What are, and what are not, Inverse Laplace Transforms

Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \In...

Full description

Saved in:
Bibliographic Details
Published inDiffusion fundamentals Vol. 29
Main Authors Fordham, Edmund J., Venkataramanan, Lalitha, Mitchell, Jonathan, Valori, Andrea
Format Journal Article
LanguageEnglish
Published 01.10.2017
Online AccessGet full text
ISSN1862-4138
1862-4138
DOI10.62721/diffusion-fundamentals.29.952

Cover

Abstract Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \Inverse Laplace Transforms' although the standard inversion of the Laplace Transform long-established in many textbooks of mathematical physics does not perform (and cannot perform) the calculation of such distributions. The operations performed in the estimation of a \T2-distribution' are the estimation of solutions to a Fredholm Integral Equation (of the First Kind), a different and more general object whose discretization results in a standard problem in linear algebra, albeit suffering from well-known problems of ill-conditioning and computational limits for large problem sizes. The Fredholm Integral Equation is not restricted to exponential kernels; the same solution algorithms can be used with kernels of completely different form. On the other hand, (true) Inverse Laplace Transforms, treated analytically, can be of real utility in solving the diffusion problems highly relevant in the subject of NMR in porous media.
AbstractList Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \Inverse Laplace Transforms' although the standard inversion of the Laplace Transform long-established in many textbooks of mathematical physics does not perform (and cannot perform) the calculation of such distributions. The operations performed in the estimation of a \T2-distribution' are the estimation of solutions to a Fredholm Integral Equation (of the First Kind), a different and more general object whose discretization results in a standard problem in linear algebra, albeit suffering from well-known problems of ill-conditioning and computational limits for large problem sizes. The Fredholm Integral Equation is not restricted to exponential kernels; the same solution algorithms can be used with kernels of completely different form. On the other hand, (true) Inverse Laplace Transforms, treated analytically, can be of real utility in solving the diffusion problems highly relevant in the subject of NMR in porous media.
Author Valori, Andrea
Fordham, Edmund J.
Venkataramanan, Lalitha
Mitchell, Jonathan
Author_xml – sequence: 1
  givenname: Edmund J.
  surname: Fordham
  fullname: Fordham, Edmund J.
– sequence: 2
  givenname: Lalitha
  surname: Venkataramanan
  fullname: Venkataramanan, Lalitha
– sequence: 3
  givenname: Jonathan
  surname: Mitchell
  fullname: Mitchell, Jonathan
– sequence: 4
  givenname: Andrea
  surname: Valori
  fullname: Valori, Andrea
BookMark eNqVkE1Lw0AQhhepYK39D3vy1NTd2WSbXBSpVQsBLxWPy2Q_MJJuym5q6b832CLFk87lnYHheeG5JAPfekvINWdTCTPgN6Z2bhvr1idu6w2ure-wiVMopkUGZ2TIcwlJykU-ONkvyDjGD9aPgJxJMSTy7R07isFOKHpDd8eL-rab0KX_tCFaWuKmQW3pKqCPrg3reEXOXV9nx8cckdfHxWr-nJQvT8v5fZloPgNIIAVhcpYh5FjIzGYVVpoVttDWVrLiRhunpWNaihnqVDvrgJlU6IpxxgyKEbk7cLd-g_sdNo3ahHqNYa84U98m1I8JdWpCQaF6Ez3h9kDQoY0xWPd_wMMvgK477Pr3LmDd_BXzBQkpi0Y
CitedBy_id crossref_primary_10_1021_acs_energyfuels_9b01609
crossref_primary_10_1039_D1CP03356E
crossref_primary_10_1021_acs_jpcb_0c08078
crossref_primary_10_1021_acscatal_4c04789
crossref_primary_10_3390_molecules26082133
crossref_primary_10_1016_j_ces_2023_119607
crossref_primary_10_1016_j_still_2024_106258
crossref_primary_10_1016_j_pnmrs_2021_07_001
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.62721/diffusion-fundamentals.29.952
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-4138
ExternalDocumentID 10.62721/diffusion-fundamentals.29.952
10_62721_diffusion_fundamentals_29_952
GroupedDBID 29G
2WC
5GY
AAYXX
ACGFO
ACIPV
ALMA_UNASSIGNED_HOLDINGS
CITATION
E3Z
EBS
EJD
GX1
HH5
OK1
OVT
P2P
RNS
TR2
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c1722-2423d805a28a965e5babc09e9ceeb6b1dcdfc6f0c637ac4cfef20d43cb0100da3
IEDL.DBID UNPAY
ISSN 1862-4138
IngestDate Sun Sep 07 11:15:08 EDT 2025
Wed Oct 01 06:05:35 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1722-2423d805a28a965e5babc09e9ceeb6b1dcdfc6f0c637ac4cfef20d43cb0100da3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.62721/diffusion-fundamentals.29.952
ParticipantIDs unpaywall_primary_10_62721_diffusion_fundamentals_29_952
crossref_primary_10_62721_diffusion_fundamentals_29_952
crossref_citationtrail_10_62721_diffusion_fundamentals_29_952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Diffusion fundamentals
PublicationYear 2017
SSID ssj0000328063
Score 2.0058446
Snippet Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint...
SourceID unpaywall
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
Title What are, and what are not, Inverse Laplace Transforms
URI https://doi.org/10.62721/diffusion-fundamentals.29.952
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1862-4138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328063
  issn: 1862-4138
  databaseCode: HH5
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1862-4138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000328063
  issn: 1862-4138
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqVsDEN6IIKg-IqSmOYzvOwFAhqgpBxdCKMkWOYy9UadUkquDXY-ejKkwto4ezkmfL986-ewfArSaujzQmDkJaO4Rj4QS-Zw5DTyqMXeLqQkvvdcSGE_I8pdMGYHUtzMb7PcMmOrm3fUJye3HkaFsaUSrepz0c9AJqjt4Wo4aDN0FrMnrrf9joitsyINfj--Buu0l-eaSDPFmIr5WYzTbczOAIvNcfWGaXfPbyLOrJ7z_ajbv_wTE4rJgn7Jdb5QQ0VHIK9ooMUJmeAWZFvKFYqi4USQxX1Qgm86wLrRrHMlXwRRQ5XHBc0930HEwGT-PHoVM1VXCk4SrYPgF7MUdUYC4CRhWNRCRRoALjLSMWubGMtWQaSeb5QhKplcYoJp6MTOSGYuFdgGYyT9QlgL5wkVa-oJhoohTiQSwMoYi4Kwwvo7wNHmpgQ1kpjtvGF7PQRB4FNuEam3ATmxAHocGmDfy1_aLU3tjakq_XcUfTq_-bXoNmtszVjWEpWdSxPoJ2qo35A2DH8Ts
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqVsDEN6IIkAfE1ATHcRx7YKgQVYWgYmhFmSLHsReqtGoSVfDrsfNRFabC6OGs5NnyvbPv3gFwo4kXIo2Jg5DWDmFYODz0zWHoS4WxRzxdaum9jOhwQp6mwbQFaFMLs_F-T7GJTu5sn5DCXhw52pZGVIr3mYu5ywNz9HZoYDh4G3Qmo9f-u42umC0D8ny2C263m-SHR9or0oX4XInZbMPNDA7AW_OBVXbJh1vksSu_fmk3_v0PDsF-zTxhv9oqR6Cl0mOwU2aAyuwEUCviDcVS9aBIE7iqRzCd5z1o1TiWmYLPoszhguOG7manYDJ4HD8MnbqpgiMNV8H2CdhPGAoEZoLTQAWxiCXiihtvGdPYS2SiJdVIUj8UkkitNEYJ8WVsIjeUCP8MtNN5qs4BDIWHtApFgIkmSiHGE2EIRcw8YXhZwLrgvgE2krXiuG18MYtM5FFiE62xiTaxiTCPDDZdEK7tF5X2xtaWbL2OfzS9-L_pJWjny0JdGZaSx9f1lvwGvwLwVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+are%2C+and+what+are+not%2C+Inverse+Laplace+Transforms&rft.jtitle=Diffusion+fundamentals&rft.au=Fordham%2C+Edmund+J.&rft.au=Venkataramanan%2C+Lalitha&rft.au=Mitchell%2C+Jonathan&rft.au=Valori%2C+Andrea&rft.date=2017-10-01&rft.issn=1862-4138&rft.eissn=1862-4138&rft.volume=29&rft_id=info:doi/10.62721%2Fdiffusion-fundamentals.29.952&rft.externalDBID=n%2Fa&rft.externalDocID=10_62721_diffusion_fundamentals_29_952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4138&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4138&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4138&client=summon