On the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer

In this paper, we prove the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent parameter , where , and our boundary conditions are nonhomogeneous Neumann on upper boundary and Dirichlet on lower boundary. We want to emphasize th...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 38; no. 9; pp. 1888 - 1925
Main Author Saito, Hirokazu
Format Journal Article
LanguageEnglish
Japanese
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.3201

Cover

Abstract In this paper, we prove the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent parameter , where , and our boundary conditions are nonhomogeneous Neumann on upper boundary and Dirichlet on lower boundary. We want to emphasize that we can choose 0 <  ϵ  <  π  ∕ 2 and γ 0  > 0 arbitrarily, although usual parabolic theorem tells us that we must choose a large γ 0  > 0 for given 0 <  ϵ  <  π  ∕ 2. We also prove the maximal L p  −  L q regularity theorem of the nonstationary Stokes problem as an application of the ‐boundedness. The key of our approach is to apply several technical lemmas to the exact solution formulas of a resolvent problem. The formulas are obtained through the solutions of the ODEs, in the Fourier space, driven by the partial Fourier transform with respect to tangential space variable . Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList In this paper, we prove the [Formulaomitted]-boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent parameter [Formulaomitted], where [Formulaomitted], and our boundary conditions are nonhomogeneous Neumann on upper boundary and Dirichlet on lower boundary. We want to emphasize that we can choose 0<< pi 2 and gamma sub(0)>0 arbitrarily, although usual parabolic theorem tells us that we must choose a large gamma sub(0)>0 for given 0<< pi 2. We also prove the maximal L sub()p L sub()qregularity theorem of the nonstationary Stokes problem as an application of the [Formulaomitted]-boundedness. The key of our approach is to apply several technical lemmas to the exact solution formulas of a resolvent problem. The formulas are obtained through the solutions of the ODEs, in the Fourier space, driven by the partial Fourier transform with respect to tangential space variable [Formulaomitted].
In this paper, we prove the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent parameter , where , and our boundary conditions are nonhomogeneous Neumann on upper boundary and Dirichlet on lower boundary. We want to emphasize that we can choose 0 <  ϵ  <  π  ∕ 2 and γ 0  > 0 arbitrarily, although usual parabolic theorem tells us that we must choose a large γ 0  > 0 for given 0 <  ϵ  <  π  ∕ 2. We also prove the maximal L p  −  L q regularity theorem of the nonstationary Stokes problem as an application of the ‐boundedness. The key of our approach is to apply several technical lemmas to the exact solution formulas of a resolvent problem. The formulas are obtained through the solutions of the ODEs, in the Fourier space, driven by the partial Fourier transform with respect to tangential space variable . Copyright © 2014 John Wiley & Sons, Ltd.
Author Saito, Hirokazu
Author_xml – sequence: 1
  givenname: Hirokazu
  surname: Saito
  fullname: Saito, Hirokazu
  organization: Department of Pure and Applied Mathematics, Graduate School of Fundamental Science and Engineering Waseda University Okubo 3‐4‐1 Shinjuku‐ku, Tokyo 169‐8555 Japan
BookMark eNplkLlOAzEQhi0UJEJA4hFc0mzwsZdLFHFJkVIA9crZHYPBawfbixQqHoFn5EnwEgQFzUzxH5r5DtHEOgsInVAyp4Sws76Xc84I3UNTSoTIaF6VEzQltCJZzmh-gA5DeCKE1JSyKYori-Mj4M_3j7UbbAedhRCwUzg4M0TtLHYb8DI6j5XstdHwrY6ZB7BJMfoNOnwb3XNSPKTYK9iIN96tDfRYWyxtmkpbHQEbuQV_hPaVNAGOf_YM3V9e3C2us-Xq6mZxvsxaWlGSqZKWsoa1kjwXnOUUWsJYIQXvWsKpqvK6LgpJOt5KUFxUICCJFRRClVxxPkOnu950zMsAITa9Di0YIy24ITS0FIwXPMFI1vnO2noXggfVtDrK8f_opTYNJc2It0l4mxHvX_dvYON1L_32v_ULQRJ_aw
CitedBy_id crossref_primary_10_1619_fesi_62_337
crossref_primary_10_1016_j_jde_2017_09_045
crossref_primary_10_1007_s00021_022_00680_9
crossref_primary_10_1007_s00021_024_00914_y
crossref_primary_10_1002_mma_6999
crossref_primary_10_1016_j_jde_2019_09_040
crossref_primary_10_1007_s00028_021_00674_6
crossref_primary_10_1016_j_jde_2023_11_020
Cites_doi 10.1007/s00021-012-0130-1
10.57262/die/1356060651
10.4064/sm-93-3-201-222
10.1515/CRELLE.2008.013
10.1007/BF00250586
10.1002/mma.483
10.57262/ade/1355867895
10.1007/BF01442184
10.2969/jmsj/04640607
10.1002/mana.200310365
10.2969/jmsj/06420561
10.1007/s00209-007-0120-9
10.1002/cpa.3160340305
10.1007/BF00375146
10.1016/j.na.2009.05.061
10.1007/s00021-004-0116-8
10.1007/s00021-004-0117-7
10.1007/PL00004457
10.1007/s00021-003-0075-5
10.1090/memo/0788
10.1016/S0304-0208(08)72355-7
10.1007/BF00375142
10.2969/jmsj/1191419127
10.1007/978-3-319-02000-6
10.1007/PL00012599
10.1007/PL00000970
ContentType Journal Article
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1002/mma.3201
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 1925
ExternalDocumentID 10_1002_mma_3201
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c1710-f616a8ebfa3493241ec0225a93dc031f748855a0d3caef397e9ea937e59f63f33
ISSN 0170-4214
IngestDate Fri Jul 11 08:28:18 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Oct 01 00:37:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
Japanese
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1710-f616a8ebfa3493241ec0225a93dc031f748855a0d3caef397e9ea937e59f63f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1692353000
PQPubID 23500
PageCount 38
ParticipantIDs proquest_miscellaneous_1692353000
crossref_citationtrail_10_1002_mma_3201
crossref_primary_10_1002_mma_3201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2015
References Abe T (e_1_2_10_2_1) 2003; 5
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
Shibata Y (e_1_2_10_31_1) 2003; 16
e_1_2_10_22_1
e_1_2_10_20_1
Abels H (e_1_2_10_4_1) 2005; 10
Hataya Y (e_1_2_10_16_1) 2009; 49
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
Beale JT (e_1_2_10_12_1) 1983; 84
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
Zimmermann F (e_1_2_10_27_1) 1989; 3
Abels H (e_1_2_10_9_1) 2005; 10
Mikhlin S (e_1_2_10_30_1) 1965
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – ident: e_1_2_10_21_1
  doi: 10.1007/s00021-012-0130-1
– volume: 16
  start-page: 385
  issue: 4
  year: 2003
  ident: e_1_2_10_31_1
  article-title: On a resolvent estimate for the Stokes system with Neumann boundary condition
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1356060651
– volume: 3
  start-page: 201
  year: 1989
  ident: e_1_2_10_27_1
  article-title: On vector‐valued Fourier multiplier theorems
  publication-title: Studia Mathematica
  doi: 10.4064/sm-93-3-201-222
– ident: e_1_2_10_20_1
  doi: 10.1515/CRELLE.2008.013
– volume: 84
  start-page: 307
  issue: 4
  year: 1983
  ident: e_1_2_10_12_1
  article-title: Large‐time regularity of viscous surface waves
  publication-title: Archive for Rational Mechanics and Analysis
  doi: 10.1007/BF00250586
– volume: 49
  start-page: 691
  issue: 4
  year: 2009
  ident: e_1_2_10_16_1
  article-title: Decaying solution of a Navier–Stokes flow without surface tension
  publication-title: Journal of Mathematics of Kyoto University
– ident: e_1_2_10_6_1
  doi: 10.1002/mma.483
– volume: 10
  start-page: 45
  issue: 1
  year: 2005
  ident: e_1_2_10_9_1
  article-title: The initial‐value problem for the Navier–Stokes equations with a free surface in L q ‐Sobolev spaces
  publication-title: Advances in Differential Equations
  doi: 10.57262/ade/1355867895
– ident: e_1_2_10_13_1
  doi: 10.1007/BF01442184
– ident: e_1_2_10_22_1
  doi: 10.2969/jmsj/04640607
– ident: e_1_2_10_7_1
  doi: 10.1002/mana.200310365
– ident: e_1_2_10_19_1
  doi: 10.2969/jmsj/06420561
– ident: e_1_2_10_26_1
  doi: 10.1007/s00209-007-0120-9
– ident: e_1_2_10_11_1
  doi: 10.1002/cpa.3160340305
– ident: e_1_2_10_14_1
  doi: 10.1007/BF00375146
– ident: e_1_2_10_18_1
  doi: 10.1016/j.na.2009.05.061
– ident: e_1_2_10_10_1
  doi: 10.1007/s00021-004-0116-8
– ident: e_1_2_10_23_1
– ident: e_1_2_10_8_1
  doi: 10.1007/s00021-004-0117-7
– ident: e_1_2_10_24_1
  doi: 10.1007/PL00004457
– ident: e_1_2_10_29_1
– volume: 5
  start-page: 245
  issue: 3
  year: 2003
  ident: e_1_2_10_2_1
  article-title: On a resolvent estimate of the Stokes equation on an infinite layer part 2, λ=0 case
  publication-title: Journal of Mathematical Fluid Mechanics
  doi: 10.1007/s00021-003-0075-5
– ident: e_1_2_10_28_1
  doi: 10.1090/memo/0788
– ident: e_1_2_10_17_1
  doi: 10.1016/S0304-0208(08)72355-7
– ident: e_1_2_10_15_1
  doi: 10.1007/BF00375142
– volume: 10
  start-page: 1081
  year: 2005
  ident: e_1_2_10_4_1
  article-title: Resolvent estimates for the Stokes operator on an infinite layer
  publication-title: Differential Integral Equations
– ident: e_1_2_10_3_1
  doi: 10.2969/jmsj/1191419127
– ident: e_1_2_10_25_1
  doi: 10.1007/978-3-319-02000-6
– ident: e_1_2_10_5_1
  doi: 10.1007/PL00012599
– volume-title: Multidimensional Singular Integrals and Integral equations
  year: 1965
  ident: e_1_2_10_30_1
– ident: e_1_2_10_32_1
  doi: 10.1007/PL00000970
SSID ssj0008112
Score 2.0184093
Snippet In this paper, we prove the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent...
In this paper, we prove the [Formulaomitted]-boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1888
SubjectTerms Boundaries
Dirichlet problem
Fluid flow
Fourier analysis
Fourier transforms
Mathematical analysis
Operators
Theorems
Title On the ‐boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer
URI https://www.proquest.com/docview/1692353000
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: AMVHM
  dateStart: 20120715
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0170-4214
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1BucABtQVEoaBFQgIUOWS9u459RHwoQoJK0Eq9WWt7Fllt7apJDs2pP6G_sb-E2S_bqXIoXKzI9tpJ5mnm7e7MG0Le6kxPOAge6QqnqwJ0EiGPyyKeApMpEoCqMLXDP34msyPx_Vge9ylBtrpkUYzL1ca6kv-xKp5Du5oq2X-wbPdQPIGf0b54RAvj8U42PnA5il3CQmF6JEFlvReSwPDyUXsOdjfdLWfUTmfWjPzjRKfrlaWd7QmYTQQcZpIgR77XjFkRUSYfUteGn45O1aXP6A2NoDrlV1uJYjpSz0P6pPIk1wfajsD_VrXt3zSa1RftiVoth6sPTPZZUmFBcjqJROwKQcfgnKhR_WTC9XUJXpanAzRlA5fJUtfXz4dfZJxyo2t3UrFnZ2rMY_8N1tSzb0W1LtfQ6TLHOY7Mzcj75EGMEcC0-fjyq5caS5ndGe9-TxAqnsQfwzvXqct65LZ05HCbPPbzCPrJgWKH3INmlzzqTTHfJTveb8_pey8u_uEJWRw0FO-hN1fXA7TQVtOAFhrQQgNazFUzZoAW6tBCO7RQjxZaN1Q1NKCFWrQ8JUffvh5-nkW-80ZUMqSckU5YolIotOICCb5gUCLXkyrjVYlRQE_R7UupJhUvFWiktJABXpyCzHTCNefPyFbTNvCc0GkW60JLUQlZiURVRSFlyQCJvYy5VmyPvAt_al56WXrTHeU0v224PfKmu_PcSbFsuifYJUc_aTa_VAPtcp6zBKcykqOlX9zhOS_Jwx7t-2RrcbGEV8g-F8VrC5u_nbKLnA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+%E2%80%90boundedness+of+solution+operator+families+of+the+generalized+Stokes+resolvent+problem+in+an+infinite+layer&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Saito%2C+Hirokazu&rft.date=2015-06-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=38&rft.issue=9&rft.spage=1888&rft.epage=1925&rft_id=info:doi/10.1002%2Fmma.3201&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_3201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon