Comparing hybrid models for recognising objects in thermal images at nighttime

This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban la...

Full description

Saved in:
Bibliographic Details
Published inIndonesian Journal of Electrical Engineering and Computer Science Vol. 34; no. 3; p. 1823
Main Authors Bandi, Maheswari, Rajakumari, Reeja Sundaran
Format Journal Article
LanguageEnglish
Published 01.06.2024
Online AccessGet full text
ISSN2502-4752
2502-4760
2502-4760
DOI10.11591/ijeecs.v34.i3.pp1823-1831

Cover

Abstract This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban landscapes. The proposed method incorporates a binary generative adversarial network (GAN) generator that can switch bidirectionally between daytime colour (DC) and nighttime infrared (NTIR) images. memory-based visual image memory (MVAM), system extracts important descriptive information from urban landscape images, reducing problems related to small sample sizes. This discussion presents a comprehensive improvement and evaluation of a deep learning image classification pipeline using Google Colab, demonstrating advanced image processing. Using TensorFlow, Keres and scikit image libraries combined with advanced algorithms such as DenseNet121 and MobileNetV2 presents a clear approach. We created a Bidirectional GAN + MVAM for object recognition in this work. Our method performed well, with an accuracy of 81.43%, precision of 51.16, recall of 50.11, and F-score of 46.37. The systematic presentation of the code presents a careful strategy to ensure optimal performance, stability, and efficiency of deep learning and image processing tasks.
AbstractList This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that focus on colour enhancement in nighttime thermal images, this work addresses the critical challenge of accurate object detection in urban landscapes. The proposed method incorporates a binary generative adversarial network (GAN) generator that can switch bidirectionally between daytime colour (DC) and nighttime infrared (NTIR) images. memory-based visual image memory (MVAM), system extracts important descriptive information from urban landscape images, reducing problems related to small sample sizes. This discussion presents a comprehensive improvement and evaluation of a deep learning image classification pipeline using Google Colab, demonstrating advanced image processing. Using TensorFlow, Keres and scikit image libraries combined with advanced algorithms such as DenseNet121 and MobileNetV2 presents a clear approach. We created a Bidirectional GAN + MVAM for object recognition in this work. Our method performed well, with an accuracy of 81.43%, precision of 51.16, recall of 50.11, and F-score of 46.37. The systematic presentation of the code presents a careful strategy to ensure optimal performance, stability, and efficiency of deep learning and image processing tasks.
Author Rajakumari, Reeja Sundaran
Bandi, Maheswari
Author_xml – sequence: 1
  givenname: Maheswari
  orcidid: 0009-0004-5045-9968
  surname: Bandi
  fullname: Bandi, Maheswari
– sequence: 2
  givenname: Reeja Sundaran
  orcidid: 0000-0002-9198-3617
  surname: Rajakumari
  fullname: Rajakumari, Reeja Sundaran
BookMark eNqVkMtOwzAQRS1UJErpP1jsEzx2Q2xYoYiXVMGme8tOxqmrvGQHUP-elCD2zGZGc3VHd84lWXR9h4RcA0sBMgU3_oBYxvRTbFIv0mEAyUUCUsAZWfKM8WST37LF35zxC7KO0VsmGKhJE0vyVvTtYILvaro_2uAr2vYVNpG6PtCAZV93Pp7U3h6wHCP1HR33GFrTUN-aGiM1I-18vR9H3-IVOXemibj-7Suye3rcFS_J9v35tXjYJiXkAhJwqIzIjdoohUo6BsJMZXklK1miLRFyhlae3nQ553JaO2VR5DIT4MSK3M9nP7rBHL9M0-ghTHHCUQPTP3D0DEdPcLQXeoajT3Am993sLkMfY0D3H_M3ECtyeg
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.11591/ijeecs.v34.i3.pp1823-1831
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2502-4760
ExternalDocumentID 10.11591/ijeecs.v34.i3.pp1823-1831
10_11591_ijeecs_v34_i3_pp1823_1831
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c1731-1fe9a37a9499e98f013aaaab2d8d8cebce170eb81159f72288d8f9be378531f3
IEDL.DBID UNPAY
ISSN 2502-4752
2502-4760
IngestDate Tue Aug 19 19:08:48 EDT 2025
Tue Jul 01 02:46:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-sa/4.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1731-1fe9a37a9499e98f013aaaab2d8d8cebce170eb81159f72288d8f9be378531f3
ORCID 0009-0004-5045-9968
0000-0002-9198-3617
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ijeecs.iaescore.com/index.php/IJEECS/article/download/36353/18335
ParticipantIDs unpaywall_primary_10_11591_ijeecs_v34_i3_pp1823_1831
crossref_primary_10_11591_ijeecs_v34_i3_pp1823_1831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Indonesian Journal of Electrical Engineering and Computer Science
PublicationYear 2024
SSID ssib030194763
ssib044739472
ssib052605909
Score 1.8748038
Snippet This research aims to revolutionize urban object recognition by developing cloud-based Python programs using intelligent algorithms. Unlike current models that...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 1823
Title Comparing hybrid models for recognising objects in thermal images at nighttime
URI https://ijeecs.iaescore.com/index.php/IJEECS/article/download/36353/18335
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2502-4760
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044739472
  issn: 2502-4752
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UDp78ETVqlPTgdYyu67odCYEgCcRESPC0dP2hQx3EgQYP_u2-bsOoN407Lcvabe91fd9r-r4PoUspmTEqoo6UoXL8iGgnUkw7gdKKsUASr9BYGo6C_sQfTNm0ohQqamFmWsu8mQqdlzSOMFcXvIGWLMK9GnS7nRu3MqqrLJ_8XCiXQtikLrEFRNuoHjCA5TVUn4yu27dWXI7BX-_zQn2nOg82BKQQzcnmoS_Ub6aQWi4Ac1MHeiPfgtXOKluI9at4fPwSgXp7aLZ593LjyUNztUya8u0HreO_fNw-2q1wKm6Xtx2gLZ0dolGnVC3M7vD92pZ64UJIJ8eAfHG1FcmuPeB5Ypd3cpxm2ALMJ-gpfYKZK8diiQvuEqtpf4TGve6403cqQQZHEk6JQ4yOBOXCEtroKDQAHwUciadCFUqdSE14SyehtarhnhfCZRMlmnIABcTQY1TL5pk-QRjGAGu1FDEG8jGhwoh5RrWkTz0eSS74KaIbw8eLknYjLtIVcFdcmjEGd8UpjUt3xdZdp8j_9NEvmp39rdk5qi2fV_oCQMkyaaDt4Xu3UQ26Dyz_5YA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4UDp78ETVi1PTgdYyu67odCYEgicRESPC0dP2hQxjEgQb_el-3YdSbxp2WZe2297q-7zV934fQtZTMGBVRR8pQOX5EtBMppp1AacVYIIlXaCzdDoP-2B9M2KSiFCpqYaZay7yZCp2XNI4wVxe8gZYswr0ZdLude7cyqqssn_xCKJdC2KQusQVEu6geMIDlNVQfD-_aD1ZcjsFf7_NCfac6D7YEpBDNyfahr9RvppBaLgFzUwd6I9-C1d46W4rNm5jNvkSg3gGabt-93Hjy3FyvkqZ8_0Hr-C8fd4j2K5yK2-VtR2hHZ8do2ClVC7NH_LSxpV64ENLJMSBfXG1FsmsPeJHY5Z0cpxm2AHMOPaVzmLlyLFa44C6xmvYnaNTrjjp9pxJkcCThlDjE6EhQLiyhjY5CA_BRwJF4KlSh1InUhLd0ElqrGu55IVw2UaIpB1BADD1FtWyR6TOEYQywVksRYyAfEyqMmGdUS_rU45HkgjcQ3Ro-Xpa0G3GRroC74tKMMbgrTmlcuiu27mog_9NHv2h2_rdmF6i2elnrSwAlq-SqGm4f0HvkTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+hybrid+models+for+recognising+objects+in+thermal+images+at+nighttime&rft.jtitle=Indonesian+Journal+of+Electrical+Engineering+and+Computer+Science&rft.au=Bandi%2C+Maheswari&rft.au=Rajakumari%2C+Reeja+Sundaran&rft.date=2024-06-01&rft.issn=2502-4752&rft.eissn=2502-4760&rft.volume=34&rft.issue=3&rft.spage=1823&rft_id=info:doi/10.11591%2Fijeecs.v34.i3.pp1823-1831&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijeecs_v34_i3_pp1823_1831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2502-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2502-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2502-4752&client=summon