A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection Algorithm on a Custom-Made 2.2 cm ^2 Wireless Device for Ambulatory Epilepsy Diagnostics

A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the developmen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1175 - 1185
Main Authors Zhan, Tianyu, Fatmi, Syyeda Zainab, Guraya, Sam, Kassiri, Hossein
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2019
Subjects
Online AccessGet full text
ISSN1932-4545
1940-9990
1940-9990
DOI10.1109/TBCAS.2019.2948301

Cover

Abstract A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 μW dynamic power, and yields a minimum detection latency of 10.2 μs. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5% and 80.1%, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives.
AbstractList A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 μW dynamic power, and yields a minimum detection latency of 10.2 μs. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5% and 80.1%, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives.A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 μW dynamic power, and yields a minimum detection latency of 10.2 μs. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5% and 80.1%, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives.
A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 μW dynamic power, and yields a minimum detection latency of 10.2 μs. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5% and 80.1%, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives.
Author Zhan, Tianyu
Fatmi, Syyeda Zainab
Guraya, Sam
Kassiri, Hossein
Author_xml – sequence: 1
  givenname: Tianyu
  surname: Zhan
  fullname: Zhan, Tianyu
  email: zty1997@163.com
  organization: EE Department, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Syyeda Zainab
  surname: Fatmi
  fullname: Fatmi, Syyeda Zainab
  email: zfatmi13@my.yorku.ca
  organization: Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
– sequence: 3
  givenname: Sam
  surname: Guraya
  fullname: Guraya, Sam
  email: sam97@my.yorku.ca
  organization: Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
– sequence: 4
  givenname: Hossein
  orcidid: 0000-0002-8220-1986
  surname: Kassiri
  fullname: Kassiri, Hossein
  email: hkasiri@gmail.com
  organization: Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31634843$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_wAiAhL9lk8CUXexmmpYw0qIgpsMNynONilMTBdpCmT9M1j8GTkelMWbBg5eOj7zuL_z9FR4MfAKHnlCwoJfL19ZtlvVkwQuWCyVxwQh-hEypzkkkpydFu5izLi7w4RqcxfiekKJlkT9AxpyXPRc5P0K8af4Top2AguxqT690ttPjzerPCq37soIch6eT8gL3FGn-Y53mTbUYwzjqDN-BupwD4HBKYe67ubnxw6VuP54_Gyykm32fvdQuYLdjvO9Pjrwx_cQE6iHEWfzoD2PqA676ZOp182OKL0XUwxi0-d_pm8DE5E5-ix1Z3EZ4d3jP06e3F9fJdtr66XC3rdWZoKXjWsoZTwowQtmiEYNKYqhE8Z1Bam1M7R9BwI3QBwoKUTBRMECiKpq2sJELwM_Rqf3cM_scEManeRQNdpwfwU1SMk6pisqrKGX15QKemh1aNwfU6bNVDvjMg9oAJPsYAVhm3zzMF7TpFidpVqe6rVLsq1aHKWWX_qA_X_yu92EsOAP4KQlRlWeX8DxT9q0k
CODEN ITBCCW
CitedBy_id crossref_primary_10_1109_TBCAS_2022_3188966
crossref_primary_10_1109_TBCAS_2023_3301554
crossref_primary_10_1109_ACCESS_2021_3083772
crossref_primary_10_1109_TBCAS_2024_3395534
crossref_primary_10_1007_s42979_024_03381_4
crossref_primary_10_1016_j_eswa_2024_123755
crossref_primary_10_1109_ACCESS_2021_3079155
crossref_primary_10_1109_TBCAS_2021_3112756
crossref_primary_10_1002_eng2_12812
crossref_primary_10_1109_TBCAS_2024_3357509
crossref_primary_10_1109_JSEN_2023_3300743
crossref_primary_10_1016_j_jns_2021_117611
crossref_primary_10_1109_JSSC_2024_3446244
crossref_primary_10_1007_s10462_024_10799_y
crossref_primary_10_3390_app12147096
crossref_primary_10_1109_TCAD_2022_3170248
crossref_primary_10_32604_cmc_2023_033020
crossref_primary_10_1109_TBCAS_2024_3456825
Cites_doi 10.1109/JSSC.2014.2325557
10.1109/TBCAS.2017.2694638
10.1016/j.clinph.2010.06.034
10.1109/TCSII.2014.2385211
10.1016/j.knosys.2016.11.023
10.1109/ISCAS.2018.8351525
10.1109/TNSRE.2012.2206054
10.1371/journal.pone.0099334
10.1109/JSSC.2013.2284346
10.1111/j.0013-9580.2005.66104.x
10.1111/epi.13064
10.1109/ISCAS.2016.7527486
10.1002/9783527625192
10.1109/ISCAS.2019.8702403
10.1109/JSSC.2013.2253226
10.1109/JSSC.2016.2528999
10.1161/01.CIR.101.23.e215
10.1109/JSSC.2017.2749426
10.1109/TBCAS.2016.2540438
10.1109/JSSC.2012.2221220
10.1109/ISCAS.2019.8702211
10.1109/TBCAS.2011.2157153
10.1212/WNL.0000000000001280
10.1016/j.jneumeth.2015.06.010
10.1109/TBCAS.2014.2386891
10.1109/JPROC.2016.2587690
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBCAS.2019.2948301
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1940-9990
EndPage 1185
ExternalDocumentID 31634843
10_1109_TBCAS_2019_2948301
8876674
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CMC Microsystems; Canadian Microelectronics Corporation
  funderid: 10.13039/100008676
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID ---
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c1683-d2b3102c88f5b8829cc7b8342e6ff41f629b3c8a5e8fe99285280e55bd7f90883
IEDL.DBID RIE
ISSN 1932-4545
1940-9990
IngestDate Wed Oct 01 13:10:16 EDT 2025
Mon Jul 21 05:37:05 EDT 2025
Wed Oct 01 04:05:59 EDT 2025
Thu Apr 24 23:12:21 EDT 2025
Wed Aug 27 06:27:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1683-d2b3102c88f5b8829cc7b8342e6ff41f629b3c8a5e8fe99285280e55bd7f90883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8220-1986
PMID 31634843
PQID 2307729776
PQPubID 23479
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TBCAS_2019_2948301
pubmed_primary_31634843
ieee_primary_8876674
crossref_primary_10_1109_TBCAS_2019_2948301
proquest_miscellaneous_2307729776
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Dec.
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical circuits and systems
PublicationTitleAbbrev TBCAS
PublicationTitleAlternate IEEE Trans Biomed Circuits Syst
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref37
ref14
ref31
ref30
ref10
ref2
ref1
ref39
ref38
(ref9) 0
(ref35) 0
ref19
(ref33) 0
(ref16) 0
thodoroff (ref28) 0
kassiri (ref25) 0
shoeb (ref18) 2009
ref24
ref23
ref26
ref20
ref41
ref21
(ref36) 0
(ref13) 0
(ref11) 0
(ref6) 0
(ref34) 0
(ref15) 0
ref27
(ref32) 0
ref29
ref8
ref7
salam (ref12) 0
ref4
goldberger (ref17) 2000; 101
ref3
ref5
ref40
liu (ref22) 2012; 20
References_xml – ident: ref8
  doi: 10.1109/JSSC.2014.2325557
– ident: ref3
  doi: 10.1109/TBCAS.2017.2694638
– ident: ref5
  doi: 10.1016/j.clinph.2010.06.034
– ident: ref37
  doi: 10.1109/TCSII.2014.2385211
– ident: ref23
  doi: 10.1016/j.knosys.2016.11.023
– year: 0
  ident: ref11
– ident: ref38
  doi: 10.1109/ISCAS.2018.8351525
– year: 0
  ident: ref33
– volume: 20
  start-page: 749
  year: 2012
  ident: ref22
  article-title: Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2206054
– year: 0
  ident: ref34
– year: 0
  ident: ref13
– start-page: 452
  year: 0
  ident: ref25
  article-title: All-wireless 64-channel 0.013 mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal
  publication-title: Proc IEEE Int Solid-State Circuits Conf
– ident: ref21
  doi: 10.1371/journal.pone.0099334
– start-page: 178
  year: 0
  ident: ref28
  article-title: Learning robust features using deep learning for automatic seizure detection
  publication-title: Mach Learn Healthcare
– ident: ref26
  doi: 10.1109/JSSC.2013.2284346
– ident: ref1
  doi: 10.1111/j.0013-9580.2005.66104.x
– year: 0
  ident: ref32
– ident: ref2
  doi: 10.1111/epi.13064
– ident: ref30
  doi: 10.1109/ISCAS.2016.7527486
– ident: ref4
  doi: 10.1002/9783527625192
– ident: ref10
  doi: 10.1109/ISCAS.2019.8702403
– year: 2009
  ident: ref18
  article-title: Application of machine learning to epileptic seizure onset detection and treatment
– year: 0
  ident: ref6
– ident: ref40
  doi: 10.1109/JSSC.2013.2253226
– ident: ref24
  doi: 10.1109/JSSC.2016.2528999
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref17
  article-title: PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref29
  doi: 10.1109/JSSC.2017.2749426
– ident: ref19
  doi: 10.1109/TBCAS.2016.2540438
– ident: ref39
  doi: 10.1109/JSSC.2012.2221220
– ident: ref14
  doi: 10.1109/ISCAS.2019.8702211
– ident: ref41
  doi: 10.1109/TBCAS.2011.2157153
– year: 0
  ident: ref36
– year: 0
  ident: ref15
– year: 0
  ident: ref35
– ident: ref7
  doi: 10.1212/WNL.0000000000001280
– start-page: 1838
  year: 0
  ident: ref12
  article-title: Tradeoffs between wireless communication and computation in closedloop implantable devices
  publication-title: Proc IEEE Int Symp Circuits Syst
– year: 0
  ident: ref9
– ident: ref31
  doi: 10.1016/j.jneumeth.2015.06.010
– year: 0
  ident: ref16
– ident: ref27
  doi: 10.1109/TBCAS.2014.2386891
– ident: ref20
  doi: 10.1109/JPROC.2016.2587690
SSID ssj0056292
Score 2.204742
Snippet A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1175
SubjectTerms Algorithms
Biomedical monitoring
Electrodes
Electroencephalography
Electroencephalography - instrumentation
Electroencephalography - methods
Energy-efficient VLSI implementation
Epilepsy
Epilepsy - diagnosis
Humans
machine learning
Monitoring
patient specific
point-of-care diagnostics
Point-of-Care Systems
seizure detection
Seizures - diagnosis
Support Vector Machine
SVM
Very large scale integration
wearable devices
Wearable Electronic Devices
Wireless communication
Wireless Technology
wireless wearable sensors
Title A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection Algorithm on a Custom-Made 2.2 cm ^2 Wireless Device for Ambulatory Epilepsy Diagnostics
URI https://ieeexplore.ieee.org/document/8876674
https://www.ncbi.nlm.nih.gov/pubmed/31634843
https://www.proquest.com/docview/2307729776
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1940-9990
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056292
  issn: 1932-4545
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuBAgfLY8tAgcYOkieM4zjFsWxXEAtK2qCci23FgxSZZbZND99dw5mfwyxg7yQohQNwSyc5DMx5_M_5mhpDnZcCF4lJ5cSypxwrEcKg3zOOFSINIB5JqG4ecveNnF-zNZXy5Q15uc2GMMY58Znx76c7yi0Z3NlR2hAuC84Ttkt1E8D5Xa7S6uI27BsgWj9g63vGYIBOkR-evptncsrhSn6ZMREMDmHETcl1V_g4w3UZzuk9m4yf2_JKvftcqX29-q974v_9wm9waECdkvYrcITumvktu_lKH8IB8z2AM43vv0YZUi40p4OPb-Wtw1YOrIUGphqYECR_6Wqye611fLjTMzWLTrQ0cm9Yxu2rIlp-b9aL9UgHeSJh2iDErbyYLA9SnP77pCj5RsNTbJZpanGgNFiCAhqxStqNYs76GkxWarNXVNRz3fEBbUfoeuTg9OZ-eeUMTB0-HXEReQRUiSKqFKGOFcD7VOlEiYtTwsmRhiXJTkRYyNqI0aUpFTEVg4lgVSWk5WNF9slc3tXlIIIyMkNyGXbRCLzZJEZwJScOCsiRBv2dCwlGquR4qnNtGG8vceTpBmjtNyK0m5IMmTMiL7ZxVX9_jn6MPrES3IwdhTsizUXlyXJ32yEXWpumuckuzR_clSfiEPOi1ajs5QijMBIsO__zQR-SGfXVPnXlM9tp1Z54gAGrVU6f5PwGIuADr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXuWxPI3EDZImju04x7BttYXdgrRb1BOR7Tjtik2y2m4O3V_DmZ_BL2PsJCuEAHFLJDtyNOPxN-NvZhB6XQRcKC6Vx5gkHs0Bw4HeUI_nIgkiHUiibRxycsJHp_T9GTvbQW-3uTDGGEc-M759dHf5ea0bGyrbhw3BeUyvoeuMUsrabK3e7sJB7logW0RiK3mzPkUmSPZn74bp1PK4Ep8kVERdC5j-GHJ9Vf4OMd1Rc3QHTfpFtgyTr36zVr7e_Fa_8X__4i663WFOnLZKcg_tmOo-uvVLJcI99D3FfSDf-whWpJxvTI4_j6fH2NUPLrsUpQrXBZb4U1uN1XPd64u5xlMz3zQrgw_M2nG7KpwuzuvVfH1RYniReNgAyiy9icwNJj758U2X-AvBlny7AGMLE63JwgChcVoq21OsXl3hwyUYreXlFT5oGYG2pvQDdHp0OBuOvK6Ng6dDLiIvJwowJNFCFEwBoE-0jpWIKDG8KGhYgNxUpIVkRhQmSYhgRASGMZXHhWVhRQ_RblVX5jHCYWSE5DbwohX4sXEC8ExIEuaExjF4PgMU9lLNdFfj3LbaWGTO1wmSzGlCZjUh6zRhgN5s5yzbCh__HL1nJbod2QlzgF71ypPB_rSXLrIydXOZWaI9ODBxzAfoUatV28kRgGEqaPTkzx99iW6MZpNxNj4--fAU3bTLaIk0z9DuetWY5wCH1uqF2wU_ARthBDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Resource-Optimized+VLSI+Implementation+of+a+Patient-Specific+Seizure+Detection+Algorithm+on+a+Custom-Made+2.2%C2%A0cm%24%5E2%24+Wireless+Device+for+Ambulatory+Epilepsy+Diagnostics&rft.jtitle=IEEE+transactions+on+biomedical+circuits+and+systems&rft.au=Zhan%2C+Tianyu&rft.au=Fatmi%2C+Syyeda+Zainab&rft.au=Guraya%2C+Sam&rft.au=Kassiri%2C+Hossein&rft.date=2019-12-01&rft.issn=1932-4545&rft.eissn=1940-9990&rft.volume=13&rft.issue=6&rft.spage=1175&rft.epage=1185&rft_id=info:doi/10.1109%2FTBCAS.2019.2948301&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBCAS_2019_2948301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4545&client=summon