Concentrating Bound States for Kirchhoff Type Problems in ℝ 3 Involving Critical Sobolev Exponents
We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive parameter and a, b > 0 are constants, f ∈ C 1 (ℝ + ,ℝ) is subcritical, V : ℝ 3 → ℝ is a locally Hölder continuous function. We first prove that fo...
Saved in:
Published in | Advanced nonlinear studies Vol. 14; no. 2; pp. 483 - 510 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.05.2014
|
Online Access | Get full text |
ISSN | 1536-1365 2169-0375 |
DOI | 10.1515/ans-2014-0214 |
Cover
Abstract | We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth,
where ε is a small positive parameter and a, b > 0 are constants, f ∈ C
1
(ℝ
+
,ℝ) is subcritical, V : ℝ
3
→ ℝ is a locally Hölder continuous function. We first prove that for ε
0
> 0 sufficiently small, the above problem has a weak solution u
ε
with exponential decay at infinity. Moreover, u
ε
concentrates around a local minimum point of V in Λ as ε → 0. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple solutions by employing the topological construction of the set where the potential V(z) attains its minimum. |
---|---|
AbstractList | We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth,
where ε is a small positive parameter and a, b > 0 are constants, f ∈ C
1
(ℝ
+
,ℝ) is subcritical, V : ℝ
3
→ ℝ is a locally Hölder continuous function. We first prove that for ε
0
> 0 sufficiently small, the above problem has a weak solution u
ε
with exponential decay at infinity. Moreover, u
ε
concentrates around a local minimum point of V in Λ as ε → 0. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple solutions by employing the topological construction of the set where the potential V(z) attains its minimum. |
Author | He, Yi Li, Gongbao Peng, Shuangjie |
Author_xml | – sequence: 1 givenname: Yi surname: He fullname: He, Yi organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China – sequence: 2 givenname: Gongbao surname: Li fullname: Li, Gongbao organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China – sequence: 3 givenname: Shuangjie surname: Peng fullname: Peng, Shuangjie organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China |
BookMark | eNp1kMtOwzAQRS1UJErpkr1_wGDHjyRLiApUIIHUso78pEapXdmhont-g5_jS0gEKyRmM5s5V3PPKZiEGCwA5wRfEE74pQwZFZgwhAvCjsC0IKJGmJZ8AqaEU4EIFfwEzHN-xcOwumCcT4FpYtA29En2PrzA6_gWDFz1srcZupjgvU96s4nOwfVhZ-FTiqqz2wx9gF8fn5DCZdjHbj-yTfK917KDq6hiZ_dw8b4bfgx9PgPHTnbZzn_3DDzfLNbNHXp4vF02Vw9IE1H2qC64c6WoKLeUK1wx5xiXrrCGVaYutSKVUsRIKygvGdYlM4ppwbS0WBnq6AzQn1ydYs7Julb7oYqPYz_ftQS3o6t2cNWOrtrR1UChP9Qu-a1Mh3_uvwER42_y |
CitedBy_id | crossref_primary_10_1007_s12220_021_00722_0 crossref_primary_10_1186_s13660_023_02945_x crossref_primary_10_1016_j_jde_2016_04_032 crossref_primary_10_1017_prm_2020_37 crossref_primary_10_1080_00036811_2023_2269967 crossref_primary_10_1016_j_jmaa_2019_123593 crossref_primary_10_1007_s43034_022_00245_x crossref_primary_10_1007_s00023_021_01105_5 crossref_primary_10_3390_sym15101856 crossref_primary_10_1016_j_na_2019_111715 crossref_primary_10_1016_j_jmaa_2018_01_003 crossref_primary_10_1007_s10473_023_0309_y crossref_primary_10_1515_anona_2022_0318 crossref_primary_10_1007_s12220_022_01145_1 crossref_primary_10_1017_S0017089518000563 crossref_primary_10_1080_00036811_2015_1022312 crossref_primary_10_1515_anona_2022_0323 crossref_primary_10_3233_ASY_191586 crossref_primary_10_1017_prm_2020_32 crossref_primary_10_1016_j_na_2020_112144 crossref_primary_10_11948_20190338 crossref_primary_10_1016_j_jmaa_2017_04_048 crossref_primary_10_1063_5_0223610 crossref_primary_10_1007_s10883_019_09439_4 crossref_primary_10_1016_j_na_2018_12_010 crossref_primary_10_1016_j_jmaa_2015_07_033 crossref_primary_10_1155_2023_8829268 crossref_primary_10_1002_mma_5891 crossref_primary_10_1016_j_jde_2016_08_034 crossref_primary_10_1016_j_jmaa_2023_127715 crossref_primary_10_1216_RMJ_2018_48_2_425 crossref_primary_10_1515_ans_2016_6006 crossref_primary_10_1016_j_jde_2015_02_040 crossref_primary_10_1007_s00033_022_01773_1 crossref_primary_10_1007_s00023_019_00803_5 crossref_primary_10_3934_math_2021227 crossref_primary_10_58997_ejde_2020_09 crossref_primary_10_1016_j_jmaa_2021_125727 crossref_primary_10_58997_ejde_2021_53 crossref_primary_10_1002_mma_6216 crossref_primary_10_1016_j_jde_2018_05_012 crossref_primary_10_1002_mma_4798 crossref_primary_10_12677_AAM_2023_124161 crossref_primary_10_4236_am_2020_111005 crossref_primary_10_1080_00036811_2021_1979220 crossref_primary_10_1007_s00033_023_02031_8 crossref_primary_10_1186_s13661_020_01424_2 crossref_primary_10_1080_00036811_2017_1419202 crossref_primary_10_1016_j_cnsns_2020_105369 crossref_primary_10_1080_00036811_2016_1220546 crossref_primary_10_12677_PM_2022_1211211 crossref_primary_10_1016_j_aml_2018_08_008 crossref_primary_10_1016_j_jmaa_2018_06_071 crossref_primary_10_1007_s10231_021_01145_y crossref_primary_10_1007_s00033_019_1082_6 crossref_primary_10_1016_j_bulsci_2024_103398 crossref_primary_10_1007_s11425_020_1885_6 crossref_primary_10_1063_5_0173078 crossref_primary_10_1007_s13324_024_00944_9 crossref_primary_10_1016_j_nonrwa_2015_09_007 crossref_primary_10_1002_mma_6962 crossref_primary_10_3390_math8010106 crossref_primary_10_1080_17476933_2018_1505874 crossref_primary_10_1142_S0219199718500748 crossref_primary_10_1007_s40840_023_01548_5 crossref_primary_10_1007_s40840_022_01286_0 crossref_primary_10_1080_17476933_2016_1270272 crossref_primary_10_1080_17476933_2020_1760253 crossref_primary_10_1515_ans_2018_2037 crossref_primary_10_1063_5_0008911 crossref_primary_10_1007_s00526_017_1214_9 crossref_primary_10_1515_ans_2019_2045 crossref_primary_10_1002_mma_8189 crossref_primary_10_1016_S0252_9602_18_30756_2 crossref_primary_10_1515_anona_2020_0192 crossref_primary_10_1002_mma_6157 crossref_primary_10_1007_s00605_019_01306_5 crossref_primary_10_1007_s42985_020_00010_6 crossref_primary_10_1016_j_jde_2023_01_039 crossref_primary_10_1016_j_jmaa_2014_12_017 crossref_primary_10_1080_17476933_2020_1839895 crossref_primary_10_1186_s13661_019_1198_9 crossref_primary_10_1063_1_5074163 crossref_primary_10_1016_j_aml_2022_108539 crossref_primary_10_1063_5_0015454 crossref_primary_10_3233_ASY_191543 crossref_primary_10_1016_j_camwa_2016_10_017 crossref_primary_10_1080_00036811_2020_1716969 crossref_primary_10_1002_mma_8172 crossref_primary_10_1016_j_camwa_2016_02_037 crossref_primary_10_1007_s00229_018_1017_0 crossref_primary_10_1186_s13661_019_1183_3 crossref_primary_10_1007_s10473_020_0107_y crossref_primary_10_1016_j_jfa_2015_09_012 crossref_primary_10_3934_dcdss_2018029 crossref_primary_10_1016_j_jde_2019_08_016 crossref_primary_10_1016_j_jmaa_2018_07_052 crossref_primary_10_1017_prm_2024_26 crossref_primary_10_1016_j_camwa_2016_10_012 crossref_primary_10_1080_17476933_2023_2246901 crossref_primary_10_1080_00036811_2019_1687884 crossref_primary_10_1007_s00033_017_0803_y crossref_primary_10_1007_s00205_014_0747_8 crossref_primary_10_1515_ans_2016_6002 crossref_primary_10_1017_prm_2018_108 crossref_primary_10_1002_mma_3821 crossref_primary_10_1090_proc_12946 crossref_primary_10_1016_j_jmaa_2016_10_069 crossref_primary_10_1016_j_camwa_2017_10_005 crossref_primary_10_3934_math_2024814 crossref_primary_10_1007_s12220_023_01298_7 crossref_primary_10_1016_j_jmaa_2021_125772 crossref_primary_10_1515_anona_2022_0225 crossref_primary_10_1002_mma_6256 crossref_primary_10_3233_ASY_201660 crossref_primary_10_3934_cpaa_2022069 crossref_primary_10_1080_17476933_2024_2418854 crossref_primary_10_1007_s10473_025_0207_6 crossref_primary_10_1186_s13662_021_03331_x crossref_primary_10_1216_RMJ_2017_47_1_329 crossref_primary_10_1007_s12220_024_01707_5 crossref_primary_10_1016_j_aml_2021_107743 crossref_primary_10_1016_j_jmaa_2015_04_066 crossref_primary_10_1063_1_5128177 crossref_primary_10_1007_s00033_018_1043_5 crossref_primary_10_1080_17476933_2018_1427078 crossref_primary_10_1063_5_0079166 crossref_primary_10_1002_mma_3414 crossref_primary_10_1016_j_aml_2017_05_012 crossref_primary_10_1016_j_camwa_2014_08_020 crossref_primary_10_1142_S0219199722500602 crossref_primary_10_1515_ans_2017_6042 crossref_primary_10_3934_math_2022922 crossref_primary_10_3934_cpaa_2021096 crossref_primary_10_1016_j_camwa_2017_08_006 crossref_primary_10_1007_s11784_022_00930_3 crossref_primary_10_1002_mma_8546 crossref_primary_10_1002_mma_8308 crossref_primary_10_1007_s11464_021_0071_1 crossref_primary_10_1515_anona_2022_0296 crossref_primary_10_1186_s13661_021_01503_y crossref_primary_10_1515_ijnsns_2017_0195 crossref_primary_10_3934_cpaa_2017030 crossref_primary_10_1080_17476933_2023_2296102 |
Cites_doi | 10.1016/S0893-9659(03)80038-1 10.1016/0022-1236(73)90051-7 10.1007/BF01189950 10.5186/aasfm.1990.1521 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/ans-2014-0214 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-0375 |
EndPage | 510 |
ExternalDocumentID | 10_1515_ans_2014_0214 |
GroupedDBID | 23M 5GY AAGVJ AAJBH AAONY AAPJK AAQCX AAXCG AAYXX ABAQN ABFKT ABJNI ABSOE ABYKJ ACEFL ACGFS ACMKP ACXLN ACZBO ADGQD ADJVZ AEICA AEKEB AENEX AEQDQ AERZL AEUFC AEXIE AFBDD AFCXV AFGNR AFYRI AHGSO AHVWV AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY ASYPN AZMOX BAKPI BBCWN BCIFA BLHJL CFGNV CITATION EBS EJD FSTRU GROUPED_DOAJ IY9 J9A M48 P2P QD8 SLJYH WTRAM |
ID | FETCH-LOGICAL-c167t-925ff76835e35b084ff45af2ed48d97cb18bb1dae635740c74db4c64cae0bd3f3 |
IEDL.DBID | M48 |
ISSN | 1536-1365 |
IngestDate | Tue Jul 01 01:37:03 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c167t-925ff76835e35b084ff45af2ed48d97cb18bb1dae635740c74db4c64cae0bd3f3 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1515_ans_2014_0214 crossref_primary_10_1515_ans_2014_0214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced nonlinear studies |
PublicationYear | 2014 |
References | Lions (ref151) 1985 Ma (ref171) 2003; 16 Arosio (ref11) 1996 Felmer (ref211) 1996; 4 Li (ref131) 1990; 15 Wang (ref271) 1993 Ekeland (ref91) 1974 Floer (ref101) 1986 Ding (ref81) 1986 Strauss (ref251) 1977 Lions (ref141) 1984; 2 Rabinowitz (ref241) 1992 Oh (ref201) 1990 Ambrosetti (ref21) 1973; 14 Berestycki (ref41) 1983 Berestycki (ref51) 1983 Ancona (ref01) 1992 |
References_xml | – start-page: 108 year: 1992 ident: ref01 article-title: Global solvability for the degenerate Kirchhoff equation with real analytic data publication-title: Invent Math – volume: 16 start-page: 243 year: 2003 ident: ref171 article-title: Positive solutions for a nonlinear nonlocal elliptic transmission problem publication-title: Appl Math Lett doi: 10.1016/S0893-9659(03)80038-1 – start-page: 55 year: 1977 ident: ref251 article-title: Existence of solitary waves in higher dimensions publication-title: Commun Math Phys – start-page: 91 year: 1986 ident: ref81 article-title: On the existence of positive entire solutions of a semilinear elliptic equation publication-title: Arch Ration Mech Anal – volume: 14 start-page: 349 year: 1973 ident: ref21 article-title: Dual variational methods in critical points theory and applications publication-title: Funct Anal doi: 10.1016/0022-1236(73)90051-7 – volume: 2 start-page: 223 year: 1984 ident: ref141 article-title: The concentration - compactness principle in the calculus of variations The locally compact case part publication-title: Inst Anal – start-page: 47 year: 1974 ident: ref91 article-title: On the variational principle publication-title: Math Anal Appl – start-page: 1 year: 1985 ident: ref151 article-title: The concentration - compactness principle in the calculus of variations The limit case part publication-title: Rev Mat – start-page: 43 year: 1992 ident: ref241 article-title: On a class of nonlinear Schro dinger equations publication-title: Angew Math Phys – start-page: 69 year: 1986 ident: ref101 article-title: Nonspreading wave packets for the cubic Schro dinger equation with a bounded potential publication-title: Funct Anal – start-page: 82 year: 1983 ident: ref41 article-title: Nonlinear scalar field equations I existence of a ground state publication-title: Arch Ration Mech Anal – volume: 4 start-page: 121 year: 1996 ident: ref211 article-title: del Pino Local mountain pass for semilinear elliptic problems in unbounded domains Partial Differential Equations publication-title: Calc doi: 10.1007/BF01189950 – start-page: 153 year: 1993 ident: ref271 article-title: On concentration of positive bound states of nonlinear Schro dinger equations publication-title: Math Phys – volume: 15 start-page: 27 year: 1990 ident: ref131 article-title: Some properties of weak solutions of nonlinear scalar field equations A publication-title: Acad Sci Fenn Math doi: 10.5186/aasfm.1990.1521 – start-page: 131 year: 1990 ident: ref201 article-title: On positive multi - lump bound states of nonlinear Schro dinger equations under multiple well potential publication-title: Math Phys – start-page: 348 year: 1996 ident: ref11 article-title: On the well - posedness of the Kirchhoff string publication-title: Trans Amer Math Soc – start-page: 82 year: 1983 ident: ref51 article-title: Nonlinear scalar field equations II existence of infinitely many solutions publication-title: Arch Ration Mech Anal |
SSID | ssj0000492455 |
Score | 2.39492 |
Snippet | We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth,
where ε is a small positive... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 483 |
Title | Concentrating Bound States for Kirchhoff Type Problems in ℝ 3 Involving Critical Sobolev Exponents |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAXuCAWEXZ5APiRCCJ7cQ5IARVSwGxSKVSb1G8QVGVlLYguPMb_BxfgidJoRI9cB8l0ht7_CaevIfQHmcB18rAlHhCHCoS30m4VE4oFaXaRLZmwo3u9U3QbNPLDuv8SgqVAA6ntnbgJ9Ue9A7fnt9P7IY_zt17PHZka7pNtkcd0P-aRZX8qgim-Eqm_1QQYZ_mHqh2i4PyXsBKxc0_T5g4oSaOmsYSWiw5Ij4tkrqMZnS6ghYmlANXkarB74ZprnmbPuAzMEfCBXHElobiq65dv4-ZMRgaTXxX2MYMcTfFXx-fmOCL1NYl-JiAx2YHuJWJrKdfcf2tn6UwX7GG2o36fa3plIYJjvSCcOREPjPG9g-EacKEy6kxlCXG14pyFYVSeFwITyUaROioK0OqBJUBlYl2hSKGrKO51L5hA2HCJUmi0OWCM0pcnXiBL4mKtOIhseFVdDAGKZalmjiYWvRi6CosprHFNAZMY8C0ivZ_wvuFjMb0wM3_Bm6h-SJjMHu4jeZGgxe9Y_nBSOyiymnzvHW7m6-Ab7zFux8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrating+Bound+States+for+Kirchhoff+Type+Problems+in+%E2%84%9D+3+Involving+Critical+Sobolev+Exponents&rft.jtitle=Advanced+nonlinear+studies&rft.au=He%2C+Yi&rft.au=Li%2C+Gongbao&rft.au=Peng%2C+Shuangjie&rft.date=2014-05-01&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=14&rft.issue=2&rft.spage=483&rft.epage=510&rft_id=info:doi/10.1515%2Fans-2014-0214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ans_2014_0214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon |