Interdependent factors influencing the carbon yield, structure, and CO$$_{2}$$ adsorption capacity of lignocellulose-derived carbon fibers using multiple linear regression

Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibe...

Full description

Saved in:
Bibliographic Details
Published inCarbon Letters Vol. 33; no. 7; pp. 2253 - 2265
Main Authors Miranda-Valdez, Isaac Y., Guizani, Chamseddine, Abbrederis, Nathalie, Trogen, Mikaela, Hummel, Michael
Format Journal Article
LanguageEnglish
Published 한국탄소학회 01.12.2023
Subjects
Online AccessGet full text
ISSN1976-4251
2233-4998
DOI10.1007/s42823-023-00591-3

Cover

Abstract Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO $$_{2}$$ 2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO $$_{2}$$ 2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO $$_{2}$$ 2 storage systems. Graphical abstract
AbstractList Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO storage systems. KCI Citation Count: 0
Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO $$_{2}$$ 2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO $$_{2}$$ 2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO $$_{2}$$ 2 storage systems. Graphical abstract
Author Hummel, Michael
Abbrederis, Nathalie
Guizani, Chamseddine
Miranda-Valdez, Isaac Y.
Trogen, Mikaela
Author_xml – sequence: 1
  givenname: Isaac Y.
  orcidid: 0000-0002-5005-3448
  surname: Miranda-Valdez
  fullname: Miranda-Valdez, Isaac Y.
– sequence: 2
  givenname: Chamseddine
  surname: Guizani
  fullname: Guizani, Chamseddine
– sequence: 3
  givenname: Nathalie
  surname: Abbrederis
  fullname: Abbrederis, Nathalie
– sequence: 4
  givenname: Mikaela
  surname: Trogen
  fullname: Trogen, Mikaela
– sequence: 5
  givenname: Michael
  surname: Hummel
  fullname: Hummel, Michael
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003047178$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9Uctq3DAUFSWBTpP8QFdazKrEqWRZlrUMQx8DgUBJ1kKWrqYiimQkuTCUflF-snam3XTRxeVszuPee96hs5giIPSekhtKiPhYunZoWUPWIVzShr1Bm7ZlrOmkHM7QhkrRN13L6Vt0VYofCZOci0GKDXrZxwrZwgTRQqzYaVNTLthHF2aIxscDrt8BG53HFPHRQ7DXuNQ8mzpnuMY6Wry7327Vz_bXdou1LSlP1S9coydtfD3i5HDwh5gMhDCHVKCxkP0PsH9dnR9hyZzLmvY8h-qnAIsmgs44wyHDsnWKl-jc6VDg6g9eoMfPnx52X5u7-y_73e1dY6igrOHD2MnO6N4OljvpjBRU9z3rRiMoGNeNo-gcpcQNrLdcjC3vhXWW94wbYMAu0IeTb8xOPRmvkvaveEjqKavbbw97RQnr5cCHhTycyCanUjI4tdys1wfUrH1YiGotSZ1KUmSdtSTFFmn7j3TK_lnn4_9EvwFyZZqX
CitedBy_id crossref_primary_10_1007_s11837_024_07098_w
crossref_primary_10_1016_j_rineng_2024_103379
crossref_primary_10_1002_cssc_202401711
crossref_primary_10_1016_j_carbon_2025_120227
Cites_doi 10.1016/j.molstruc.2013.02.040
10.1007/s10934-020-01026-4
10.1039/c5ta03213j
10.1007/s10570-021-04134-9
10.1016/j.carbpol.2017.11.062
10.1016/j.carbpol.2021.118667
10.1016/j.forpol.2018.12.004
10.1007/s42823-019-00063-7
10.1007/s00339-013-7671-x
10.1260/0263-6174.30.4.307
10.1002/cssc.201501094
10.1016/j.carbpol.2020.117133
10.3390/c6020017
10.1260/026361703322405079
10.1515/pac-2014-1117
10.3183/npprj-2015-30-01-p043-057
10.1016/j.matlet.2014.07.131
10.1016/0013-4686(95)00416-5
10.1007/s42823-022-00353-7
10.1007/s10570-017-1560-y
10.1038/s41598-021-03764-0
10.1016/j.biortech.2020.122755
10.1002/adfm.201100291
10.1016/j.biortech.2016.12.083
10.1021/acssuschemeng.5b00097
10.1007/s10570-021-04066-4
10.1016/j.scitotenv.2021.152239
10.1016/j.apsusc.2014.01.190
10.1016/j.jnucmat.2019.151802
10.1016/0008-6223(64)90035-1
10.1016/j.carbon.2016.01.031
10.1007/s10570-007-9148-6
10.1007/s42823-022-00456-1
10.1007/s11356-021-15030-x
10.1002/app.49274
10.1016/0039-6028(75)90044-8
10.1038/s41598-019-50707-x
10.1103/PhysRevB.50.5905
10.1016/j.repl.2018.10.002
10.1351/pac199466081739
10.1007/s42823-022-00417-8
10.1103/PhysRevB.76.064304
10.1039/c5ra13405f
10.3390/c8010004
10.1016/j.carbon.2014.09.006
10.1016/j.micromeso.2018.06.019
10.1002/app.38496
10.1021/acsanm.1c04474
10.1088/2053-1591/ac05fe
10.1016/j.cofs.2021.09.003
10.1007/s10570-021-04385-6
10.1016/j.eng.2018.06.001
10.1039/c6ta06251b
10.1016/j.rser.2020.110136
10.1016/j.carbpol.2020.116918
10.1016/B978-0-08-044463-5.X5013-4
10.1016/0008-6223(84)90086-1
10.1103/PhysRevB.61.14095
10.1016/0008-6223(80)90064-0
10.3103/S0361521911050144
10.1021/la00073a013
10.1016/j.micromeso.2015.08.005
10.1016/j.indcrop.2021.114493
10.1007/s10570-017-1196-y
10.1007/s10450-019-00168-5
10.1021/es204071g
10.1088/1757-899x/254/19/192012
10.26434/chemrxiv.14291644
10.1007/s10570-020-03419-9
10.5714/CL.2017.23.069
10.1016/j.jpowsour.2021.230947
10.1007/s10853-012-6970-5
10.1016/j.rcrx.2019.100029
10.1002/anie.201306129
ContentType Journal Article
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42823-023-00591-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2233-4998
EndPage 2265
ExternalDocumentID oai_kci_go_kr_ARTI_10369858
10_1007_s42823_023_00591_3
GroupedDBID 0R~
406
88I
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAYXX
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABFTV
ABJCF
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACSTC
ACZOJ
ADMLS
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AEZWR
AFDZB
AFHIU
AFKRA
AGDGC
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AILAN
AITGF
AIXLP
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ATCPS
ATHPR
AXYYD
AYFIA
AZQEC
BENPR
BGLVJ
BGNMA
BHPHI
CCPQU
CITATION
CSCUP
DPUIP
DWQXO
EBLON
EBS
EJD
FIGPU
FNLPD
GNUQQ
H13
HCIFZ
IKXTQ
IWAJR
JDI
JZLTJ
KB.
KOV
KROLR
LLZTM
M2P
M4Y
M7S
NPVJJ
NQJWS
NU0
P5Y
PATMY
PDBOC
PHGZM
PHGZT
PT4
PTHSS
PYCSY
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
VEKWB
VFIZW
VP7
ZMTXR
.UV
ACYCR
ID FETCH-LOGICAL-c1713-58b494ca6d8d5f9fc971a6634bc71ecf4bb74f110f836d57b2567dfd5635ce3e3
ISSN 1976-4251
IngestDate Fri Feb 02 03:15:32 EST 2024
Thu Apr 24 22:56:38 EDT 2025
Tue Jul 01 01:14:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1713-58b494ca6d8d5f9fc971a6634bc71ecf4bb74f110f836d57b2567dfd5635ce3e3
ORCID 0000-0002-5005-3448
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s42823-023-00591-3.pdf
PageCount 13
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10369858
crossref_citationtrail_10_1007_s42823_023_00591_3
crossref_primary_10_1007_s42823_023_00591_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
2023-12
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Carbon Letters
PublicationYear 2023
Publisher 한국탄소학회
Publisher_xml – name: 한국탄소학회
References P Iacomi (591_CR26) 2019; 25
Parliament European (591_CR18) 2019; L155
A Oroumei (591_CR50) 2015; 3
P Mallet-Ladeira (591_CR40) 2013; 114
PK Mubari (591_CR46) 2022
J Sherwood (591_CR60) 2020; 300
BC Bai (591_CR8) 2019; 9
J Garrido (591_CR22) 2002; 3
H Shi (591_CR61) 1996; 41
K Huang (591_CR25) 2022; 43
IS Ismail (591_CR27) 2021
S Breitenbach (591_CR10) 2021; 28
J Rouquerol (591_CR57) 1994; 66
RLS Canevesi (591_CR13) 2022; 5
591_CR54
ANMA Haque (591_CR23) 2022
AC Ferrari (591_CR19) 2000; 61
SH Jia (591_CR29) 2015; 5
L Pitkänen (591_CR52) 2020; 27
H Wu (591_CR73) 2020
B Ashourirad (591_CR4) 2016; 4
PH Brunner (591_CR11) 1980; 18
M Yang (591_CR75) 2023
C Qin (591_CR53) 2021
I Karacan (591_CR31) 2013; 1041
DG McCulloch (591_CR43) 1994; 50
M Trogen (591_CR70) 2021; 252
K Moriam (591_CR45) 2021; 28
F Zeng (591_CR76) 2008; 15
K Babel (591_CR5) 2003; 21
Y Ma (591_CR39) 2015; 8
M Yang (591_CR74) 2022
D D’Amato (591_CR17) 2020; 110
LG Cançado (591_CR12) 2007
BC Bai (591_CR7) 2017; 23
MM Almoneef (591_CR2) 2021
BC Bai (591_CR6) 2014; 135
ME Reyes-Melo (591_CR56) 2021; 28
KA Cychosz (591_CR15) 2018; 4
K Hina (591_CR24) 2017; 25
ND Le (591_CR33) 2020; 250
T Dahou (591_CR16) 2021; 135
591_CR67
M Sevilla (591_CR59) 2011; 21
S Breitenbach (591_CR9) 2020; 6
MW Smith (591_CR63) 2016; 100
PI Zolkin (591_CR79) 2011; 45
A Liu (591_CR36) 2022
A Aleghafouri (591_CR1) 2012; 30
X Zhang (591_CR77) 2020
XF Tan (591_CR65) 2017; 227
I Karacan (591_CR32) 2013; 48
Q Wang (591_CR71) 2023; 33
Y Liu (591_CR37) 2012; 46
H Freundlich (591_CR21) 1906; 57
R Scholz (591_CR58) 2019; 63
I Karacan (591_CR30) 2013; 128
S Asaadi (591_CR3) 2018; 181
J Oelerich (591_CR48) 2017
H Sixta (591_CR62) 2015; 30
T Lohtander (591_CR38) 2022
591_CR51
SS Choi (591_CR14) 2019; 29
H Li (591_CR34) 2015; 3
J Zheng (591_CR78) 2014; 299
J Trifol (591_CR69) 2022
R Li (591_CR35) 2017; 24
P Mallet-Ladeira (591_CR41) 2014; 80
M Thommes (591_CR68) 2015; 87
M Reichler (591_CR55) 2021
H Wu (591_CR72) 2016; 219
E Frank (591_CR20) 2014; 53
H Marsh (591_CR42) 2006
M Jaroniec (591_CR28) 1975; 50
M Tang (591_CR66) 1964; 2
A Oberlin (591_CR47) 1984; 22
591_CR44
P Stegmann (591_CR64) 2020; 6
DO Ojwang (591_CR49) 2018; 272
References_xml – volume: 1041
  start-page: 29
  year: 2013
  ident: 591_CR31
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2013.02.040
– volume: 28
  start-page: 727
  issue: 3
  year: 2021
  ident: 591_CR10
  publication-title: J Porous Mater
  doi: 10.1007/s10934-020-01026-4
– volume: 3
  start-page: 20913
  issue: 42
  year: 2015
  ident: 591_CR34
  publication-title: J Mater Chem A
  doi: 10.1039/c5ta03213j
– volume: 28
  start-page: 9547
  issue: 15
  year: 2021
  ident: 591_CR45
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04134-9
– volume: 181
  start-page: 893
  year: 2018
  ident: 591_CR3
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2017.11.062
– year: 2021
  ident: 591_CR53
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2021.118667
– volume: 110
  start-page: 101848
  year: 2020
  ident: 591_CR17
  publication-title: Forest Policy Econ
  doi: 10.1016/j.forpol.2018.12.004
– volume: 29
  start-page: 633
  issue: 6
  year: 2019
  ident: 591_CR14
  publication-title: Carbon Lett
  doi: 10.1007/s42823-019-00063-7
– volume: 114
  start-page: 759
  issue: 3
  year: 2013
  ident: 591_CR40
  publication-title: Appl Phys A
  doi: 10.1007/s00339-013-7671-x
– volume: 30
  start-page: 307
  issue: 4
  year: 2012
  ident: 591_CR1
  publication-title: Adsorpti Sci Technol
  doi: 10.1260/0263-6174.30.4.307
– volume: 8
  start-page: 4030
  issue: 23
  year: 2015
  ident: 591_CR39
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201501094
– volume: 252
  start-page: 117133
  issue: September 220
  year: 2021
  ident: 591_CR70
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2020.117133
– volume: 6
  start-page: 17
  issue: 2
  year: 2020
  ident: 591_CR9
  publication-title: C J Carbon Res
  doi: 10.3390/c6020017
– volume: 21
  start-page: 363
  issue: 4
  year: 2003
  ident: 591_CR5
  publication-title: Adsorpt Sci Technol
  doi: 10.1260/026361703322405079
– volume: 87
  start-page: 1051
  issue: 9–10
  year: 2015
  ident: 591_CR68
  publication-title: Pure Appl Chem
  doi: 10.1515/pac-2014-1117
– volume: 30
  start-page: 43
  issue: 1
  year: 2015
  ident: 591_CR62
  publication-title: Nord Pulp Pap Res J
  doi: 10.3183/npprj-2015-30-01-p043-057
– volume: 135
  start-page: 226
  year: 2014
  ident: 591_CR6
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2014.07.131
– volume: 41
  start-page: 1633
  issue: 10
  year: 1996
  ident: 591_CR61
  publication-title: Electrochim Acta
  doi: 10.1016/0013-4686(95)00416-5
– year: 2022
  ident: 591_CR74
  publication-title: Carbon Lett
  doi: 10.1007/s42823-022-00353-7
– volume: 25
  start-page: 607
  issue: 1
  year: 2017
  ident: 591_CR24
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1560-y
– year: 2021
  ident: 591_CR55
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-03764-0
– volume: 300
  start-page: 122755
  year: 2020
  ident: 591_CR60
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2020.122755
– ident: 591_CR44
– volume: 21
  start-page: 2781
  issue: 14
  year: 2011
  ident: 591_CR59
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201100291
– volume: 227
  start-page: 359
  year: 2017
  ident: 591_CR65
  publication-title: Biores Technol
  doi: 10.1016/j.biortech.2016.12.083
– volume: 3
  start-page: 758
  issue: 4
  year: 2015
  ident: 591_CR50
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.5b00097
– volume: 28
  start-page: 9227
  issue: 14
  year: 2021
  ident: 591_CR56
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04066-4
– year: 2022
  ident: 591_CR23
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.152239
– volume: 299
  start-page: 86
  year: 2014
  ident: 591_CR78
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2014.01.190
– ident: 591_CR54
– year: 2020
  ident: 591_CR73
  publication-title: J Nucl Mater
  doi: 10.1016/j.jnucmat.2019.151802
– volume: L155
  start-page: 1
  year: 2019
  ident: 591_CR18
  publication-title: Off J
– volume: 2
  start-page: 211
  issue: 3
  year: 1964
  ident: 591_CR66
  publication-title: Carbon
  doi: 10.1016/0008-6223(64)90035-1
– volume: 100
  start-page: 678
  year: 2016
  ident: 591_CR63
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.031
– volume: 15
  start-page: 91
  issue: 1
  year: 2008
  ident: 591_CR76
  publication-title: Cellulose
  doi: 10.1007/s10570-007-9148-6
– year: 2023
  ident: 591_CR75
  publication-title: Carbon Lett
  doi: 10.1007/s42823-022-00456-1
– year: 2021
  ident: 591_CR27
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-15030-x
– year: 2020
  ident: 591_CR77
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.49274
– volume: 50
  start-page: 553
  issue: 2
  year: 1975
  ident: 591_CR28
  publication-title: Surf Sci
  doi: 10.1016/0039-6028(75)90044-8
– volume: 9
  start-page: 14458
  issue: 1
  year: 2019
  ident: 591_CR8
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50707-x
– volume: 57
  start-page: 385
  year: 1906
  ident: 591_CR21
  publication-title: Zeitschrift fur Physikalische Chemie
– volume: 50
  start-page: 5905
  issue: 9
  year: 1994
  ident: 591_CR43
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.50.5905
– volume: 63
  start-page: 146
  issue: 3
  year: 2019
  ident: 591_CR58
  publication-title: Reinf Plast
  doi: 10.1016/j.repl.2018.10.002
– volume: 66
  start-page: 1739
  issue: 8
  year: 1994
  ident: 591_CR57
  publication-title: Pure Appl Chem
  doi: 10.1351/pac199466081739
– volume: 33
  start-page: 203
  issue: 1
  year: 2023
  ident: 591_CR71
  publication-title: Carbon Lett
  doi: 10.1007/s42823-022-00417-8
– year: 2007
  ident: 591_CR12
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.76.064304
– volume: 5
  start-page: 71095
  issue: 87
  year: 2015
  ident: 591_CR29
  publication-title: RSC Adv
  doi: 10.1039/c5ra13405f
– year: 2022
  ident: 591_CR46
  publication-title: J Carbon Res
  doi: 10.3390/c8010004
– volume: 80
  start-page: 629
  year: 2014
  ident: 591_CR41
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.006
– volume: 272
  start-page: 70
  year: 2018
  ident: 591_CR49
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2018.06.019
– volume: 128
