Concentrating Bound States for Kirchhoff Type Problems in ℝ 3 Involving Critical Sobolev Exponents

We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive parameter and a, b > 0 are constants, f ∈ C 1 (ℝ + ,ℝ) is subcritical, V : ℝ 3 → ℝ is a locally Hölder continuous function. We first prove that fo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced nonlinear studies Vol. 14; no. 2; pp. 483 - 510
Main Authors He, Yi, Li, Gongbao, Peng, Shuangjie
Format Journal Article
LanguageEnglish
Published 01.05.2014
Online AccessGet full text
ISSN1536-1365
2169-0375
DOI10.1515/ans-2014-0214

Cover

Abstract We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive parameter and a, b > 0 are constants, f ∈ C 1 (ℝ + ,ℝ) is subcritical, V : ℝ 3 → ℝ is a locally Hölder continuous function. We first prove that for ε 0 > 0 sufficiently small, the above problem has a weak solution u ε with exponential decay at infinity. Moreover, u ε concentrates around a local minimum point of V in Λ as ε → 0. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple solutions by employing the topological construction of the set where the potential V(z) attains its minimum.
AbstractList We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive parameter and a, b > 0 are constants, f ∈ C 1 (ℝ + ,ℝ) is subcritical, V : ℝ 3 → ℝ is a locally Hölder continuous function. We first prove that for ε 0 > 0 sufficiently small, the above problem has a weak solution u ε with exponential decay at infinity. Moreover, u ε concentrates around a local minimum point of V in Λ as ε → 0. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple solutions by employing the topological construction of the set where the potential V(z) attains its minimum.
Author He, Yi
Li, Gongbao
Peng, Shuangjie
Author_xml – sequence: 1
  givenname: Yi
  surname: He
  fullname: He, Yi
  organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China
– sequence: 2
  givenname: Gongbao
  surname: Li
  fullname: Li, Gongbao
  organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China
– sequence: 3
  givenname: Shuangjie
  surname: Peng
  fullname: Peng, Shuangjie
  organization: Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics Central China Normal University, Wuhan, 430079 P. R. China
BookMark eNp1kMtOwzAQRS1UJErpkr1_wGDHjyRLiApUIIHUso78pEapXdmhont-g5_jS0gEKyRmM5s5V3PPKZiEGCwA5wRfEE74pQwZFZgwhAvCjsC0IKJGmJZ8AqaEU4EIFfwEzHN-xcOwumCcT4FpYtA29En2PrzA6_gWDFz1srcZupjgvU96s4nOwfVhZ-FTiqqz2wx9gF8fn5DCZdjHbj-yTfK917KDq6hiZ_dw8b4bfgx9PgPHTnbZzn_3DDzfLNbNHXp4vF02Vw9IE1H2qC64c6WoKLeUK1wx5xiXrrCGVaYutSKVUsRIKygvGdYlM4ppwbS0WBnq6AzQn1ydYs7Julb7oYqPYz_ftQS3o6t2cNWOrtrR1UChP9Qu-a1Mh3_uvwER42_y
CitedBy_id crossref_primary_10_1007_s12220_021_00722_0
crossref_primary_10_1186_s13660_023_02945_x
crossref_primary_10_1016_j_jde_2016_04_032
crossref_primary_10_1017_prm_2020_37
crossref_primary_10_1080_00036811_2023_2269967
crossref_primary_10_1016_j_jmaa_2019_123593
crossref_primary_10_1007_s43034_022_00245_x
crossref_primary_10_1007_s00023_021_01105_5
crossref_primary_10_3390_sym15101856
crossref_primary_10_1016_j_na_2019_111715
crossref_primary_10_1016_j_jmaa_2018_01_003
crossref_primary_10_1007_s10473_023_0309_y
crossref_primary_10_1515_anona_2022_0318
crossref_primary_10_1007_s12220_022_01145_1
crossref_primary_10_1017_S0017089518000563
crossref_primary_10_1080_00036811_2015_1022312
crossref_primary_10_1515_anona_2022_0323
crossref_primary_10_3233_ASY_191586
crossref_primary_10_1017_prm_2020_32
crossref_primary_10_1016_j_na_2020_112144
crossref_primary_10_11948_20190338
crossref_primary_10_1016_j_jmaa_2017_04_048
crossref_primary_10_1063_5_0223610
crossref_primary_10_1007_s10883_019_09439_4
crossref_primary_10_1016_j_na_2018_12_010
crossref_primary_10_1016_j_jmaa_2015_07_033
crossref_primary_10_1155_2023_8829268
crossref_primary_10_1002_mma_5891
crossref_primary_10_1016_j_jde_2016_08_034
crossref_primary_10_1016_j_jmaa_2023_127715
crossref_primary_10_1216_RMJ_2018_48_2_425
crossref_primary_10_1515_ans_2016_6006
crossref_primary_10_1016_j_jde_2015_02_040
crossref_primary_10_1007_s00033_022_01773_1
crossref_primary_10_1007_s00023_019_00803_5
crossref_primary_10_3934_math_2021227
crossref_primary_10_58997_ejde_2020_09
crossref_primary_10_1016_j_jmaa_2021_125727
crossref_primary_10_58997_ejde_2021_53
crossref_primary_10_1002_mma_6216
crossref_primary_10_1016_j_jde_2018_05_012
crossref_primary_10_1002_mma_4798
crossref_primary_10_12677_AAM_2023_124161
crossref_primary_10_4236_am_2020_111005
crossref_primary_10_1080_00036811_2021_1979220
crossref_primary_10_1007_s00033_023_02031_8
crossref_primary_10_1186_s13661_020_01424_2
crossref_primary_10_1080_00036811_2017_1419202
crossref_primary_10_1016_j_cnsns_2020_105369
crossref_primary_10_1080_00036811_2016_1220546
crossref_primary_10_12677_PM_2022_1211211
crossref_primary_10_1016_j_aml_2018_08_008
crossref_primary_10_1016_j_jmaa_2018_06_071
crossref_primary_10_1007_s10231_021_01145_y
crossref_primary_10_1007_s00033_019_1082_6
crossref_primary_10_1016_j_bulsci_2024_103398
crossref_primary_10_1007_s11425_020_1885_6
crossref_primary_10_1063_5_0173078
crossref_primary_10_1007_s13324_024_00944_9
crossref_primary_10_1016_j_nonrwa_2015_09_007
crossref_primary_10_1002_mma_6962
crossref_primary_10_3390_math8010106
crossref_primary_10_1080_17476933_2018_1505874
crossref_primary_10_1142_S0219199718500748
crossref_primary_10_1007_s40840_023_01548_5
crossref_primary_10_1007_s40840_022_01286_0
crossref_primary_10_1080_17476933_2016_1270272
crossref_primary_10_1080_17476933_2020_1760253
crossref_primary_10_1515_ans_2018_2037
crossref_primary_10_1063_5_0008911
crossref_primary_10_1007_s00526_017_1214_9
crossref_primary_10_1515_ans_2019_2045
crossref_primary_10_1002_mma_8189
crossref_primary_10_1016_S0252_9602_18_30756_2
crossref_primary_10_1515_anona_2020_0192
crossref_primary_10_1002_mma_6157
crossref_primary_10_1007_s00605_019_01306_5
crossref_primary_10_1007_s42985_020_00010_6
crossref_primary_10_1016_j_jde_2023_01_039
crossref_primary_10_1016_j_jmaa_2014_12_017
crossref_primary_10_1080_17476933_2020_1839895
crossref_primary_10_1186_s13661_019_1198_9
crossref_primary_10_1063_1_5074163
crossref_primary_10_1016_j_aml_2022_108539
crossref_primary_10_1063_5_0015454
crossref_primary_10_3233_ASY_191543
crossref_primary_10_1016_j_camwa_2016_10_017
crossref_primary_10_1080_00036811_2020_1716969
crossref_primary_10_1002_mma_8172
crossref_primary_10_1016_j_camwa_2016_02_037
crossref_primary_10_1007_s00229_018_1017_0
crossref_primary_10_1186_s13661_019_1183_3
crossref_primary_10_1007_s10473_020_0107_y
crossref_primary_10_1016_j_jfa_2015_09_012
crossref_primary_10_3934_dcdss_2018029
crossref_primary_10_1016_j_jde_2019_08_016
crossref_primary_10_1016_j_jmaa_2018_07_052
crossref_primary_10_1017_prm_2024_26
crossref_primary_10_1016_j_camwa_2016_10_012
crossref_primary_10_1080_17476933_2023_2246901
crossref_primary_10_1080_00036811_2019_1687884
crossref_primary_10_1007_s00033_017_0803_y
crossref_primary_10_1007_s00205_014_0747_8
crossref_primary_10_1515_ans_2016_6002
crossref_primary_10_1017_prm_2018_108
crossref_primary_10_1002_mma_3821
crossref_primary_10_1090_proc_12946
crossref_primary_10_1016_j_jmaa_2016_10_069
crossref_primary_10_1016_j_camwa_2017_10_005
crossref_primary_10_3934_math_2024814
crossref_primary_10_1007_s12220_023_01298_7
crossref_primary_10_1016_j_jmaa_2021_125772
crossref_primary_10_1515_anona_2022_0225
crossref_primary_10_1002_mma_6256
crossref_primary_10_3233_ASY_201660
crossref_primary_10_3934_cpaa_2022069
crossref_primary_10_1080_17476933_2024_2418854
crossref_primary_10_1007_s10473_025_0207_6
crossref_primary_10_1186_s13662_021_03331_x
crossref_primary_10_1216_RMJ_2017_47_1_329
crossref_primary_10_1007_s12220_024_01707_5
crossref_primary_10_1016_j_aml_2021_107743
crossref_primary_10_1016_j_jmaa_2015_04_066
crossref_primary_10_1063_1_5128177
crossref_primary_10_1007_s00033_018_1043_5
crossref_primary_10_1080_17476933_2018_1427078
crossref_primary_10_1063_5_0079166
crossref_primary_10_1002_mma_3414
crossref_primary_10_1016_j_aml_2017_05_012
crossref_primary_10_1016_j_camwa_2014_08_020
crossref_primary_10_1142_S0219199722500602
crossref_primary_10_1515_ans_2017_6042
crossref_primary_10_3934_math_2022922
crossref_primary_10_3934_cpaa_2021096
crossref_primary_10_1016_j_camwa_2017_08_006
crossref_primary_10_1007_s11784_022_00930_3
crossref_primary_10_1002_mma_8546
crossref_primary_10_1002_mma_8308
crossref_primary_10_1007_s11464_021_0071_1
crossref_primary_10_1515_anona_2022_0296
crossref_primary_10_1186_s13661_021_01503_y
crossref_primary_10_1515_ijnsns_2017_0195
crossref_primary_10_3934_cpaa_2017030
crossref_primary_10_1080_17476933_2023_2296102
Cites_doi 10.1016/S0893-9659(03)80038-1
10.1016/0022-1236(73)90051-7
10.1007/BF01189950
10.5186/aasfm.1990.1521
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1515/ans-2014-0214
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-0375
EndPage 510
ExternalDocumentID 10_1515_ans_2014_0214
GroupedDBID 23M
5GY
AAGVJ
AAJBH
AAONY
AAPJK
AAQCX
AAXCG
AAYXX
ABAQN
ABFKT
ABJNI
ABSOE
ABYKJ
ACEFL
ACGFS
ACMKP
ACXLN
ACZBO
ADGQD
ADJVZ
AEICA
AEKEB
AENEX
AEQDQ
AERZL
AEUFC
AEXIE
AFBDD
AFCXV
AFGNR
AFYRI
AHGSO
AHVWV
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CITATION
EBS
EJD
FSTRU
GROUPED_DOAJ
IY9
J9A
M48
P2P
QD8
SLJYH
WTRAM
ID FETCH-LOGICAL-c167t-925ff76835e35b084ff45af2ed48d97cb18bb1dae635740c74db4c64cae0bd3f3
IEDL.DBID M48
ISSN 1536-1365
IngestDate Tue Jul 01 01:37:03 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c167t-925ff76835e35b084ff45af2ed48d97cb18bb1dae635740c74db4c64cae0bd3f3
PageCount 28
ParticipantIDs crossref_citationtrail_10_1515_ans_2014_0214
crossref_primary_10_1515_ans_2014_0214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced nonlinear studies
PublicationYear 2014
References Lions (ref151) 1985
Ma (ref171) 2003; 16
Arosio (ref11) 1996
Felmer (ref211) 1996; 4
Li (ref131) 1990; 15
Wang (ref271) 1993
Ekeland (ref91) 1974
Floer (ref101) 1986
Ding (ref81) 1986
Strauss (ref251) 1977
Lions (ref141) 1984; 2
Rabinowitz (ref241) 1992
Oh (ref201) 1990
Ambrosetti (ref21) 1973; 14
Berestycki (ref41) 1983
Berestycki (ref51) 1983
Ancona (ref01) 1992
References_xml – start-page: 108
  year: 1992
  ident: ref01
  article-title: Global solvability for the degenerate Kirchhoff equation with real analytic data
  publication-title: Invent Math
– volume: 16
  start-page: 243
  year: 2003
  ident: ref171
  article-title: Positive solutions for a nonlinear nonlocal elliptic transmission problem
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(03)80038-1
– start-page: 55
  year: 1977
  ident: ref251
  article-title: Existence of solitary waves in higher dimensions
  publication-title: Commun Math Phys
– start-page: 91
  year: 1986
  ident: ref81
  article-title: On the existence of positive entire solutions of a semilinear elliptic equation
  publication-title: Arch Ration Mech Anal
– volume: 14
  start-page: 349
  year: 1973
  ident: ref21
  article-title: Dual variational methods in critical points theory and applications
  publication-title: Funct Anal
  doi: 10.1016/0022-1236(73)90051-7
– volume: 2
  start-page: 223
  year: 1984
  ident: ref141
  article-title: The concentration - compactness principle in the calculus of variations The locally compact case part
  publication-title: Inst Anal
– start-page: 47
  year: 1974
  ident: ref91
  article-title: On the variational principle
  publication-title: Math Anal Appl
– start-page: 1
  year: 1985
  ident: ref151
  article-title: The concentration - compactness principle in the calculus of variations The limit case part
  publication-title: Rev Mat
– start-page: 43
  year: 1992
  ident: ref241
  article-title: On a class of nonlinear Schro dinger equations
  publication-title: Angew Math Phys
– start-page: 69
  year: 1986
  ident: ref101
  article-title: Nonspreading wave packets for the cubic Schro dinger equation with a bounded potential
  publication-title: Funct Anal
– start-page: 82
  year: 1983
  ident: ref41
  article-title: Nonlinear scalar field equations I existence of a ground state
  publication-title: Arch Ration Mech Anal
– volume: 4
  start-page: 121
  year: 1996
  ident: ref211
  article-title: del Pino Local mountain pass for semilinear elliptic problems in unbounded domains Partial Differential Equations
  publication-title: Calc
  doi: 10.1007/BF01189950
– start-page: 153
  year: 1993
  ident: ref271
  article-title: On concentration of positive bound states of nonlinear Schro dinger equations
  publication-title: Math Phys
– volume: 15
  start-page: 27
  year: 1990
  ident: ref131
  article-title: Some properties of weak solutions of nonlinear scalar field equations A
  publication-title: Acad Sci Fenn Math
  doi: 10.5186/aasfm.1990.1521
– start-page: 131
  year: 1990
  ident: ref201
  article-title: On positive multi - lump bound states of nonlinear Schro dinger equations under multiple well potential
  publication-title: Math Phys
– start-page: 348
  year: 1996
  ident: ref11
  article-title: On the well - posedness of the Kirchhoff string
  publication-title: Trans Amer Math Soc
– start-page: 82
  year: 1983
  ident: ref51
  article-title: Nonlinear scalar field equations II existence of infinitely many solutions
  publication-title: Arch Ration Mech Anal
SSID ssj0000492455
Score 2.39492
Snippet We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 483
Title Concentrating Bound States for Kirchhoff Type Problems in ℝ 3 Involving Critical Sobolev Exponents
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWAXuCAWEXZ5APiRCCJ7cQ5IARVSwGxSKVSb1G8QVGVlLYguPMb_BxfgidJoRI9cB8l0ht7_CaevIfQHmcB18rAlHhCHCoS30m4VE4oFaXaRLZmwo3u9U3QbNPLDuv8SgqVAA6ntnbgJ9Ue9A7fnt9P7IY_zt17PHZka7pNtkcd0P-aRZX8qgim-Eqm_1QQYZ_mHqh2i4PyXsBKxc0_T5g4oSaOmsYSWiw5Ij4tkrqMZnS6ghYmlANXkarB74ZprnmbPuAzMEfCBXHElobiq65dv4-ZMRgaTXxX2MYMcTfFXx-fmOCL1NYl-JiAx2YHuJWJrKdfcf2tn6UwX7GG2o36fa3plIYJjvSCcOREPjPG9g-EacKEy6kxlCXG14pyFYVSeFwITyUaROioK0OqBJUBlYl2hSKGrKO51L5hA2HCJUmi0OWCM0pcnXiBL4mKtOIhseFVdDAGKZalmjiYWvRi6CosprHFNAZMY8C0ivZ_wvuFjMb0wM3_Bm6h-SJjMHu4jeZGgxe9Y_nBSOyiymnzvHW7m6-Ab7zFux8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentrating+Bound+States+for+Kirchhoff+Type+Problems+in+%E2%84%9D+3+Involving+Critical+Sobolev+Exponents&rft.jtitle=Advanced+nonlinear+studies&rft.au=He%2C+Yi&rft.au=Li%2C+Gongbao&rft.au=Peng%2C+Shuangjie&rft.date=2014-05-01&rft.issn=1536-1365&rft.eissn=2169-0375&rft.volume=14&rft.issue=2&rft.spage=483&rft.epage=510&rft_id=info:doi/10.1515%2Fans-2014-0214&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ans_2014_0214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1365&client=summon