Analogical Study of Activation Concept in Neural Networks with Neat- Python Module
Determining real-time machine simulation and functionalities of complex AI Engines is difficult to comprehend and is rarely discussed. We present a technique to analyze the workflow of one such engine, the NEAT engine, one of the fundamental and robust training engines in the current machine learnin...
Saved in:
| Published in | Revue d intelligence artificielle Vol. 37; no. 2; p. 249 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Edmonton
International Information and Engineering Technology Association (IIETA)
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0992-499X 1958-5748 1958-5748 |
| DOI | 10.18280/ria.370201 |
Cover
| Abstract | Determining real-time machine simulation and functionalities of complex AI Engines is difficult to comprehend and is rarely discussed. We present a technique to analyze the workflow of one such engine, the NEAT engine, one of the fundamental and robust training engines in the current machine learning scenario. Computer Vision also presents a great approach towards working in real-time speedy functioning virtual simulators and visual platforms, whereas NEAT is not specialized in the same, but can perform to the best of the extent in the present day Machine Learning aspect. Technologies like Python, PyGame, and CsV were used to facilitate the research. So far, we have tested both the frameworks on real time cases, and it is safe to say that the NEAT module has presented an accurate trajectory, besides greater time complexity. Thus, we not only evaluate the accuracy but the other key factors as well. This study demonstrates that NEAT has the ability to address other difficult issues in the future and can produce excellent outcomes with a relatively small population. Robotics, artificial intelligence for video games, natural language processing, and healthcare are some of the potential future applications for NEAT. |
|---|---|
| AbstractList | Determining real-time machine simulation and functionalities of complex AI Engines is difficult to comprehend and is rarely discussed. We present a technique to analyze the workflow of one such engine, the NEAT engine, one of the fundamental and robust training engines in the current machine learning scenario. Computer Vision also presents a great approach towards working in real-time speedy functioning virtual simulators and visual platforms, whereas NEAT is not specialized in the same, but can perform to the best of the extent in the present day Machine Learning aspect. Technologies like Python, PyGame, and CsV were used to facilitate the research. So far, we have tested both the frameworks on real time cases, and it is safe to say that the NEAT module has presented an accurate trajectory, besides greater time complexity. Thus, we not only evaluate the accuracy but the other key factors as well. This study demonstrates that NEAT has the ability to address other difficult issues in the future and can produce excellent outcomes with a relatively small population. Robotics, artificial intelligence for video games, natural language processing, and healthcare are some of the potential future applications for NEAT. |
| Author | Kaul, Nishit Zaman, Majid Kaul, Sameer Bakshi, Waseem Jeelani Sheikh Amir Fayaz |
| Author_xml | – sequence: 1 givenname: Nishit surname: Kaul fullname: Kaul, Nishit – sequence: 2 givenname: Sameer surname: Kaul fullname: Kaul, Sameer – sequence: 3 givenname: Majid surname: Zaman fullname: Zaman, Majid – sequence: 4 givenname: Waseem surname: Bakshi middlename: Jeelani fullname: Bakshi, Waseem Jeelani – sequence: 5 fullname: Sheikh Amir Fayaz |
| BookMark | eNotkFtLwzAYhoMoOOeu_AMBb-38clibXI7hCeYUD-BdSNvURWtS09TRf29wXr288PDxvc8JOnTeGYTOCMyJoAIug9VzVgAFcoAmRC5Etii4OEQTkJJmXMq3YzTre1sCz3PKcg4T9LR0uvXvttItfo5DPWLf4GUV7Y-O1ju88q4yXcTW4Y0ZQqI2Ju58-OzxzsZtajpm-HGM2wTf-3pozSk6anTbm9l_TtHr9dXL6jZbP9zcrZbrrCIFIVmVS8oryBuhawqNYYakpxillaa6MLSUpRDciHrBa8KgETkIA6XQsiihkIxN0cX-7uA6Pe5026ou2C8dRkVA_SlRSYnaK0n4-R7vgv8eTB_Vhx9CWt8rKhjhBEjKX9ssYVE |
| ContentType | Journal Article |
| Copyright | 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| DOI | 10.18280/ria.370201 |
| DatabaseName | ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1958-5748 |
| ExternalDocumentID | 10.18280/ria.370201 |
| GroupedDBID | 8FE 8FG ABJCF AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S OK1 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1711-c6924c06f8ad20fe3e1623322ca2a7e2b9b884e8d54d130f8608e0b8a97b07933 |
| IEDL.DBID | BENPR |
| ISSN | 0992-499X 1958-5748 |
| IngestDate | Tue Aug 19 21:37:21 EDT 2025 Mon Jun 30 09:08:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1711-c6924c06f8ad20fe3e1623322ca2a7e2b9b884e8d54d130f8608e0b8a97b07933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.iieta.org/download/file/fid/98131 |
| PQID | 2831410128 |
| PQPubID | 2069447 |
| ParticipantIDs | unpaywall_primary_10_18280_ria_370201 proquest_journals_2831410128 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Edmonton |
| PublicationPlace_xml | – name: Edmonton |
| PublicationTitle | Revue d intelligence artificielle |
| PublicationYear | 2023 |
| Publisher | International Information and Engineering Technology Association (IIETA) |
| Publisher_xml | – name: International Information and Engineering Technology Association (IIETA) |
| SSID | ssib046623640 |
| Score | 2.2439322 |
| Snippet | Determining real-time machine simulation and functionalities of complex AI Engines is difficult to comprehend and is rarely discussed. We present a technique... |
| SourceID | unpaywall proquest |
| SourceType | Open Access Repository Aggregation Database |
| StartPage | 249 |
| SubjectTerms | Artificial intelligence Complexity Computer & video games Computer vision Engines Genetic algorithms Machine learning Modules Mutation Natural language processing Neural networks Real time Robotics Simulators Workflow |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3rxBypOp-Sgx2xNf6TpcQzHEFaGOJinkjQJDEc7XIvMv96XphP1tEuhkEPIe-n7Xt_3vofQg0mY4NIwYqSxZUY_IDxihtjwbHJfB1GjUzBN2WQePi-iRdusvmlplculrkRTxVdWML4UamBFiuChBgmntmv6kEUAvTvocJ7Ohm-Nnl7iE0Dvi6aKHHESxSFv-_EgqfAGYM5-EAM4on-w5FFdrMX2U6xWv8LK-BSluw05Nsl7v65kP__6p9W4947P0EkLMPHQecQ5OtDFBXqx2iPuI4ctc3CLS4OH-W60GR655kW8LLBV64BVqaOHb7D9UQtvoiJ4trVCA3haqnqlL9F8_PQ6mpB2mgLJaUwpyRmkWrnHDBfK94wONAXoA_c5F76ItS8TyXmouYpCBYHNcOZx7UkuklhaFb3gCnWKstDXCCujVEKtuBeLQgkpmIypkYDkwB8UlWEX9XYnnLVXYpMBjrGcUoiHXfT4c-rZ2olqZDYZsYbKwFCZM9TNnutu0bEdAu_4ND3UqT5qfQdQoZL3rYN8A1YYvbM priority: 102 providerName: Unpaywall |
| Title | Analogical Study of Activation Concept in Neural Networks with Neat- Python Module |
| URI | https://www.proquest.com/docview/2831410128 https://www.iieta.org/download/file/fid/98131 |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF76OOhFFBWrtexBj7F5bjYHkVpai9BQioV6CrvZXRBKUm2L9N87k4ePi6cQCIHMbOax-833EXJjIia4NMwy0uAxo-tZPGDGwvRsUld7QcFTMI3ZZOE_L4Nlg8T1LAzCKuuYWARqlae4R96HNIiQRAinD-t3C1Wj8HS1ltAQlbSCui8oxpqk7SIzVou0H0fxbF6vMJ8xJEwvNl4Qdgnl_rIa2oPOw-6Dz--8ECoo50_BebDL1mL_KVarX7lnfEyOqqKRDkovn5CGzk7JHPlEysBFEQ24p7mhg7SWK6PDciCRvmUUGTjgqbiEfG8obr7CndhadLZH8gA6zdVupc_IYjx6GU6sSiHBSp3QcayUQfuU2sxwoVzbaE878IHwj6bCFaF2ZSQ59zVXga8gWRnObK5tyUUUSmTG885JK8szfUGoMkpFDhJ2scCX0FbJ0DESqjPwsXKk3yHd2iBJtcw3yY9TOuT220jJuiTKSLDBQLsmYNektOvl_6-5Ioeo515CY7qktf3Y6WvI-lvZI00-fupVDoXrIp4NXr8A5IGt_g |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagDGVBIEA8CnigYyBPxxkqVKCo0Ieqqkjdgh3bElKVFNqq6p_jt3HXJDwWNsZIlofzl7v77LvvCLk0ERNcGmYZafCZ0fUsHjBjYXg2iau9YK1T0Ouz9rP_NA7GG-Sj7IXBssrSJ64dtcoSvCO_hjCIJYngTm-mbxZOjcLX1XKEhihGK6jGWmKsaOzo6NUSKNys8XgP51133YfW6K5tFVMGrMQJHcdKGFCQxGaGC-XaRnvagZQAcJ4IV4TalZHk3NdcBb4Ch284s7m2JRdRKFFdzoN9N8mW7_kRkL-t21Z_MCwR7TOGAu3rix4s8wR6MS6aBIHp2NeAsSsvhIzN-ZXgVhfpVKyWYjL5EesedslOkaTSZo6qPbKh030yRP2S3FFSrD5c0czQZlKOR6N3eQMkfU0pKn7Aqn5eYj6jeNkLX2Ju0cEKxQpoL1OLiT4gz_9iq0NSSbNUHxGqjFKRgwJhLPAl0DgZOkZCNgiYUo70j0mtNEhc_Faz-BsEx6T-ZaR4mgtzxEho0K4x2DXO7Xry9zYXpNoe9bpx97HfOSXbOEs-L8upkcr8faHPIOOYy_PiWCl5-W8kfQK_juba |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA4yD3rxBypOp-Sgx2xNf6TpcQzHEFaGOJinkjQJDEc7XIvMv96XphP1tEuhkEPIe-n7Xt_3vofQg0mY4NIwYqSxZUY_IDxihtjwbHJfB1GjUzBN2WQePi-iRdusvmlplculrkRTxVdWML4UamBFiuChBgmntmv6kEUAvTvocJ7Ohm-Nnl7iE0Dvi6aKHHESxSFv-_EgqfAGYM5-EAM4on-w5FFdrMX2U6xWv8LK-BSluw05Nsl7v65kP__6p9W4947P0EkLMPHQecQ5OtDFBXqx2iPuI4ctc3CLS4OH-W60GR655kW8LLBV64BVqaOHb7D9UQtvoiJ4trVCA3haqnqlL9F8_PQ6mpB2mgLJaUwpyRmkWrnHDBfK94wONAXoA_c5F76ItS8TyXmouYpCBYHNcOZx7UkuklhaFb3gCnWKstDXCCujVEKtuBeLQgkpmIypkYDkwB8UlWEX9XYnnLVXYpMBjrGcUoiHXfT4c-rZ2olqZDYZsYbKwFCZM9TNnutu0bEdAu_4ND3UqT5qfQdQoZL3rYN8A1YYvbM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analogical+Study+of+Activation+Concept+in+Neural+Networks+with+Neat-+Python+Module&rft.jtitle=Revue+d%27Intelligence+Artificielle&rft.au=Kaul%2C+Nishit&rft.au=Kaul%2C+Sameer&rft.au=Zaman%2C+Majid&rft.au=Bakshi%2C+Waseem+Jeelani&rft.date=2023-04-01&rft.pub=International+Information+and+Engineering+Technology+Association+%28IIETA%29&rft.issn=0992-499X&rft.eissn=1958-5748&rft.volume=37&rft.issue=2&rft.spage=249&rft_id=info:doi/10.18280%2Fria.370201 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0992-499X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0992-499X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0992-499X&client=summon |