Choosing allowability boundaries for describing objects in subject areas
Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill...
Saved in:
| Published in | IAES international journal of artificial intelligence Vol. 13; no. 1; p. 329 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.03.2024
|
| Online Access | Get full text |
| ISSN | 2089-4872 2252-8938 2252-8938 |
| DOI | 10.11591/ijai.v13.i1.pp329-336 |
Cover
| Abstract | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill knowledge. The proposed method about outliers hypothesizes that they locate closer to logical boundaries of intervals derived from pair features, and the interval ranges vary in different domains. We construct intervals leveraging pair feature values. While forming knowledge in a specific field, a domain specialist checks the logical allowability of objects based on the range of the intervals. If the objects are logical outliers, the specialist ignores or corrects them. We offer the general algorithm for the formation of the database based on the proposed method in the form of a pseudo-code, and we provide comparison results with existing methods. |
|---|---|
| AbstractList | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental data mining problems. This article proposes a method for detecting specific errors with the involvement of experts from subject areas to fill knowledge. The proposed method about outliers hypothesizes that they locate closer to logical boundaries of intervals derived from pair features, and the interval ranges vary in different domains. We construct intervals leveraging pair feature values. While forming knowledge in a specific field, a domain specialist checks the logical allowability of objects based on the range of the intervals. If the objects are logical outliers, the specialist ignores or corrects them. We offer the general algorithm for the formation of the database based on the proposed method in the form of a pseudo-code, and we provide comparison results with existing methods. |
| Author | Madrakhimov, Shavkat Makharov, Kodirbek Lolaev, Musulmon Saidov, Doniyor |
| Author_xml | – sequence: 1 givenname: Musulmon orcidid: 0000-0001-5026-3640 surname: Lolaev fullname: Lolaev, Musulmon – sequence: 2 givenname: Shavkat orcidid: 0000-0001-6247-2730 surname: Madrakhimov fullname: Madrakhimov, Shavkat – sequence: 3 givenname: Kodirbek orcidid: 0000-0002-9341-4602 surname: Makharov fullname: Makharov, Kodirbek – sequence: 4 givenname: Doniyor orcidid: 0000-0002-0516-2610 surname: Saidov fullname: Saidov, Doniyor |
| BookMark | eNqNkN1KAzEQRoNUsNa-guQFdt3J3yaXUtQKBW_0OiTZRFPWzZK0lr6929YH8Go-hu8Mw7lFsyENHqF7aGoAruAhbk2sf4DWEepxpERVlIorNCeEk0oqKmdTbqSqmGzJDVqWEm0DoIjkqp2j9eorpRKHT2z6Ph2MjX3cHbFN-6EzOfqCQ8q488XlaE-1ZLfe7QqOAy77c8Yme1Pu0HUwffHLv7lAH89P76t1tXl7eV09bioHgouKG2atF8EKJahihrHWeBaEFDaQrpuWjrWCuwakk04ZwgII1QrHQRgFli5Qe7m7H0ZzPExf6zHHb5OPGhp9dqJPTvTkREfQZyd6cjKR4kK6nErJPvwX_AUtbWyL |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.11591/ijai.v13.i1.pp329-336 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2252-8938 |
| ExternalDocumentID | 10.11591/ijai.v13.i1.pp329-336 10_11591_ijai_v13_i1_pp329_336 |
| GroupedDBID | 8FE 8FG AAKDD AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- P62 PHGZM PHGZT PQGLB PQQKQ PROAC PUEGO RNS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1656-5a4bbe6fb696394a447ae4f686bf2dd963c4765c018c8c9a24f16976c516a91b3 |
| IEDL.DBID | UNPAY |
| ISSN | 2089-4872 2252-8938 |
| IngestDate | Wed Oct 01 16:26:29 EDT 2025 Wed Oct 01 04:07:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | http://creativecommons.org/licenses/by-sa/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1656-5a4bbe6fb696394a447ae4f686bf2dd963c4765c018c8c9a24f16976c516a91b3 |
| ORCID | 0000-0001-5026-3640 0000-0002-9341-4602 0000-0002-0516-2610 0000-0001-6247-2730 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ijai.iaescore.com/index.php/IJAI/article/download/22090/13833 |
| ParticipantIDs | unpaywall_primary_10_11591_ijai_v13_i1_pp329_336 crossref_primary_10_11591_ijai_v13_i1_pp329_336 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IAES international journal of artificial intelligence |
| PublicationYear | 2024 |
| SSID | ssib011928597 ssib033899589 ssj0001341662 ssib044738854 |
| Score | 2.2510831 |
| Snippet | Anomaly detection is one of the most promising problems for study and can be used as independent units and preprocessing tools before solving any fundamental... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 329 |
| Title | Choosing allowability boundaries for describing objects in subject areas |
| URI | https://ijai.iaescore.com/index.php/IJAI/article/download/22090/13833 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738854 issn: 2089-4872 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001341662 issn: 2252-8938 databaseCode: BVBZV dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2252-8938 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2252-8938 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001341662 issn: 2252-8938 databaseCode: 8FG dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66HTw5f-JEJQevXZsmzZrjHJMpOIY40FPJr2JV2uE2x_zrfWnrFE-Kt1IS0uZLXr6X5H0PoXMaGMtZTD0XiuYxLmHOKaY9TURKuRVpWgbS3oz4cMKu76P7DTRYx8I8yayTSTurRBzBUpeqgU4qwr-67l35dYf6xmnJF9L4YRiIwCfgadFN1OQRUPIGak5G496DSywXxMIDUu5OE2DowpcIGteRwrCSk6rBN0I7GdisKQ2FR0u55q9FamuRT-VqKV9evq08l63qhsisFCx0F06eO4u56uj3H3KO__6pHbRdc1Pcq4rtog2b76HWZ94HXJuBfTTsPxaF22PA7tR-WSl9r7AqMzQ51xsDE8bGOoukXLFCud2eGc5yPFuUz1i6y_AHaHI5uOsPvTojA2AHxM-LJFPK8lRxmLeCSca60rKUx1yloTHwUrMuj3RAYh1rIUOWEg6ER0eES0EUPUSNvMjtEcJMdwPLDMBhnB6QFGkEXFNRZZjLY9RtI_8TgmRaCW8kpcMCoCWuQ8G9p0lGkhK0BEBro2CN1C-rHP-9yglqzF8X9hSoyFydoebFYDS-PasH3AeyiuDK |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6HTz5LSoqOXjtR5o0a45jbGyC4sHBPJV8FavSDrcq-tf70nZTPCneSklIm1_y8ntJ3u8hdElDYzlLqOdC0TzGJcw5xbSnicgotyLL6kDa6xs-nrKrWTzbQMN1LMyjzP1c2kUj4giWulYNdFIRweSqPwnaDg2M05IvpQmiKBRhQMDTopuoy2Og5B3Und7c9u9dYrkwER6QcneaAEMXvkTQpI0UhpWcNA2-EurnYLPmNBIereWavxapraqYy_c3-fz8beUZ7TQ3RBa1YKG7cPLkV0vl648fco7__qldtN1yU9xviu2hDVvso51V3gfcmoEDNB48lKXbY8Du1P6tUfp-x6rO0ORcbwxMGBvrLJJyxUrldnsWOC_woqqfsXSX4Q_RdDS8G4y9NiMDYAfEz4slU8ryTHGYt4JJxnrSsownXGWRMfBSsx6PdUgSnWghI5YRDoRHx4RLQRQ9Qp2iLOwxwkz3QssMwGGcHpAUWQxcU1FlmMtj1DtBwQqCdN4Ib6S1wwKgpa5Dwb2naU7SGrQUQDtB4RqpX1Y5_XuVM9RZvlT2HKjIUl20A-0TtAnfMA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Choosing+allowability+boundaries+for+describing+objects+in+subject+areas&rft.jtitle=IAES+international+journal+of+artificial+intelligence&rft.au=Lolaev%2C+Musulmon&rft.au=Madrakhimov%2C+Shavkat&rft.au=Makharov%2C+Kodirbek&rft.au=Saidov%2C+Doniyor&rft.date=2024-03-01&rft.issn=2089-4872&rft.eissn=2252-8938&rft.volume=13&rft.issue=1&rft.spage=329&rft_id=info:doi/10.11591%2Fijai.v13.i1.pp329-336&rft.externalDBID=n%2Fa&rft.externalDocID=10_11591_ijai_v13_i1_pp329_336 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2089-4872&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2089-4872&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2089-4872&client=summon |