A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection Algorithm on a Custom-Made 2.2 cm ^2 Wireless Device for Ambulatory Epilepsy Diagnostics
A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the developmen...
Saved in:
| Published in | IEEE transactions on biomedical circuits and systems Vol. 13; no. 6; pp. 1175 - 1185 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.12.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-4545 1940-9990 1940-9990 |
| DOI | 10.1109/TBCAS.2019.2948301 |
Cover
| Summary: | A patient-specific epilepsy diagnostic solution in the form of a wireless wearable ambulatory device is presented. First, the design, VLSI implementation, and experimental validation of a resource-optimized machine learning algorithm for epilepsy seizure detection are described. Next, the development of a mini-PCB that integrates a low-power wireless data transceiver and a programmable processor for hosting the seizure detection algorithm is discussed. The algorithm uses only EEG signals from the frontal lobe electrodes while yielding a seizure detection sensitivity and specificity competitive to the standard full EEG systems. The experimental validation of the algorithm VLSI implementation proves the possibility of conducting accurate seizure detection using quickly-mountable dry-electrode headsets without the need for uncomfortable/painful through-hair electrodes or adhesive gels. Details of design and optimization of the algorithm, the VLSI implementation, and the mini-PCB development are presented and resource optimization techniques are discussed. The optimized implementation is uploaded on a low-power Microsemi Igloo FPGA, requires 1237 logic elements, consumes 110 μW dynamic power, and yields a minimum detection latency of 10.2 μs. The measurement results from the FPGA implementation on data from 23 patients (198 seizures in total) shows a seizure detection sensitivity and specificity of 92.5% and 80.1%, respectively. Comparison to the state of the art is presented from system integration, the VLSI implementation, and the wireless communication perspectives. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1932-4545 1940-9990 1940-9990 |
| DOI: | 10.1109/TBCAS.2019.2948301 |