, Maheswari – sequence: 2 givenname: Reeja Sundaran orcidid: 0000-0002-9198-3617 surname: Rajakumari fullname: Rajakumari, Reeja Sundaran |
| BookMark | eNqVkMtOwzAQRS1UJErpP1jsEzx2Q2xYoYiXVMGme8tOxqmrvGQHUP-elCD2zGZGc3VHd84lWXR9h4RcA0sBMgU3_oBYxvRTbFIv0mEAyUUCUsAZWfKM8WST37LF35zxC7KO0VsmGKhJE0vyVvTtYILvaro_2uAr2vYVNpG6PtCAZV93Pp7U3h6wHCP1HR33GFrTUN-aGiM1I-18vR9H3-IVOXemibj-7Suye3rcFS_J9v35tXjYJiXkAhJwqIzIjdoohUo6BsJMZXklK1miLRFyhlae3nQ553JaO2VR5DIT4MSK3M9nP7rBHL9M0-ghTHHCUQPTP3D0DEdPcLQXeoajT3Am993sLkMfY0D3H_M3ECtyeg |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.11591/ijeecs.v34.i3.pp1823-1831 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2502-4760 |
| ExternalDocumentID | 10.11591/ijeecs.v34.i3.pp1823-1831 10_11591_ijeecs_v34_i3_pp1823_1831 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1731-1fe9a37a9499e98f013aaaab2d8d8cebce170eb81159f72288d8f9be378531f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2502-4752 2502-4760 |
| IngestDate | Tue Aug 19 19:08:48 EDT 2025 Tue Jul 01 02:46:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 3 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-sa/4.0 cc-by-nc-sa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1731-1fe9a37a9499e98f013aaaab2d8d8cebce170eb81159f72288d8f9be378531f3 |
| ORCID | 0009-0004-5045-9968 0000-0002-9198-3617 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ijeecs.iaescore.com/index.php/IJEECS/article/download/36353/18335 |
| ParticipantIDs | unpaywall_primary_10_11591_ijeecs_v34_i3_pp1823_1831 crossref_primary_10_11591_ijeecs_v34_i3_pp1823_1831 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Indonesian Journal of Electrical Engineering and Computer Science |
| PublicationYear | 2024 |
| SSID | ssib030194763 ssib044739472 ssib052605909 |
| Score | 1.8748038 |
| Snippet | This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 1823 |
| Title | Comparing hybrid models for recognising objects in thermal images at nighttime |
| URI | https://ijeecs.iaescore.com/index.php/IJEECS/article/download/36353/18335 |
| UnpaywallVersion | publishedVersion |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2502-4760 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044739472 issn: 2502-4752 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UDp78ETVqlPTgdYyu67odCYEgCcRESPC0dP2hQx3EgQYP_u2-bsOoN407Lcvabe91fd9r-r4PoUspmTEqoo6UoXL8iGgnUkw7gdKKsUASr9BYGo6C_sQfTNm0ohQqamFmWsu8mQqdlzSOMFcXvIGWLMK9GnS7nRu3MqqrLJ_8XCiXQtikLrEFRNuoHjCA5TVUn4yu27dWXI7BX-_zQn2nOg82BKQQzcnmoS_Ub6aQWi4Ac1MHeiPfgtXOKluI9at4fPwSgXp7aLZ593LjyUNztUya8u0HreO_fNw-2q1wKm6Xtx2gLZ0dolGnVC3M7vD92pZ64UJIJ8eAfHG1FcmuPeB5Ypd3cpxm2ALMJ-gpfYKZK8diiQvuEqtpf4TGve6403cqQQZHEk6JQ4yOBOXCEtroKDQAHwUciadCFUqdSE14SyehtarhnhfCZRMlmnIABcTQY1TL5pk-QRjGAGu1FDEG8jGhwoh5RrWkTz0eSS74KaIbw8eLknYjLtIVcFdcmjEGd8UpjUt3xdZdp8j_9NEvmp39rdk5qi2fV_oCQMkyaaDt4Xu3UQ26Dyz_5YA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UDp78ETVi1PTgdYyu67odCYEgicRESPC0dP2hQxjEgQb_el-3YdSbxp2WZe2297q-7zV934fQtZTMGBVRR8pQOX5EtBMppp1AacVYIIlXaCzdDoP-2B9M2KSiFCpqYaZay7yZCp2XNI4wVxe8gZYswr0ZdLude7cyqqssn_xCKJdC2KQusQVEu6geMIDlNVQfD-_aD1ZcjsFf7_NCfac6D7YEpBDNyfahr9RvppBaLgFzUwd6I9-C1d46W4rNm5jNvkSg3gGabt-93Hjy3FyvkqZ8_0Hr-C8fd4j2K5yK2-VtR2hHZ8do2ClVC7NH_LSxpV64ENLJMSBfXG1FsmsPeJHY5Z0cpxm2AHMOPaVzmLlyLFa44C6xmvYnaNTrjjp9pxJkcCThlDjE6EhQLiyhjY5CA_BRwJF4KlSh1InUhLd0ElqrGu55IVw2UaIpB1BADD1FtWyR6TOEYQywVksRYyAfEyqMmGdUS_rU45HkgjcQ3Ro-Xpa0G3GRroC74tKMMbgrTmlcuiu27mog_9NHv2h2_rdmF6i2elnrSwAlq-SqGm4f0HvkTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+hybrid+models+for+recognising+objects+in+thermal+images+at+nighttime&rft.jtitle=Indonesian+Journal+of+Electrical+Engineering+and+Computer+Science&rft.au=Bandi%2C+Maheswari&rft.au=Rajakumari%2C+Reeja+Sundaran&rft.date=2024-06-01&rft.issn=2502-4752&rft.eissn=2502-4760&rft.volume=34&rft.issue=3&rft.spage=1823&rft_id=info:doi/10.11591%2Fijeecs.v34.i3.pp1823-1831&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijeecs_v34_i3_pp1823_1831 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2502-4752&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2502-4752&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2502-4752&client=summon |