TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition

Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adapt...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 207; p. 112379
Main Authors Li, Wei, Hou, Bowen, Li, Xiaoyu, Qiu, Ziming, Peng, Bo, Tian, Ye
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.02.2023
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
DOI10.1016/j.measurement.2022.112379

Cover

Abstract Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adaptation techniques have been devised to reduce the distributional discrepancy between the source and target domains. However, existing domain adaptation techniques for this issue treat all the source samples equally, but ignore their transferability difference, which more or less limits the performance of learned domain-invariant and class-discriminative EEG features for emotion recognition. To cope with this problem, we propose Transposition Multi-Layer Perceptron (TMLP) and Sample-Reweighted Domain Adaptation Neural Network (SRDANN) in one whole learning framework. TMLP extracts the robust multi-channel EEG features related to emotions; SRDANN transfers the discriminative knowledge from the source domain to the target domain for classifying emotions. By concentrating on the source samples with stronger transferability in domain adaptation, TMLP+SRDANN can learn the more domain-invariant and class-discriminative features from EEG, thus providing a more effective solution to emotion recognition in the challenging cross-subject scenario. The subject-independent emotion recognition experiments on two benchmark datasets have demonstrated the effectiveness of our method: an accuracy of 81.04% for emotion classification on SEED, 61.88% for valence classification and 57.70% for arousal classification on DEAP. •We design TMLP to extract the discriminative EEG features for emotion recognition.•We devise SRDANN for cross-subject domain adaptation in emotion classification.•SRDANN uses a domain classifier with GRL to narrow the data distribution discrepancy.•SRDANN uses a domain classifier with GVL to calculate the source data transferability.•We demonstrate the effectiveness of TMLP+SRDANN on the benchmarks SEED and DEAP.
AbstractList Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion recognition, not only have diverse features been designed to capture the representative characteristics of EEG, but also various domain adaptation techniques have been devised to reduce the distributional discrepancy between the source and target domains. However, existing domain adaptation techniques for this issue treat all the source samples equally, but ignore their transferability difference, which more or less limits the performance of learned domain-invariant and class-discriminative EEG features for emotion recognition. To cope with this problem, we propose Transposition Multi-Layer Perceptron (TMLP) and Sample-Reweighted Domain Adaptation Neural Network (SRDANN) in one whole learning framework. TMLP extracts the robust multi-channel EEG features related to emotions; SRDANN transfers the discriminative knowledge from the source domain to the target domain for classifying emotions. By concentrating on the source samples with stronger transferability in domain adaptation, TMLP+SRDANN can learn the more domain-invariant and class-discriminative features from EEG, thus providing a more effective solution to emotion recognition in the challenging cross-subject scenario. The subject-independent emotion recognition experiments on two benchmark datasets have demonstrated the effectiveness of our method: an accuracy of 81.04% for emotion classification on SEED, 61.88% for valence classification and 57.70% for arousal classification on DEAP. •We design TMLP to extract the discriminative EEG features for emotion recognition.•We devise SRDANN for cross-subject domain adaptation in emotion classification.•SRDANN uses a domain classifier with GRL to narrow the data distribution discrepancy.•SRDANN uses a domain classifier with GVL to calculate the source data transferability.•We demonstrate the effectiveness of TMLP+SRDANN on the benchmarks SEED and DEAP.
ArticleNumber 112379
Author Hou, Bowen
Li, Wei
Qiu, Ziming
Tian, Ye
Li, Xiaoyu
Peng, Bo
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-9235-9429
  surname: Li
  fullname: Li, Wei
  email: li-wei@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
– sequence: 2
  givenname: Bowen
  surname: Hou
  fullname: Hou, Bowen
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
– sequence: 3
  givenname: Xiaoyu
  surname: Li
  fullname: Li, Xiaoyu
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
– sequence: 4
  givenname: Ziming
  surname: Qiu
  fullname: Qiu, Ziming
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
– sequence: 5
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
  organization: College of Software Engineering, Southeast University, Suzhou, Jiangsu 215123, China
– sequence: 6
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: College of Software Engineering, Southeast University, Suzhou, Jiangsu 215123, China
BookMark eNqNkF1LwzAUhoNMcJv-h3otrfno0tYbGbPOwZyiE7wLaXKqGWsykir4712tF-LVrs6Bw_vwnmeEBtZZQOic4IRgwi83SQMyfHhowLYJxZQmhFCWFUdoSPKMxSmhrwM0xJSzmNKUnKBRCBuMMWcFH6LF-n75ePH8dDNdra6iaaRdI42NpJa7VrbG2aiB9t3pqHY-Kst5XMkAOoLG_Rw9KPdmTbefouNabgOc_c4xerkt17O7ePkwX8ymy1gRzotYUaUz0F2ViqQZAZVmDAhVxYTlVNMJ1ziDKlcprdMaZ3XFJVEgJ1zmABVmY3Tdc5V3IXiohTJ91dZLsxUEi86M2Ig_ZkRnRvRm9oTiH2HnTSP910HZWZ-F_YufBrwIyoBVoM3eRSu0MwdQvgGMloe8
CitedBy_id crossref_primary_10_1088_1741_2552_ad9cc0
crossref_primary_10_1016_j_compbiomed_2024_109394
crossref_primary_10_3390_math13020254
crossref_primary_10_1016_j_inffus_2023_102156
crossref_primary_10_1109_ACCESS_2024_3378732
crossref_primary_10_1109_TIM_2024_3522413
crossref_primary_10_1016_j_measurement_2024_115940
crossref_primary_10_1016_j_bspc_2024_106986
crossref_primary_10_1007_s00521_024_10821_y
crossref_primary_10_1109_JBHI_2024_3395622
crossref_primary_10_1109_LSENS_2023_3307111
crossref_primary_10_1109_JBHI_2023_3311338
crossref_primary_10_1016_j_bspc_2023_105223
crossref_primary_10_2478_amns_2023_2_00188
crossref_primary_10_1016_j_knosys_2025_113238
crossref_primary_10_1145_3712259
crossref_primary_10_1088_1361_6579_ad2eb6
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1016_j_eswa_2024_125420
Cites_doi 10.1109/TAFFC.2018.2817622
10.1109/TNNLS.2020.2988928
10.1109/TCDS.2019.2949306
10.1007/s00371-015-1183-y
10.1016/j.measurement.2020.108747
10.1080/2326263X.2014.912883
10.1109/TITB.2009.2034649
10.1016/j.neucom.2018.05.083
10.1016/j.cmpb.2019.03.015
10.1109/TCDS.2021.3098842
10.1016/j.dsp.2018.07.003
10.1016/j.mehy.2019.03.025
10.1145/3400066
10.1016/j.bspc.2020.101867
10.1109/TCYB.2017.2788081
10.1109/JSEN.2020.3020828
10.1016/j.asoc.2020.106954
10.1109/T-AFFC.2011.15
10.1109/JSEN.2021.3121293
10.1109/TNSRE.2018.2872924
10.1109/TAFFC.2018.2885474
10.1016/j.conb.2004.03.010
10.1109/TCDS.2020.2999337
10.1109/TCDS.2018.2826840
10.1109/JSEN.2022.3144317
10.1109/TKDE.2009.191
10.1109/TAMD.2015.2431497
10.1016/j.bspc.2019.04.023
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.112379
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_112379
S0263224122015755
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c1669-c2cd7ed2241b1471ec473e12c95382d256d07eb8c42f4f07fb6a1cea56a8eeb03
IEDL.DBID .~1
ISSN 0263-2241
IngestDate Thu Oct 09 00:32:40 EDT 2025
Thu Apr 24 22:51:57 EDT 2025
Fri Feb 23 02:38:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Domain adaptation
Emotion recognition
Electroencephalogram
Transposition Multi-Layer Perceptron
Sample-Reweighted Domain Adaptation Neural Network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1669-c2cd7ed2241b1471ec473e12c95382d256d07eb8c42f4f07fb6a1cea56a8eeb03
ORCID 0000-0002-9235-9429
ParticipantIDs crossref_citationtrail_10_1016_j_measurement_2022_112379
crossref_primary_10_1016_j_measurement_2022_112379
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_112379
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Breiman (b12) 2001; 45
Song, Zheng, Song, Cui (b19) 2020; 11
Wang, Deng (b27) 2018; 312
Hou, Liu, Sourina, Tan, Wang, Mueller-Wittig (b11) 2015
Zhang, Wang, Jiang, Xu, Wu, Zhang (b43) 2019; vol. 11740
Krizhevsky, Sutskever, Hinton (b52) 2017; 60
Chao, Dong (b21) 2021; 21
Li, Zheng, Zong, Cui, Zhang, Zhou (b45) 2021; 12
Li, Zhang, Hou, Li (b23) 2021; 21
Ganin, Lempitsky (b36) 2015; vol. 37
Tao, Li, Song, Cheng, Liu, Wan, Chen (b20) 2020
Lan, Liu, Sourina, Wang (b14) 2015
Luo, Zhang, Zheng, Lu (b42) 2018; vol. 11305
Lan, Sourina, Wang, Scherer, Müller-Putz (b17) 2017
Chen, Xie, Huang, Rong, Ding, Huang, Xu, Huang (b34) 2019
Khatwani, Tiwari (b49) 2013; 2
Lim, Sourina, Wang (b25) 2018; 26
Li, Zhang, Song (b10) 2021; 172
Petrantonakis, Hadjileontiadis (b3) 2010; 14
Yu, Wang, Chen, Huang (b38) 2019
Pei, Cao, Long, Wang (b37) 2018
Li, Wang, Zheng, Zong, Qi, Cui, Zhang, Song (b46) 2021; 13
Shi, Jiao, Lu (b6) 2013
Zhu, Zhuang, Wang, Ke, Chen, Bian, Xiong (b33) 2021; 32
Sharma, Pachori, Sircar (b2) 2020; 58
Lan, Sourina, Wang, Liu (b5) 2014
Kim (b51) 2014
Ozel, Akan, Yilmaz (b18) 2019; 52
Mert, Akan (b7) 2018; 81
Zheng, Lu (b9) 2015; 7
Pan, Yao, Li, Wang, Ngo, Mei (b35) 2019
Wilson, Cook (b28) 2020; 11
Duan, Zhu, Lu (b8) 2013
Wang, Wang, Hu, Yin, Song (b22) 2022; 22
Zhang, Zheng, Cui, Zong, Li (b47) 2019; 49
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (b53) 2017
Lan, Sourina, Wang, Liu (b4) 2016; 32
Yin, Zheng, Hu, Zhang, Cui (b48) 2021; 100
Lan, Sourina, Wang, Scherer, Müller-Putz (b41) 2019; 11
Li, Qiu, Du, Wang, He (b44) 2020; 12
Zheng, Zhang, Zhu, Lu (b40) 2015
Stikic, Johnson, Tan, Berka (b13) 2014; 1
Taran, Bajaj (b16) 2019; 173
Long, Wang (b30) 2015; vol. 37
Pan, Yang (b26) 2010; 22
Soroush, Maghooli, Setarehdan, Nasrabadi (b15) 2019; 127
Yan, Ding, Li, Wang, Xu, Zuo (b31) 2017
Lai, Ibrahim, Abdullah, Abdullah, Suandi, Azman (b50) 2018
Sun, Saenko (b32) 2016; vol. 9915
Li, Huan, Hou, Tian, Zhang, Song (b1) 2022; 14
Tzeng, Zhang, Saenko, Darrell (b29) 2014
Hamann, Canli (b39) 2004; 14
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b24) 2012; 3
Petrantonakis (10.1016/j.measurement.2022.112379_b3) 2010; 14
Li (10.1016/j.measurement.2022.112379_b10) 2021; 172
Ozel (10.1016/j.measurement.2022.112379_b18) 2019; 52
Stikic (10.1016/j.measurement.2022.112379_b13) 2014; 1
Pan (10.1016/j.measurement.2022.112379_b35) 2019
Lan (10.1016/j.measurement.2022.112379_b17) 2017
Chen (10.1016/j.measurement.2022.112379_b34) 2019
Chao (10.1016/j.measurement.2022.112379_b21) 2021; 21
Hou (10.1016/j.measurement.2022.112379_b11) 2015
Mert (10.1016/j.measurement.2022.112379_b7) 2018; 81
Duan (10.1016/j.measurement.2022.112379_b8) 2013
Ganin (10.1016/j.measurement.2022.112379_b36) 2015; vol. 37
Krizhevsky (10.1016/j.measurement.2022.112379_b52) 2017; 60
Koelstra (10.1016/j.measurement.2022.112379_b24) 2012; 3
Zhu (10.1016/j.measurement.2022.112379_b33) 2021; 32
Pan (10.1016/j.measurement.2022.112379_b26) 2010; 22
Hamann (10.1016/j.measurement.2022.112379_b39) 2004; 14
Li (10.1016/j.measurement.2022.112379_b44) 2020; 12
Zhang (10.1016/j.measurement.2022.112379_b47) 2019; 49
Zheng (10.1016/j.measurement.2022.112379_b9) 2015; 7
Yu (10.1016/j.measurement.2022.112379_b38) 2019
Yan (10.1016/j.measurement.2022.112379_b31) 2017
Khatwani (10.1016/j.measurement.2022.112379_b49) 2013; 2
Lan (10.1016/j.measurement.2022.112379_b5) 2014
Sharma (10.1016/j.measurement.2022.112379_b2) 2020; 58
Tao (10.1016/j.measurement.2022.112379_b20) 2020
Li (10.1016/j.measurement.2022.112379_b23) 2021; 21
Pei (10.1016/j.measurement.2022.112379_b37) 2018
Ke (10.1016/j.measurement.2022.112379_b53) 2017
Lan (10.1016/j.measurement.2022.112379_b41) 2019; 11
Yin (10.1016/j.measurement.2022.112379_b48) 2021; 100
Lan (10.1016/j.measurement.2022.112379_b4) 2016; 32
Kim (10.1016/j.measurement.2022.112379_b51) 2014
Wilson (10.1016/j.measurement.2022.112379_b28) 2020; 11
Lim (10.1016/j.measurement.2022.112379_b25) 2018; 26
Li (10.1016/j.measurement.2022.112379_b46) 2021; 13
Zheng (10.1016/j.measurement.2022.112379_b40) 2015
Zhang (10.1016/j.measurement.2022.112379_b43) 2019; vol. 11740
Wang (10.1016/j.measurement.2022.112379_b27) 2018; 312
Lan (10.1016/j.measurement.2022.112379_b14) 2015
Song (10.1016/j.measurement.2022.112379_b19) 2020; 11
Lai (10.1016/j.measurement.2022.112379_b50) 2018
Breiman (10.1016/j.measurement.2022.112379_b12) 2001; 45
Li (10.1016/j.measurement.2022.112379_b45) 2021; 12
Wang (10.1016/j.measurement.2022.112379_b22) 2022; 22
Taran (10.1016/j.measurement.2022.112379_b16) 2019; 173
Sun (10.1016/j.measurement.2022.112379_b32) 2016; vol. 9915
Shi (10.1016/j.measurement.2022.112379_b6) 2013
Soroush (10.1016/j.measurement.2022.112379_b15) 2019; 127
Tzeng (10.1016/j.measurement.2022.112379_b29) 2014
Long (10.1016/j.measurement.2022.112379_b30) 2015; vol. 37
Luo (10.1016/j.measurement.2022.112379_b42) 2018; vol. 11305
Li (10.1016/j.measurement.2022.112379_b1) 2022; 14
References_xml – volume: 49
  start-page: 839
  year: 2019
  end-page: 847
  ident: b47
  article-title: Spatial-temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 32
  start-page: 347
  year: 2016
  end-page: 358
  ident: b4
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Vis. Comput.
– start-page: 326
  year: 2018
  end-page: 332
  ident: b50
  article-title: Artifacts and noise removal for electroencephalogram (EEG): A literature review
  publication-title: IEEE Symposium on Computer Applications and Industrial Electronics
– start-page: 3110
  year: 2015
  end-page: 3115
  ident: b11
  article-title: EEG based stress monitoring
  publication-title: International Conference on Systems, Man, and Cybernetics
– volume: 14
  start-page: 233
  year: 2004
  end-page: 238
  ident: b39
  article-title: Individual differences in emotion processing
  publication-title: Curr. Opin. Neurobiol.
– volume: 100
  year: 2021
  ident: b48
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 344
  year: 2020
  end-page: 353
  ident: b44
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 778
  year: 2019
  end-page: 786
  ident: b38
  article-title: Transfer learning with dynamic adversarial adaptation network
  publication-title: International Conference on Data Mining
– start-page: 1
  year: 2017
  end-page: 9
  ident: b53
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems
– volume: 32
  start-page: 1713
  year: 2021
  end-page: 1722
  ident: b33
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2015
  end-page: 5
  ident: b14
  article-title: Real-time EEG-based user’s valence monitoring
  publication-title: International Conference on Information, Communications and Signal Processing
– volume: vol. 11305
  start-page: 275
  year: 2018
  end-page: 286
  ident: b42
  article-title: WGAN domain adaptation for EEG-based emotion recognition
  publication-title: International Conference on Neural Information Processing
– volume: 26
  start-page: 2106
  year: 2018
  end-page: 2114
  ident: b25
  article-title: STEW: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: vol. 9915
  start-page: 443
  year: 2016
  end-page: 450
  ident: b32
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
  publication-title: European Conference on Computer Vision
– volume: 14
  start-page: 833
  year: 2022
  end-page: 846
  ident: b1
  article-title: Can emotion be transferred? – A review on transfer learning for EEG-based emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 81
  year: 2013
  end-page: 84
  ident: b8
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: International IEEE/EMBS Conference on Neural Engineering
– start-page: 1
  year: 2014
  end-page: 6
  ident: b51
  article-title: Convolutional neural networks for sentence classification
– volume: 52
  start-page: 152
  year: 2019
  end-page: 161
  ident: b18
  article-title: Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction
  publication-title: Biomed. Signal Process. Control
– start-page: 2234
  year: 2019
  end-page: 2242
  ident: b35
  article-title: Transferrable prototypical networks for unsupervised domain adaptation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 4359
  year: 2022
  end-page: 4368
  ident: b22
  article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model
  publication-title: IEEE Sens. J.
– volume: vol. 37
  start-page: 97
  year: 2015
  end-page: 105
  ident: b30
  article-title: Learning transferable features with deep adaptation networks
  publication-title: International Conference on Machine Learning
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b9
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 21
  start-page: 2024
  year: 2021
  end-page: 2034
  ident: b21
  article-title: Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals
  publication-title: IEEE Sens. J.
– volume: vol. 37
  start-page: 1180
  year: 2015
  end-page: 1189
  ident: b36
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: International Conference on Machine Learning
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b52
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b27
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
– volume: 11
  start-page: 1
  year: 2020
  end-page: 46
  ident: b28
  article-title: A survey of unsupervised deep domain daptation
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b12
  article-title: Random forests
  publication-title: Front. Neurorobotics
– start-page: 137
  year: 2014
  end-page: 144
  ident: b5
  article-title: Stability of features in real-time EEG-based emotion recognition algorithm
  publication-title: International Conference on Cyberworlds
– volume: 173
  start-page: 157
  year: 2019
  end-page: 165
  ident: b16
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput. Methods Programs Biomed.
– volume: 21
  start-page: 26941
  year: 2021
  end-page: 26950
  ident: b23
  article-title: A novel spatio-temporal field for emotion recognition based on EEG signals
  publication-title: IEEE Sens. J.
– volume: 11
  start-page: 532
  year: 2020
  end-page: 541
  ident: b19
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 182
  year: 2017
  end-page: 185
  ident: b17
  article-title: Unsupervised feature learning for EEG-based emotion recognition
  publication-title: International Conference on Cyberworlds
– volume: vol. 11740
  start-page: 558
  year: 2019
  end-page: 570
  ident: b43
  article-title: Cross-subject EEG-based emotion recognition with deep domain confusion
  publication-title: International Conference on Intelligent Robotics and Applications
– volume: 11
  start-page: 85
  year: 2019
  end-page: 94
  ident: b41
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 127
  start-page: 34
  year: 2019
  end-page: 45
  ident: b15
  article-title: Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory
  publication-title: Med. Hypotheses
– volume: 13
  start-page: 354
  year: 2021
  end-page: 367
  ident: b46
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 6627
  year: 2013
  end-page: 6630
  ident: b6
  article-title: Differential entropy feature for EEG-based vigilance estimation
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 172
  year: 2021
  ident: b10
  article-title: Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy
  publication-title: Measurement
– volume: 81
  start-page: 106
  year: 2018
  end-page: 115
  ident: b7
  article-title: Emotion recognition based on time-frequency distribution of EEG signals using multivariate synchrosqueezing transform
  publication-title: Digit. Signal Process.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b37
  article-title: Multi-adversarial domain adaptation
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 12
  start-page: 494
  year: 2021
  end-page: 504
  ident: b45
  article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
– volume: 58
  year: 2020
  ident: b2
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: b24
  article-title: DEAP: A database for emotion analysis using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 1
  year: 2020
  end-page: 12
  ident: b20
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affect. Comput.
– volume: 14
  start-page: 186
  year: 2010
  end-page: 197
  ident: b3
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 945
  year: 2017
  end-page: 954
  ident: b31
  article-title: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 1
  start-page: 99
  year: 2014
  end-page: 112
  ident: b13
  article-title: EEG-based classification of positive and negative affective states
  publication-title: Brain-Comput. Interfaces
– start-page: 917
  year: 2015
  end-page: 922
  ident: b40
  article-title: Transfer components between subjects for EEG-based emotion recognition
  publication-title: International Conference on Affective Computing and Intelligent Interaction
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b26
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2014
  end-page: 9
  ident: b29
  article-title: Deep domain confusion: Maximizing for domain invariance
– start-page: 627
  year: 2019
  end-page: 636
  ident: b34
  article-title: Progressive feature alignment for unsupervised domain adaptation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 2
  start-page: 1091
  year: 2013
  end-page: 1095
  ident: b49
  article-title: A survey on different noise removal techniques of EEG signals
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– start-page: 627
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b34
  article-title: Progressive feature alignment for unsupervised domain adaptation
– volume: 11
  start-page: 532
  issue: 3
  year: 2020
  ident: 10.1016/j.measurement.2022.112379_b19
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– start-page: 1
  year: 2017
  ident: 10.1016/j.measurement.2022.112379_b53
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– volume: 32
  start-page: 1713
  issue: 4
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b33
  article-title: Deep subdomain adaptation network for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2988928
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.measurement.2022.112379_b12
  article-title: Random forests
  publication-title: Front. Neurorobotics
– volume: 12
  start-page: 344
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2022.112379_b44
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2949306
– start-page: 945
  year: 2017
  ident: 10.1016/j.measurement.2022.112379_b31
  article-title: Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation
– volume: 32
  start-page: 347
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2022.112379_b4
  article-title: Real-time EEG-based emotion monitoring using stable features
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-015-1183-y
– volume: 172
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b10
  article-title: Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108747
– volume: 1
  start-page: 99
  issue: 2
  year: 2014
  ident: 10.1016/j.measurement.2022.112379_b13
  article-title: EEG-based classification of positive and negative affective states
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2014.912883
– start-page: 1
  year: 2014
  ident: 10.1016/j.measurement.2022.112379_b51
– volume: 14
  start-page: 186
  issue: 2
  year: 2010
  ident: 10.1016/j.measurement.2022.112379_b3
  article-title: Emotion recognition from EEG using higher order crossings
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2034649
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b27
  article-title: Deep visual domain adaptation: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: 2
  start-page: 1091
  issue: 2
  year: 2013
  ident: 10.1016/j.measurement.2022.112379_b49
  article-title: A survey on different noise removal techniques of EEG signals
  publication-title: Int. J. Adv. Res. Comput. Commun. Eng.
– start-page: 1
  year: 2014
  ident: 10.1016/j.measurement.2022.112379_b29
– volume: 173
  start-page: 157
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b16
  article-title: Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.03.015
– volume: vol. 11305
  start-page: 275
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b42
  article-title: WGAN domain adaptation for EEG-based emotion recognition
– volume: 14
  start-page: 833
  issue: 3
  year: 2022
  ident: 10.1016/j.measurement.2022.112379_b1
  article-title: Can emotion be transferred? – A review on transfer learning for EEG-based emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3098842
– volume: 81
  start-page: 106
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b7
  article-title: Emotion recognition based on time-frequency distribution of EEG signals using multivariate synchrosqueezing transform
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2018.07.003
– start-page: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.112379_b20
  article-title: EEG-based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affect. Comput.
– start-page: 326
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b50
  article-title: Artifacts and noise removal for electroencephalogram (EEG): A literature review
– volume: 127
  start-page: 34
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b15
  article-title: Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.03.025
– volume: 11
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.measurement.2022.112379_b28
  article-title: A survey of unsupervised deep domain daptation
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3400066
– volume: vol. 37
  start-page: 1180
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b36
  article-title: Unsupervised domain adaptation by backpropagation
– start-page: 778
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b38
  article-title: Transfer learning with dynamic adversarial adaptation network
– start-page: 81
  year: 2013
  ident: 10.1016/j.measurement.2022.112379_b8
  article-title: Differential entropy feature for EEG-based emotion classification
– volume: vol. 37
  start-page: 97
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b30
  article-title: Learning transferable features with deep adaptation networks
– start-page: 917
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b40
  article-title: Transfer components between subjects for EEG-based emotion recognition
– volume: 58
  year: 2020
  ident: 10.1016/j.measurement.2022.112379_b2
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101867
– volume: vol. 9915
  start-page: 443
  year: 2016
  ident: 10.1016/j.measurement.2022.112379_b32
  article-title: Deep CORAL: Correlation alignment for deep domain adaptation
– volume: 49
  start-page: 839
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b47
  article-title: Spatial-temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2788081
– volume: 21
  start-page: 2024
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b21
  article-title: Emotion recognition using three-dimensional feature and convolutional neural network from multichannel EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3020828
– start-page: 2234
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b35
  article-title: Transferrable prototypical networks for unsupervised domain adaptation
– volume: 100
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b48
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106954
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.measurement.2022.112379_b24
  article-title: DEAP: A database for emotion analysis using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 21
  start-page: 26941
  issue: 23
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b23
  article-title: A novel spatio-temporal field for emotion recognition based on EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3121293
– volume: 26
  start-page: 2106
  issue: 11
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b25
  article-title: STEW: Simultaneous task EEG workload data set
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2872924
– start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2022.112379_b37
  article-title: Multi-adversarial domain adaptation
– volume: 12
  start-page: 494
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b45
  article-title: A Bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2885474
– start-page: 6627
  year: 2013
  ident: 10.1016/j.measurement.2022.112379_b6
  article-title: Differential entropy feature for EEG-based vigilance estimation
– volume: 14
  start-page: 233
  issue: 2
  year: 2004
  ident: 10.1016/j.measurement.2022.112379_b39
  article-title: Individual differences in emotion processing
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2004.03.010
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2022.112379_b52
  article-title: ImageNet classification with deep convolutional neural networks
– start-page: 3110
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b11
  article-title: EEG based stress monitoring
– start-page: 182
  year: 2017
  ident: 10.1016/j.measurement.2022.112379_b17
  article-title: Unsupervised feature learning for EEG-based emotion recognition
– volume: 13
  start-page: 354
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2022.112379_b46
  article-title: A novel bi-hemispheric discrepancy model for EEG emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.2999337
– volume: 11
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b41
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– start-page: 1
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b14
  article-title: Real-time EEG-based user’s valence monitoring
– volume: 22
  start-page: 4359
  issue: 5
  year: 2022
  ident: 10.1016/j.measurement.2022.112379_b22
  article-title: Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3144317
– start-page: 137
  year: 2014
  ident: 10.1016/j.measurement.2022.112379_b5
  article-title: Stability of features in real-time EEG-based emotion recognition algorithm
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.measurement.2022.112379_b26
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.measurement.2022.112379_b9
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 52
  start-page: 152
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b18
  article-title: Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.04.023
– volume: vol. 11740
  start-page: 558
  year: 2019
  ident: 10.1016/j.measurement.2022.112379_b43
  article-title: Cross-subject EEG-based emotion recognition with deep domain confusion
SSID ssj0006396
Score 2.326743
Snippet Electroencephalogram (EEG) contains emotion information, but usually undergoes severe signal variations. In the literature, for the issue of EEG-based emotion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112379
SubjectTerms Domain adaptation
Electroencephalogram
Emotion recognition
Sample-Reweighted Domain Adaptation Neural Network
Transposition Multi-Layer Perceptron
Title TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition
URI https://dx.doi.org/10.1016/j.measurement.2022.112379
Volume 207
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KRdGDaFWsj7KCN1mbTTYv8RJqtVUbxLbQW8huJlCxD7Re_e3uNklbQVDwGjKQTHbnm9l8Mx_AObMxtX0DqcVdQblARmOVCFBViCXMEbbP5nNmO6HT6vP7gT0oQaPohdG0yjz2ZzF9Hq3zK_Xcm_XpcFjvGnrUuAIgU2GYSjp0oznnrlYxuPxc0jwUAjvZOYtF9d0bcLbkeI2W53CqVDRN3VBjaVbXTxi1gju3O7CdJ4wkyJ5pF0o4rsDWyhjBCqzPaZzyfQ_avc7j00X3-SYIwysSkGQyUpU_iZN4mv1yJ5liNFGpKmk276gGsYRgpuVDFmyiyXgf-rfNXqNFc7EEKpnj-FSaMnEx0a8omEIclNy1kJnSVyHNTFRmkxguCk9yM-Wp4abCiZnE2HZiD1EY1gGUx5MxHgJxHTQEqlrC4in3bC9GQysfqP2fxp7nu1XwCvdEMp8krgUtXqOCMvYSrXg20p6NMs9WwVyYTrNxGn8xui6-QfRtbUQq7P9ufvQ_82PY1BLzmqnN7BMoz94-8FQlIjNRm6-0GqwF7YdW-AX3j9xT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB604vUgnni7gm-yNrvZzSG-FK3Wq4gH-BaymwlUtC1aX_3tzjaprSAo-BoykEyW-b7ZfDsfwJ7QmOvYQ-6r0HBlUPCUiACnRiwTgdGx6M-ZvW4GjQd18agfx-B4cBbGySrL2l_U9H61Lq9Uy2xWu61W9c5zo8YJgCRhGJEOPQ4TSsvQdWAHH0OdB0FwUGy0-NzdPgW7Q5HXy3AjjnpFKd2JGt_Jun4CqRHgOZ2HuZIxslrxUAswhu1FmB2ZI7gIk30dp31bgvP766ub_bvbk1qzechqLOu8UOvP0iztFv_cWWEZzYirsnr9jDsUyxgWZj7sS07UaS_Dw2n9_rjBS7cEbkUQxNxKm4WYuVc0giAHrQp9FNLGVNNkRtQm80I0kVUyV7kX5iZIhcVUB2mEaDx_BSrtThtXgYUBegapmfBVriIdpeg56wMqAHkaRXG4BtEgPYktR4k7R4vnZKAZe0pGMpu4zCZFZtdAfoV2i3kafwk6GnyD5NviSKju_x6-_r_wHZhu0MdLrs6blxsw4_zmnWxb6E2o9F7fcYtYSc9s91fdJy_C3eg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TMLP%2BSRDANN%3A+A+domain+adaptation+method+for+EEG-based+emotion+recognition&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Wei&rft.au=Hou%2C+Bowen&rft.au=Li%2C+Xiaoyu&rft.au=Qiu%2C+Ziming&rft.date=2023-02-15&rft.issn=0263-2241&rft.volume=207&rft.spage=112379&rft_id=info:doi/10.1016%2Fj.measurement.2022.112379&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_112379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon