TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition
Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adapt...
Saved in:
| Published in | Measurement : journal of the International Measurement Confederation Vol. 207; p. 112379 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0263-2241 1873-412X |
| DOI | 10.1016/j.measurement.2022.112379 |
Cover
| Abstract | Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adaptation techniques have been devised to reduce the distributional discrepancy between the source and target domains. However, existing domain adaptation techniques for this issue treat all the source samples equally, but ignore their transferability difference, which more or less limits the performance of learned domain-invariant and class-discriminative EEG features for emotion recognition. To cope with this problem, we propose Transposition Multi-Layer Perceptron (TMLP) and Sample-Reweighted Domain Adaptation Neural Network (SRDANN) in one whole learning framework. TMLP extracts the robust multi-channel EEG features related to emotions; SRDANN transfers the discriminative knowledge from the source domain to the target domain for classifying emotions. By concentrating on the source samples with stronger transferability in domain adaptation, TMLP+SRDANN can learn the more domain-invariant and class-discriminative features from EEG, thus providing a more effective solution to emotion recognition in the challenging cross-subject scenario. The subject-independent emotion recognition experiments on two benchmark datasets have demonstrated the effectiveness of our method: an accuracy of 81.04% for emotion classification on SEED, 61.88% for valence classification and 57.70% for arousal classification on DEAP.
•We design TMLP to extract the discriminative EEG features for emotion recognition.•We devise SRDANN for cross-subject domain adaptation in emotion classification.•SRDANN uses a domain classifier with GRL to narrow the data distribution discrepancy.•SRDANN uses a domain classifier with GVL to calculate the source data transferability.•We demonstrate the effectiveness of TMLP+SRDANN on the benchmarks SEED and DEAP. |
|---|---|
| AbstractList | Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adaptation techniques have been devised to reduce the distributional discrepancy between the source and target domains. However, existing domain adaptation techniques for this issue treat all the source samples equally, but ignore their transferability difference, which more or less limits the performance of learned domain-invariant and class-discriminative EEG features for emotion recognition. To cope with this problem, we propose Transposition Multi-Layer Perceptron (TMLP) and Sample-Reweighted Domain Adaptation Neural Network (SRDANN) in one whole learning framework. TMLP extracts the robust multi-channel EEG features related to emotions; SRDANN transfers the discriminative knowledge from the source domain to the target domain for classifying emotions. By concentrating on the source samples with stronger transferability in domain adaptation, TMLP+SRDANN can learn the more domain-invariant and class-discriminative features from EEG, thus providing a more effective solution to emotion recognition in the challenging cross-subject scenario. The subject-independent emotion recognition experiments on two benchmark datasets have demonstrated the effectiveness of our method: an accuracy of 81.04% for emotion classification on SEED, 61.88% for valence classification and 57.70% for arousal classification on DEAP.
•We design TMLP to extract the discriminative EEG features for emotion recognition.•We devise SRDANN for cross-subject domain adaptation in emotion classification.•SRDANN uses a domain classifier with GRL to narrow the data distribution discrepancy.•SRDANN uses a domain classifier with GVL to calculate the source data transferability.•We demonstrate the effectiveness of TMLP+SRDANN on the benchmarks SEED and DEAP. |
| ArticleNumber | 112379 |
| Author | Hou, Bowen Li, Wei Qiu, Ziming Tian, Ye Li, Xiaoyu Peng, Bo |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9235-9429 surname: Li fullname: Li, Wei email: li-wei@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China – sequence: 2 givenname: Bowen surname: Hou fullname: Hou, Bowen organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China – sequence: 3 givenname: Xiaoyu surname: Li fullname: Li, Xiaoyu organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China – sequence: 4 givenname: Ziming surname: Qiu fullname: Qiu, Ziming organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China – sequence: 5 givenname: Bo surname: Peng fullname: Peng, Bo organization: College of Software Engineering, Southeast University, Suzhou, Jiangsu 215123, China – sequence: 6 givenname: Ye surname: Tian fullname: Tian, Ye organization: College of Software Engineering, Southeast University, Suzhou, Jiangsu 215123, China |
| BookMark | eNqNkF1LwzAUhoNMcJv-h3otrfno0tYbGbPOwZyiE7wLaXKqGWsykir4712tF-LVrs6Bw_vwnmeEBtZZQOic4IRgwi83SQMyfHhowLYJxZQmhFCWFUdoSPKMxSmhrwM0xJSzmNKUnKBRCBuMMWcFH6LF-n75ePH8dDNdra6iaaRdI42NpJa7VrbG2aiB9t3pqHY-Kst5XMkAOoLG_Rw9KPdmTbefouNabgOc_c4xerkt17O7ePkwX8ymy1gRzotYUaUz0F2ViqQZAZVmDAhVxYTlVNMJ1ziDKlcprdMaZ3XFJVEgJ1zmABVmY3Tdc5V3IXiohTJ91dZLsxUEi86M2Ig_ZkRnRvRm9oTiH2HnTSP910HZWZ-F_YufBrwIyoBVoM3eRSu0MwdQvgGMloe8 |
| CitedBy_id | crossref_primary_10_1088_1741_2552_ad9cc0 crossref_primary_10_1016_j_compbiomed_2024_109394 crossref_primary_10_3390_math13020254 crossref_primary_10_1016_j_inffus_2023_102156 crossref_primary_10_1109_ACCESS_2024_3378732 crossref_primary_10_1109_TIM_2024_3522413 crossref_primary_10_1016_j_measurement_2024_115940 crossref_primary_10_1016_j_bspc_2024_106986 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1109_JBHI_2024_3395622 crossref_primary_10_1109_LSENS_2023_3307111 crossref_primary_10_1109_JBHI_2023_3311338 crossref_primary_10_1016_j_bspc_2023_105223 crossref_primary_10_2478_amns_2023_2_00188 crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_1145_3712259 crossref_primary_10_1088_1361_6579_ad2eb6 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_eswa_2024_125420 |
| Cites_doi | 10.1109/TAFFC.2018.2817622 10.1109/TNNLS.2020.2988928 10.1109/TCDS.2019.2949306 10.1007/s00371-015-1183-y 10.1016/j.measurement.2020.108747 10.1080/2326263X.2014.912883 10.1109/TITB.2009.2034649 10.1016/j.neucom.2018.05.083 10.1016/j.cmpb.2019.03.015 10.1109/TCDS.2021.3098842 10.1016/j.dsp.2018.07.003 10.1016/j.mehy.2019.03.025 10.1145/3400066 10.1016/j.bspc.2020.101867 10.1109/TCYB.2017.2788081 10.1109/JSEN.2020.3020828 10.1016/j.asoc.2020.106954 10.1109/T-AFFC.2011.15 10.1109/JSEN.2021.3121293 10.1109/TNSRE.2018.2872924 10.1109/TAFFC.2018.2885474 10.1016/j.conb.2004.03.010 10.1109/TCDS.2020.2999337 10.1109/TCDS.2018.2826840 10.1109/JSEN.2022.3144317 10.1109/TKDE.2009.191 10.1109/TAMD.2015.2431497 10.1016/j.bspc.2019.04.023 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2022.112379 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2022_112379 S0263224122015755 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GS5 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSQ SST SSZ T5K ZMT ~G- 29M AATTM AAXKI AAYWO AAYXX ABFNM ABXDB ACLOT ACNNM ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c1669-c2cd7ed2241b1471ec473e12c95382d256d07eb8c42f4f07fb6a1cea56a8eeb03 |
| IEDL.DBID | .~1 |
| ISSN | 0263-2241 |
| IngestDate | Thu Oct 09 00:32:40 EDT 2025 Thu Apr 24 22:51:57 EDT 2025 Fri Feb 23 02:38:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Domain adaptation Emotion recognition Electroencephalogram Transposition Multi-Layer Perceptron Sample-Reweighted Domain Adaptation Neural Network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1669-c2cd7ed2241b1471ec473e12c95382d256d07eb8c42f4f07fb6a1cea56a8eeb03 |
| ORCID | 0000-0002-9235-9429 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_measurement_2022_112379 crossref_primary_10_1016_j_measurement_2022_112379 elsevier_sciencedirect_doi_10_1016_j_measurement_2022_112379 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-15 |
| PublicationDateYYYYMMDD | 2023-02-15 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Breiman (b12) 2001; 45 Song, Zheng, Song, Cui (b19) 2020; 11 Wang, Deng (b27) 2018; 312 Hou, Liu, Sourina, Tan, Wang, Mueller-Wittig (b11) 2015 Zhang, Wang, Jiang, Xu, Wu, Zhang (b43) 2019; vol. 11740 Krizhevsky, Sutskever, Hinton (b52) 2017; 60 Chao, Dong (b21) 2021; 21 Li, Zheng, Zong, Cui, Zhang, Zhou (b45) 2021; 12 Li, Zhang, Hou, Li (b23) 2021; 21 Ganin, Lempitsky (b36) 2015; vol. 37 Tao, Li, Song, Cheng, Liu, Wan, Chen (b20) 2020 Lan, Liu, Sourina, Wang (b14) 2015 Luo, Zhang, Zheng, Lu (b42) 2018; vol. 11305 Lan, Sourina, Wang, Scherer, Müller-Putz (b17) 2017 Chen, Xie, Huang, Rong, Ding, Huang, Xu, Huang (b34) 2019 Khatwani, Tiwari (b49) 2013; 2 Lim, Sourina, Wang (b25) 2018; 26 Li, Zhang, Song (b10) 2021; 172 Petrantonakis, Hadjileontiadis (b3) 2010; 14 Yu, Wang, Chen, Huang (b38) 2019 Pei, Cao, Long, Wang (b37) 2018 Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b46) 2021; 13 Shi, Jiao, Lu (b6) 2013 Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong (b33) 2021; 32 Sharma, Pachori, Sircar (b2) 2020; 58 Lan, Sourina, Wang, Liu (b5) 2014 Kim (b51) 2014 Ozel, Akan, Yilmaz (b18) 2019; 52 Mert, Akan (b7) 2018; 81 Zheng, Lu (b9) 2015; 7 Pan, Yao, Li, Wang, Ngo, Mei (b35) 2019 Wilson, Cook (b28) 2020; 11 Duan, Zhu, Lu (b8) 2013 Wang, Wang, Hu, Yin, Song (b22) 2022; 22 Zhang, Zheng, Cui, Zong, Li (b47) 2019; 49 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b53) 2017 Lan, Sourina, Wang, Liu (b4) 2016; 32 Yin, Zheng, Hu, Zhang, Cui (b48) 2021; 100 Lan, Sourina, Wang, Scherer, Müller-Putz (b41) 2019; 11 Li, Qiu, Du, Wang, He (b44) 2020; 12 Zheng, Zhang, Zhu, Lu (b40) 2015 Stikic, Johnson, Tan, Berka (b13) 2014; 1 Taran, Bajaj (b16) 2019; 173 Long, Wang (b30) 2015; vol. 37 Pan, Yang (b26) 2010; 22 Soroush, Maghooli, Setarehdan, Nasrabadi (b15) 2019; 127 Yan, Ding, Li, Wang, Xu, Zuo (b31) 2017 Lai, Ibrahim, Abdullah, Abdullah, Suandi, Azman (b50) 2018 Sun, Saenko (b32) 2016; vol. 9915 Li, Huan, Hou, Tian, Zhang, Song (b1) 2022; 14 Tzeng, Zhang, Saenko, Darrell (b29) 2014 Hamann, Canli (b39) 2004; 14 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b24) 2012; 3 Petrantonakis (10.1016/j.measurement.2022.112379_b3) 2010; 14 Li (10.1016/j.measurement.2022.112379_b10) 2021; 172 Ozel (10.1016/j.measurement.2022.112379_b18) 2019; 52 Stikic (10.1016/j.measurement.2022.112379_b13) 2014; 1 Pan (10.1016/j.measurement.2022.112379_b35) 2019 Lan (10.1016/j.measurement.2022.112379_b17) 2017 Chen (10.1016/j.measurement.2022.112379_b34) 2019 Chao (10.1016/j.measurement.2022.112379_b21) 2021; 21 Hou (10.1016/j.measurement.2022.112379_b11) 2015 Mert (10.1016/j.measurement.2022.112379_b7) 2018; 81 Duan (10.1016/j.measurement.2022.112379_b8) 2013 Ganin (10.1016/j.measurement.2022.112379_b36) 2015; vol. 37 Krizhevsky (10.1016/j.measurement.2022.112379_b52) 2017; 60 Koelstra (10.1016/j.measurement.2022.112379_b24) 2012; 3 Zhu (10.1016/j.measurement.2022.112379_b33) 2021; 32 Pan (10.1016/j.measurement.2022.112379_b26) 2010; 22 Hamann (10.1016/j.measurement.2022.112379_b39) 2004; 14 Li (10.1016/j.measurement.2022.112379_b44) 2020; 12 Zhang (10.1016/j.measurement.2022.112379_b47) 2019; 49 Zheng (10.1016/j.measurement.2022.112379_b9) 2015; 7 Yu (10.1016/j.measurement.2022.112379_b38) 2019 Yan (10.1016/j.measurement.2022.112379_b31) 2017 Khatwani (10.1016/j.measurement.2022.112379_b49) 2013; 2 Lan (10.1016/j.measurement.2022.112379_b5) 2014 Sharma (10.1016/j.measurement.2022.112379_b2) 2020; 58 Tao (10.1016/j.measurement.2022.112379_b20) 2020 Li (10.1016/j.measurement.2022.112379_b23) 2021; 21 Pei (10.1016/j.measurement.2022.112379_b37) 2018 Ke (10.1016/j.measurement.2022.112379_b53) 2017 Lan (10.1016/j.measurement.2022.112379_b41) 2019; 11 Yin (10.1016/j.measurement.2022.112379_b48) 2021; 100 Lan (10.1016/j.measurement.2022.112379_b4) 2016; 32 Kim (10.1016/j.measurement.2022.112379_b51) 2014 Wilson (10.1016/j.measurement.2022.112379_b28) 2020; 11 Lim (10.1016/j.measurement.2022.112379_b25) 2018; 26 Li (10.1016/j.measurement.2022.112379_b46) 2021; 13 Zheng (10.1016/j.measurement.2022.112379_b40) 2015 Zhang (10.1016/j.measurement.2022.112379_b43) 2019; vol. 11740 Wang (10.1016/j.measurement.2022.112379_b27) 2018; 312 Lan (10.1016/j.measurement.2022.112379_b14) 2015 Song (10.1016/j.measurement.2022.112379_b19) 2020; 11 Lai (10.1016/j.measurement.2022.112379_b50) 2018 Breiman (10.1016/j.measurement.2022.112379_b12) 2001; 45 Li (10.1016/j.measurement.2022.112379_b45) 2021; 12 Wang (10.1016/j.measurement.2022.112379_b22) 2022; 22 Taran (10.1016/j.measurement.2022.112379_b16) 2019; 173 Sun (10.1016/j.measurement.2022.112379_b32) 2016; vol. 9915 Shi (10.1016/j.measurement.2022.112379_b6) 2013 Soroush (10.1016/j.measurement.2022.112379_b15) 2019; 127 Tzeng (10.1016/j.measurement.2022.112379_b29) 2014 Long (10.1016/j.measurement.2022.112379_b30) 2015; vol. 37 Luo (10.1016/j.measurement.2022.112379_b42) 2018; vol. 11305 Li (10.1016/j.measurement.2022.112379_b1) 2022; 14 |
| References_xml | – volume: 49 start-page: 839 year: 2019 end-page: 847 ident: b47 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. – volume: 32 start-page: 347 year: 2016 end-page: 358 ident: b4 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Vis. Comput. – start-page: 326 year: 2018 end-page: 332 ident: b50 article-title: Artifacts and noise removal for electroencephalogram (EEG): A literature review publication-title: IEEE Symposium on Computer Applications and Industrial Electronics – start-page: 3110 year: 2015 end-page: 3115 ident: b11 article-title: EEG based stress monitoring publication-title: International Conference on Systems, Man, and Cybernetics – volume: 14 start-page: 233 year: 2004 end-page: 238 ident: b39 article-title: Individual differences in emotion processing publication-title: Curr. Opin. Neurobiol. – volume: 100 year: 2021 ident: b48 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Appl. Soft Comput. – volume: 12 start-page: 344 year: 2020 end-page: 353 ident: b44 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 778 year: 2019 end-page: 786 ident: b38 article-title: Transfer learning with dynamic adversarial adaptation network publication-title: International Conference on Data Mining – start-page: 1 year: 2017 end-page: 9 ident: b53 article-title: LightGBM: A highly efficient gradient boosting decision tree publication-title: Advances in Neural Information Processing Systems – volume: 32 start-page: 1713 year: 2021 end-page: 1722 ident: b33 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2015 end-page: 5 ident: b14 article-title: Real-time EEG-based user’s valence monitoring publication-title: International Conference on Information, Communications and Signal Processing – volume: vol. 11305 start-page: 275 year: 2018 end-page: 286 ident: b42 article-title: WGAN domain adaptation for EEG-based emotion recognition publication-title: International Conference on Neural Information Processing – volume: 26 start-page: 2106 year: 2018 end-page: 2114 ident: b25 article-title: STEW: Simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: vol. 9915 start-page: 443 year: 2016 end-page: 450 ident: b32 article-title: Deep CORAL: Correlation alignment for deep domain adaptation publication-title: European Conference on Computer Vision – volume: 14 start-page: 833 year: 2022 end-page: 846 ident: b1 article-title: Can emotion be transferred? – A review on transfer learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 81 year: 2013 end-page: 84 ident: b8 article-title: Differential entropy feature for EEG-based emotion classification publication-title: International IEEE/EMBS Conference on Neural Engineering – start-page: 1 year: 2014 end-page: 6 ident: b51 article-title: Convolutional neural networks for sentence classification – volume: 52 start-page: 152 year: 2019 end-page: 161 ident: b18 article-title: Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction publication-title: Biomed. Signal Process. Control – start-page: 2234 year: 2019 end-page: 2242 ident: b35 article-title: Transferrable prototypical networks for unsupervised domain adaptation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 22 start-page: 4359 year: 2022 end-page: 4368 ident: b22 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. – volume: vol. 37 start-page: 97 year: 2015 end-page: 105 ident: b30 article-title: Learning transferable features with deep adaptation networks publication-title: International Conference on Machine Learning – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b9 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 21 start-page: 2024 year: 2021 end-page: 2034 ident: b21 article-title: Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals publication-title: IEEE Sens. J. – volume: vol. 37 start-page: 1180 year: 2015 end-page: 1189 ident: b36 article-title: Unsupervised domain adaptation by backpropagation publication-title: International Conference on Machine Learning – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: b52 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: b27 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing – volume: 11 start-page: 1 year: 2020 end-page: 46 ident: b28 article-title: A survey of unsupervised deep domain daptation publication-title: ACM Trans. Intell. Syst. Technol. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b12 article-title: Random forests publication-title: Front. Neurorobotics – start-page: 137 year: 2014 end-page: 144 ident: b5 article-title: Stability of features in real-time EEG-based emotion recognition algorithm publication-title: International Conference on Cyberworlds – volume: 173 start-page: 157 year: 2019 end-page: 165 ident: b16 article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method publication-title: Comput. Methods Programs Biomed. – volume: 21 start-page: 26941 year: 2021 end-page: 26950 ident: b23 article-title: A novel spatio-temporal field for emotion recognition based on EEG signals publication-title: IEEE Sens. J. – volume: 11 start-page: 532 year: 2020 end-page: 541 ident: b19 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – start-page: 182 year: 2017 end-page: 185 ident: b17 article-title: Unsupervised feature learning for EEG-based emotion recognition publication-title: International Conference on Cyberworlds – volume: vol. 11740 start-page: 558 year: 2019 end-page: 570 ident: b43 article-title: Cross-subject EEG-based emotion recognition with deep domain confusion publication-title: International Conference on Intelligent Robotics and Applications – volume: 11 start-page: 85 year: 2019 end-page: 94 ident: b41 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 127 start-page: 34 year: 2019 end-page: 45 ident: b15 article-title: Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory publication-title: Med. Hypotheses – volume: 13 start-page: 354 year: 2021 end-page: 367 ident: b46 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 6627 year: 2013 end-page: 6630 ident: b6 article-title: Differential entropy feature for EEG-based vigilance estimation publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 172 year: 2021 ident: b10 article-title: Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy publication-title: Measurement – volume: 81 start-page: 106 year: 2018 end-page: 115 ident: b7 article-title: Emotion recognition based on time-frequency distribution of EEG signals using multivariate synchrosqueezing transform publication-title: Digit. Signal Process. – start-page: 1 year: 2018 end-page: 8 ident: b37 article-title: Multi-adversarial domain adaptation publication-title: AAAI Conference on Artificial Intelligence – volume: 12 start-page: 494 year: 2021 end-page: 504 ident: b45 article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. – volume: 58 year: 2020 ident: b2 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: b24 article-title: DEAP: A database for emotion analysis using physiological signals publication-title: IEEE Trans. Affect. Comput. – start-page: 1 year: 2020 end-page: 12 ident: b20 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect. Comput. – volume: 14 start-page: 186 year: 2010 end-page: 197 ident: b3 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. – start-page: 945 year: 2017 end-page: 954 ident: b31 article-title: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 1 start-page: 99 year: 2014 end-page: 112 ident: b13 article-title: EEG-based classification of positive and negative affective states publication-title: Brain-Comput. Interfaces – start-page: 917 year: 2015 end-page: 922 ident: b40 article-title: Transfer components between subjects for EEG-based emotion recognition publication-title: International Conference on Affective Computing and Intelligent Interaction – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b26 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2014 end-page: 9 ident: b29 article-title: Deep domain confusion: Maximizing for domain invariance – start-page: 627 year: 2019 end-page: 636 ident: b34 article-title: Progressive feature alignment for unsupervised domain adaptation publication-title: IEEE Conference on Computer Vision and Pattern Recognition – volume: 2 start-page: 1091 year: 2013 end-page: 1095 ident: b49 article-title: A survey on different noise removal techniques of EEG signals publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – start-page: 627 year: 2019 ident: 10.1016/j.measurement.2022.112379_b34 article-title: Progressive feature alignment for unsupervised domain adaptation – volume: 11 start-page: 532 issue: 3 year: 2020 ident: 10.1016/j.measurement.2022.112379_b19 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – start-page: 1 year: 2017 ident: 10.1016/j.measurement.2022.112379_b53 article-title: LightGBM: A highly efficient gradient boosting decision tree – volume: 32 start-page: 1713 issue: 4 year: 2021 ident: 10.1016/j.measurement.2022.112379_b33 article-title: Deep subdomain adaptation network for image classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2988928 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.measurement.2022.112379_b12 article-title: Random forests publication-title: Front. Neurorobotics – volume: 12 start-page: 344 issue: 2 year: 2020 ident: 10.1016/j.measurement.2022.112379_b44 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2949306 – start-page: 945 year: 2017 ident: 10.1016/j.measurement.2022.112379_b31 article-title: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation – volume: 32 start-page: 347 issue: 3 year: 2016 ident: 10.1016/j.measurement.2022.112379_b4 article-title: Real-time EEG-based emotion monitoring using stable features publication-title: Vis. Comput. doi: 10.1007/s00371-015-1183-y – volume: 172 year: 2021 ident: 10.1016/j.measurement.2022.112379_b10 article-title: Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy publication-title: Measurement doi: 10.1016/j.measurement.2020.108747 – volume: 1 start-page: 99 issue: 2 year: 2014 ident: 10.1016/j.measurement.2022.112379_b13 article-title: EEG-based classification of positive and negative affective states publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2014.912883 – start-page: 1 year: 2014 ident: 10.1016/j.measurement.2022.112379_b51 – volume: 14 start-page: 186 issue: 2 year: 2010 ident: 10.1016/j.measurement.2022.112379_b3 article-title: Emotion recognition from EEG using higher order crossings publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2034649 – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.measurement.2022.112379_b27 article-title: Deep visual domain adaptation: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: 2 start-page: 1091 issue: 2 year: 2013 ident: 10.1016/j.measurement.2022.112379_b49 article-title: A survey on different noise removal techniques of EEG signals publication-title: Int. J. Adv. Res. Comput. Commun. Eng. – start-page: 1 year: 2014 ident: 10.1016/j.measurement.2022.112379_b29 – volume: 173 start-page: 157 year: 2019 ident: 10.1016/j.measurement.2022.112379_b16 article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.03.015 – volume: vol. 11305 start-page: 275 year: 2018 ident: 10.1016/j.measurement.2022.112379_b42 article-title: WGAN domain adaptation for EEG-based emotion recognition – volume: 14 start-page: 833 issue: 3 year: 2022 ident: 10.1016/j.measurement.2022.112379_b1 article-title: Can emotion be transferred? – A review on transfer learning for EEG-based emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3098842 – volume: 81 start-page: 106 year: 2018 ident: 10.1016/j.measurement.2022.112379_b7 article-title: Emotion recognition based on time-frequency distribution of EEG signals using multivariate synchrosqueezing transform publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2018.07.003 – start-page: 1 year: 2020 ident: 10.1016/j.measurement.2022.112379_b20 article-title: EEG-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect. Comput. – start-page: 326 year: 2018 ident: 10.1016/j.measurement.2022.112379_b50 article-title: Artifacts and noise removal for electroencephalogram (EEG): A literature review – volume: 127 start-page: 34 year: 2019 ident: 10.1016/j.measurement.2022.112379_b15 article-title: Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.03.025 – volume: 11 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.measurement.2022.112379_b28 article-title: A survey of unsupervised deep domain daptation publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3400066 – volume: vol. 37 start-page: 1180 year: 2015 ident: 10.1016/j.measurement.2022.112379_b36 article-title: Unsupervised domain adaptation by backpropagation – start-page: 778 year: 2019 ident: 10.1016/j.measurement.2022.112379_b38 article-title: Transfer learning with dynamic adversarial adaptation network – start-page: 81 year: 2013 ident: 10.1016/j.measurement.2022.112379_b8 article-title: Differential entropy feature for EEG-based emotion classification – volume: vol. 37 start-page: 97 year: 2015 ident: 10.1016/j.measurement.2022.112379_b30 article-title: Learning transferable features with deep adaptation networks – start-page: 917 year: 2015 ident: 10.1016/j.measurement.2022.112379_b40 article-title: Transfer components between subjects for EEG-based emotion recognition – volume: 58 year: 2020 ident: 10.1016/j.measurement.2022.112379_b2 article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101867 – volume: vol. 9915 start-page: 443 year: 2016 ident: 10.1016/j.measurement.2022.112379_b32 article-title: Deep CORAL: Correlation alignment for deep domain adaptation – volume: 49 start-page: 839 issue: 3 year: 2019 ident: 10.1016/j.measurement.2022.112379_b47 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2788081 – volume: 21 start-page: 2024 issue: 2 year: 2021 ident: 10.1016/j.measurement.2022.112379_b21 article-title: Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3020828 – start-page: 2234 year: 2019 ident: 10.1016/j.measurement.2022.112379_b35 article-title: Transferrable prototypical networks for unsupervised domain adaptation – volume: 100 year: 2021 ident: 10.1016/j.measurement.2022.112379_b48 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106954 – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.measurement.2022.112379_b24 article-title: DEAP: A database for emotion analysis using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 21 start-page: 26941 issue: 23 year: 2021 ident: 10.1016/j.measurement.2022.112379_b23 article-title: A novel spatio-temporal field for emotion recognition based on EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3121293 – volume: 26 start-page: 2106 issue: 11 year: 2018 ident: 10.1016/j.measurement.2022.112379_b25 article-title: STEW: Simultaneous task EEG workload data set publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2872924 – start-page: 1 year: 2018 ident: 10.1016/j.measurement.2022.112379_b37 article-title: Multi-adversarial domain adaptation – volume: 12 start-page: 494 issue: 2 year: 2021 ident: 10.1016/j.measurement.2022.112379_b45 article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2885474 – start-page: 6627 year: 2013 ident: 10.1016/j.measurement.2022.112379_b6 article-title: Differential entropy feature for EEG-based vigilance estimation – volume: 14 start-page: 233 issue: 2 year: 2004 ident: 10.1016/j.measurement.2022.112379_b39 article-title: Individual differences in emotion processing publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2004.03.010 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.measurement.2022.112379_b52 article-title: ImageNet classification with deep convolutional neural networks – start-page: 3110 year: 2015 ident: 10.1016/j.measurement.2022.112379_b11 article-title: EEG based stress monitoring – start-page: 182 year: 2017 ident: 10.1016/j.measurement.2022.112379_b17 article-title: Unsupervised feature learning for EEG-based emotion recognition – volume: 13 start-page: 354 issue: 2 year: 2021 ident: 10.1016/j.measurement.2022.112379_b46 article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.2999337 – volume: 11 start-page: 85 issue: 1 year: 2019 ident: 10.1016/j.measurement.2022.112379_b41 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – start-page: 1 year: 2015 ident: 10.1016/j.measurement.2022.112379_b14 article-title: Real-time EEG-based user’s valence monitoring – volume: 22 start-page: 4359 issue: 5 year: 2022 ident: 10.1016/j.measurement.2022.112379_b22 article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3144317 – start-page: 137 year: 2014 ident: 10.1016/j.measurement.2022.112379_b5 article-title: Stability of features in real-time EEG-based emotion recognition algorithm – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.measurement.2022.112379_b26 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.measurement.2022.112379_b9 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 52 start-page: 152 year: 2019 ident: 10.1016/j.measurement.2022.112379_b18 article-title: Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.04.023 – volume: vol. 11740 start-page: 558 year: 2019 ident: 10.1016/j.measurement.2022.112379_b43 article-title: Cross-subject EEG-based emotion recognition with deep domain confusion |
| SSID | ssj0006396 |
| Score | 2.326743 |
| Snippet | Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112379 |
| SubjectTerms | Domain adaptation Electroencephalogram Emotion recognition Sample-Reweighted Domain Adaptation Neural Network Transposition Multi-Layer Perceptron |
| Title | TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition |
| URI | https://dx.doi.org/10.1016/j.measurement.2022.112379 |
| Volume | 207 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsj7KCN1mbTTYv8RJqtVUbxLbQW8huJlCxD7Re_e3uNklbQVDwGjKQTHbnm9l8Mx_AObMxtX0DqcVdQblARmOVCFBViCXMEbbP5nNmO6HT6vP7gT0oQaPohdG0yjz2ZzF9Hq3zK_Xcm_XpcFjvGnrUuAIgU2GYSjp0oznnrlYxuPxc0jwUAjvZOYtF9d0bcLbkeI2W53CqVDRN3VBjaVbXTxi1gju3O7CdJ4wkyJ5pF0o4rsDWyhjBCqzPaZzyfQ_avc7j00X3-SYIwysSkGQyUpU_iZN4mv1yJ5liNFGpKmk276gGsYRgpuVDFmyiyXgf-rfNXqNFc7EEKpnj-FSaMnEx0a8omEIclNy1kJnSVyHNTFRmkxguCk9yM-Wp4abCiZnE2HZiD1EY1gGUx5MxHgJxHTQEqlrC4in3bC9GQysfqP2fxp7nu1XwCvdEMp8krgUtXqOCMvYSrXg20p6NMs9WwVyYTrNxGn8xui6-QfRtbUQq7P9ufvQ_82PY1BLzmqnN7BMoz94-8FQlIjNRm6-0GqwF7YdW-AX3j9xT |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB604vUgnni7gm-yNrvZzSG-FK3Wq4gH-BaymwlUtC1aX_3tzjaprSAo-BoykEyW-b7ZfDsfwJ7QmOvYQ-6r0HBlUPCUiACnRiwTgdGx6M-ZvW4GjQd18agfx-B4cBbGySrL2l_U9H61Lq9Uy2xWu61W9c5zo8YJgCRhGJEOPQ4TSsvQdWAHH0OdB0FwUGy0-NzdPgW7Q5HXy3AjjnpFKd2JGt_Jun4CqRHgOZ2HuZIxslrxUAswhu1FmB2ZI7gIk30dp31bgvP766ub_bvbk1qzechqLOu8UOvP0iztFv_cWWEZzYirsnr9jDsUyxgWZj7sS07UaS_Dw2n9_rjBS7cEbkUQxNxKm4WYuVc0giAHrQp9FNLGVNNkRtQm80I0kVUyV7kX5iZIhcVUB2mEaDx_BSrtThtXgYUBegapmfBVriIdpeg56wMqAHkaRXG4BtEgPYktR4k7R4vnZKAZe0pGMpu4zCZFZtdAfoV2i3kafwk6GnyD5NviSKju_x6-_r_wHZhu0MdLrs6blxsw4_zmnWxb6E2o9F7fcYtYSc9s91fdJy_C3eg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMLP%2BSRDANN%3A+A+domain+adaptation+method+for+EEG-based+emotion+recognition&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Wei&rft.au=Hou%2C+Bowen&rft.au=Li%2C+Xiaoyu&rft.au=Qiu%2C+Ziming&rft.date=2023-02-15&rft.issn=0263-2241&rft.volume=207&rft.spage=112379&rft_id=info:doi/10.1016%2Fj.measurement.2022.112379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_112379 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |