What are, and what are not, Inverse Laplace Transforms
Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \In...
        Saved in:
      
    
          | Published in | Diffusion fundamentals Vol. 29 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.10.2017
     | 
| Online Access | Get full text | 
| ISSN | 1862-4138 1862-4138  | 
| DOI | 10.62721/diffusion-fundamentals.29.952 | 
Cover
| Abstract | Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \Inverse Laplace Transforms' although the standard inversion of the Laplace Transform long-established in many textbooks of mathematical physics does not perform (and cannot perform) the calculation of such distributions. The operations performed in the estimation of a \T2-distribution' are the estimation of solutions to a Fredholm Integral Equation (of the First Kind), a different and more general object whose discretization results in a standard problem in linear algebra, albeit suffering from well-known problems of ill-conditioning and computational limits for large problem sizes. The Fredholm Integral Equation is not restricted to exponential kernels; the same solution algorithms can be used with kernels of completely different form. On the other hand, (true) Inverse Laplace Transforms, treated analytically, can be of real utility in solving the diffusion problems highly relevant in the subject of NMR in porous media. | 
    
|---|---|
| AbstractList | Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint distributions in two (or higher) dimensions of other NMR parameters, T1, diffusivity D, pore size a, etc. These are frequently referred to as \Inverse Laplace Transforms' although the standard inversion of the Laplace Transform long-established in many textbooks of mathematical physics does not perform (and cannot perform) the calculation of such distributions. The operations performed in the estimation of a \T2-distribution' are the estimation of solutions to a Fredholm Integral Equation (of the First Kind), a different and more general object whose discretization results in a standard problem in linear algebra, albeit suffering from well-known problems of ill-conditioning and computational limits for large problem sizes. The Fredholm Integral Equation is not restricted to exponential kernels; the same solution algorithms can be used with kernels of completely different form. On the other hand, (true) Inverse Laplace Transforms, treated analytically, can be of real utility in solving the diffusion problems highly relevant in the subject of NMR in porous media. | 
    
| Author | Valori, Andrea Fordham, Edmund J. Venkataramanan, Lalitha Mitchell, Jonathan  | 
    
| Author_xml | – sequence: 1 givenname: Edmund J. surname: Fordham fullname: Fordham, Edmund J. – sequence: 2 givenname: Lalitha surname: Venkataramanan fullname: Venkataramanan, Lalitha – sequence: 3 givenname: Jonathan surname: Mitchell fullname: Mitchell, Jonathan – sequence: 4 givenname: Andrea surname: Valori fullname: Valori, Andrea  | 
    
| BookMark | eNqVkE1Lw0AQhhepYK39D3vy1NTd2WSbXBSpVQsBLxWPy2Q_MJJuym5q6b832CLFk87lnYHheeG5JAPfekvINWdTCTPgN6Z2bhvr1idu6w2ure-wiVMopkUGZ2TIcwlJykU-ONkvyDjGD9aPgJxJMSTy7R07isFOKHpDd8eL-rab0KX_tCFaWuKmQW3pKqCPrg3reEXOXV9nx8cckdfHxWr-nJQvT8v5fZloPgNIIAVhcpYh5FjIzGYVVpoVttDWVrLiRhunpWNaihnqVDvrgJlU6IpxxgyKEbk7cLd-g_sdNo3ahHqNYa84U98m1I8JdWpCQaF6Ez3h9kDQoY0xWPd_wMMvgK477Pr3LmDd_BXzBQkpi0Y | 
    
| CitedBy_id | crossref_primary_10_1021_acs_energyfuels_9b01609 crossref_primary_10_1039_D1CP03356E crossref_primary_10_1021_acs_jpcb_0c08078 crossref_primary_10_1021_acscatal_4c04789 crossref_primary_10_3390_molecules26082133 crossref_primary_10_1016_j_ces_2023_119607 crossref_primary_10_1016_j_still_2024_106258 crossref_primary_10_1016_j_pnmrs_2021_07_001  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.62721/diffusion-fundamentals.29.952 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1862-4138 | 
    
| ExternalDocumentID | 10.62721/diffusion-fundamentals.29.952 10_62721_diffusion_fundamentals_29_952  | 
    
| GroupedDBID | 29G 2WC 5GY AAYXX ACGFO ACIPV ALMA_UNASSIGNED_HOLDINGS CITATION E3Z EBS EJD GX1 HH5 OK1 OVT P2P RNS TR2 ADTOC C1A UNPAY  | 
    
| ID | FETCH-LOGICAL-c1722-2423d805a28a965e5babc09e9ceeb6b1dcdfc6f0c637ac4cfef20d43cb0100da3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1862-4138 | 
    
| IngestDate | Sun Sep 07 11:15:08 EDT 2025 Wed Oct 01 06:05:35 EDT 2025 Thu Apr 24 22:56:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1722-2423d805a28a965e5babc09e9ceeb6b1dcdfc6f0c637ac4cfef20d43cb0100da3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.62721/diffusion-fundamentals.29.952 | 
    
| ParticipantIDs | unpaywall_primary_10_62721_diffusion_fundamentals_29_952 crossref_primary_10_62721_diffusion_fundamentals_29_952 crossref_citationtrail_10_62721_diffusion_fundamentals_29_952  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-10-01 | 
    
| PublicationDateYYYYMMDD | 2017-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Diffusion fundamentals | 
    
| PublicationYear | 2017 | 
    
| SSID | ssj0000328063 | 
    
| Score | 2.0058446 | 
    
| Snippet | Time-domain NMR, in one and higher dimensionalities, makes routine use of inversion algorithms to generate results called \T2-distributions' or joint... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database  | 
    
| Title | What are, and what are not, Inverse Laplace Transforms | 
    
| URI | https://doi.org/10.62721/diffusion-fundamentals.29.952 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1862-4138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328063 issn: 1862-4138 databaseCode: HH5 dateStart: 20050101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1862-4138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000328063 issn: 1862-4138 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqVsDEN6IIKg-IqSmOYzvOwFAhqgpBxdCKMkWOYy9UadUkquDXY-ejKkwto4ezkmfL986-ewfArSaujzQmDkJaO4Rj4QS-Zw5DTyqMXeLqQkvvdcSGE_I8pdMGYHUtzMb7PcMmOrm3fUJye3HkaFsaUSrepz0c9AJqjt4Wo4aDN0FrMnrrf9joitsyINfj--Buu0l-eaSDPFmIr5WYzTbczOAIvNcfWGaXfPbyLOrJ7z_ajbv_wTE4rJgn7Jdb5QQ0VHIK9ooMUJmeAWZFvKFYqi4USQxX1Qgm86wLrRrHMlXwRRQ5XHBc0930HEwGT-PHoVM1VXCk4SrYPgF7MUdUYC4CRhWNRCRRoALjLSMWubGMtWQaSeb5QhKplcYoJp6MTOSGYuFdgGYyT9QlgL5wkVa-oJhoohTiQSwMoYi4Kwwvo7wNHmpgQ1kpjtvGF7PQRB4FNuEam3ATmxAHocGmDfy1_aLU3tjakq_XcUfTq_-bXoNmtszVjWEpWdSxPoJ2qo35A2DH8Ts | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqVsDEN6IIkAfE1ATHcRx7YKgQVYWgYmhFmSLHsReqtGoSVfDrsfNRFabC6OGs5NnyvbPv3gFwo4kXIo2Jg5DWDmFYODz0zWHoS4WxRzxdaum9jOhwQp6mwbQFaFMLs_F-T7GJTu5sn5DCXhw52pZGVIr3mYu5ywNz9HZoYDh4G3Qmo9f-u42umC0D8ny2C263m-SHR9or0oX4XInZbMPNDA7AW_OBVXbJh1vksSu_fmk3_v0PDsF-zTxhv9oqR6Cl0mOwU2aAyuwEUCviDcVS9aBIE7iqRzCd5z1o1TiWmYLPoszhguOG7manYDJ4HD8MnbqpgiMNV8H2CdhPGAoEZoLTQAWxiCXiihtvGdPYS2SiJdVIUj8UkkitNEYJ8WVsIjeUCP8MtNN5qs4BDIWHtApFgIkmSiHGE2EIRcw8YXhZwLrgvgE2krXiuG18MYtM5FFiE62xiTaxiTCPDDZdEK7tF5X2xtaWbL2OfzS9-L_pJWjny0JdGZaSx9f1lvwGvwLwVQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+are%2C+and+what+are+not%2C+Inverse+Laplace+Transforms&rft.jtitle=Diffusion+fundamentals&rft.au=Fordham%2C+Edmund+J.&rft.au=Venkataramanan%2C+Lalitha&rft.au=Mitchell%2C+Jonathan&rft.au=Valori%2C+Andrea&rft.date=2017-10-01&rft.issn=1862-4138&rft.eissn=1862-4138&rft.volume=29&rft_id=info:doi/10.62721%2Fdiffusion-fundamentals.29.952&rft.externalDBID=n%2Fa&rft.externalDocID=10_62721_diffusion_fundamentals_29_952 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4138&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4138&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4138&client=summon |