  start-page: 1239
  issue: 2
  year: 2013
  ident: 591_CR30
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.38496
– volume: 5
  start-page: 3843
  issue: 3
  year: 2022
  ident: 591_CR13
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.1c04474
– year: 2021
  ident: 591_CR2
  publication-title: Mater Res Express
  doi: 10.1088/2053-1591/ac05fe
– volume: 43
  start-page: 7
  year: 2022
  ident: 591_CR25
  publication-title: Curr Opin Food Sci
  doi: 10.1016/j.cofs.2021.09.003
– year: 2022
  ident: 591_CR38
  publication-title: Cellulose
  doi: 10.1007/s10570-021-04385-6
– volume: 4
  start-page: 559
  issue: 4
  year: 2018
  ident: 591_CR15
  publication-title: Engineering
  doi: 10.1016/j.eng.2018.06.001
– volume: 4
  start-page: 14693
  issue: 38
  year: 2016
  ident: 591_CR4
  publication-title: J Mater Chem A
  doi: 10.1039/c6ta06251b
– volume: 135
  year: 2021
  ident: 591_CR16
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110136
– volume: 250
  start-page: 116918
  issue: August
  year: 2020
  ident: 591_CR33
  publication-title: Carbohyd Polym
  doi: 10.1016/j.carbpol.2020.116918
– year: 2006
  ident: 591_CR42
  publication-title: Elsevier
  doi: 10.1016/B978-0-08-044463-5.X5013-4
– volume: 22
  start-page: 521
  issue: 6
  year: 1984
  ident: 591_CR47
  publication-title: Carbon
  doi: 10.1016/0008-6223(84)90086-1
– volume: 61
  start-page: 14095
  issue: 20
  year: 2000
  ident: 591_CR19
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.61.14095
– volume: 18
  start-page: 217
  issue: 3
  year: 1980
  ident: 591_CR11
  publication-title: Carbon
  doi: 10.1016/0008-6223(80)90064-0
– volume: 45
  start-page: 359
  issue: 5
  year: 2011
  ident: 591_CR79
  publication-title: Solid Fuel Chem
  doi: 10.3103/S0361521911050144
– volume: 3
  start-page: 76
  issue: 1
  year: 2002
  ident: 591_CR22
  publication-title: Langmuir
  doi: 10.1021/la00073a013
– ident: 591_CR67
– volume: 219
  start-page: 186
  year: 2016
  ident: 591_CR72
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2015.08.005
– year: 2022
  ident: 591_CR69
  publication-title: Ind Crops Prod
  doi: 10.1016/j.indcrop.2021.114493
– volume: 24
  start-page: 1417
  issue: 3
  year: 2017
  ident: 591_CR35
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1196-y
– volume: 25
  start-page: 1533
  issue: 8
  year: 2019
  ident: 591_CR26
  publication-title: Adsorption
  doi: 10.1007/s10450-019-00168-5
– volume: 46
  start-page: 1940
  issue: 3
  year: 2012
  ident: 591_CR37
  publication-title: Environ Sci Technol
  doi: 10.1021/es204071g
– year: 2017
  ident: 591_CR48
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899x/254/19/192012
– ident: 591_CR51
  doi: 10.26434/chemrxiv.14291644
– volume: 27
  start-page: 9217
  issue: 16
  year: 2020
  ident: 591_CR52
  publication-title: Cellulose
  doi: 10.1007/s10570-020-03419-9
– volume: 23
  start-page: 69
  issue: 3
  year: 2017
  ident: 591_CR7
  publication-title: Carbon Lett
  doi: 10.5714/CL.2017.23.069
– year: 2022
  ident: 591_CR36
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230947
– volume: 48
  start-page: 2009
  issue: 5
  year: 2013
  ident: 591_CR32
  publication-title: J Mater Sci
  doi: 10.1007/s10853-012-6970-5
– volume: 6
  start-page: 100029
  year: 2020
  ident: 591_CR64
  publication-title: Resour Conserv Recycl X
  doi: 10.1016/j.rcrx.2019.100029
– volume: 53
  start-page: 5262
  issue: 21
  year: 2014
  ident: 591_CR20
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201306129
SSID ssib039557897
ssj0002992795
ssib007309036
ssib053376736
ssib036278051
Score 2.2552907
Snippet Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such...
SourceID nrf
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 2253
SubjectTerms 자연과학일반
Title Interdependent factors influencing the carbon yield, structure, and CO$$_{2}$$ adsorption capacity of lignocellulose-derived carbon fibers using multiple linear regression
URI https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003047178
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Carbon Letters, 2023, 33(7), , pp.2253-2265
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67oUXBALEuMkS7VOXidhJnDy2hWlD2vbSofEU2Y5dqpYEJS0SQ_wifiQcx06aQUEMqUnbtHGTnK_nfD45F4QGhCZRAJbYCyOWeQHhkSeYTjzgzlKKUBPKjUP_7Dw6uQzeXoVXvd6PTtTSZi2O5PXOvJL_kSpsA7maLNlbSLYdFDbAa5AvrEHCsP4nGdfuvKaN7brtnbNwjUeaTCjJSwFC_tJ0o7Y1YzfW-2wc59OLIQngkQ7ZhAzZa_tuxLOqKK1KkWBTpYveWC3meWEc_ptVUSkvgzP9DLTV_Yo2ISjVaFP7INpwRUNmeTkq1dzG3eZdUjy1e9rMopbjny1K4-Xw3vGVc3OfVpzL0fujNmZos7i2LalM1MDHSmVZJ0pgLGC2bw6uslZk_QGmHO2ns7KYK5c4sORqxbvuD0I7oSRWYwOfAoy5qrWq3gaUh3owlYu7at7W23BwZl2dTWy5Ymf_gY-GO22LDSepYL5GzK1vWICa-h7dWtImeuAXA9uGPbYlousx0ldmMWOkdA_tEwbkr4_2x8eTyXmjEmkSgkp1N3oNuQD2QFjdS6g9cZcKVieE_nZwN-jWXl7qDnua3UN33bQHjy2G76Oeyh-g7zfxix1-cQe_GPCLLbJwjd9D3KL3EAM-8PRiMEi_km-DAd7iFTd4xYXGu_HajGrximu84gav2OIVb_H6EF0ev5lNTzzXPMSTPvOpF8YiSALJoyzOQp1omTCfwxUOhGS-kjoQggUayK-OaZSFTBCjrXQWAgOXiir6CPXzIlePEaYBjTNQO1z5fqATkZiaXTzUhgsnnGcHyG-ucSpdZX3T4GWV_lngB2jU7vPJ1pX567dfgujSpVykphy8eZ4X6bJMYdJ7CjvRKInD-MmtxnyK7mz_T89QH4SnngPBXosXDoQ_AV-ozp0
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interdependent+factors+influencing+the+carbon+yield%2C+structure%2C+and+CO%24%24_%7B2%7D%24%24+adsorption+capacity+of+lignocellulose-derived+carbon+fibers+using+multiple+linear+regression&rft.jtitle=Carbon+Letters&rft.au=Miranda-Valdez%2C+Isaac+Y.&rft.au=Guizani%2C+Chamseddine&rft.au=Abbrederis%2C+Nathalie&rft.au=Trogen%2C+Mikaela&rft.date=2023-12-01&rft.issn=1976-4251&rft.eissn=2233-4998&rft.volume=33&rft.issue=7&rft.spage=2253&rft.epage=2265&rft_id=info:doi/10.1007%2Fs42823-023-00591-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42823_023_00591_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-4251&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-4251&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-4251&client=summon