A Multi-objective Generalized Teacher-Learning-Based-Optimization Algorithm

Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimoda...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Institution of Engineers (India). Series B, Electrical Engineering, Electronics and telecommunication engineering, Computer engineering Vol. 103; no. 5; pp. 1415 - 1430
Main Authors Ram, Satya Deo Kumar, Srivastava, Shashank, Mishra, K. K.
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2250-2106
2250-2114
DOI10.1007/s40031-022-00731-9

Cover

Abstract Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimodal problems. To solve multimodal problems and maintain good exploration, we made significant changes to the operators of basic TLBO. The changes we made are to add multiple teachers in the Teacher phase and Euclidean distance in the Student phase. With this modification to TLBO, we developed a multi-objective variant of TLBO to produce more diverse solutions to solve multi-objective optimization problems. The proposed algorithm, named multi-objective generalized TLBO (MOGTLBO), is tested on standard benchmark test problems. The simulated result of the proposed algorithm is compared with the other existing multi-objective optimization algorithms, and it is found that MOGTLBO performs better comparatively.
AbstractList Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimodal problems. To solve multimodal problems and maintain good exploration, we made significant changes to the operators of basic TLBO. The changes we made are to add multiple teachers in the Teacher phase and Euclidean distance in the Student phase. With this modification to TLBO, we developed a multi-objective variant of TLBO to produce more diverse solutions to solve multi-objective optimization problems. The proposed algorithm, named multi-objective generalized TLBO (MOGTLBO), is tested on standard benchmark test problems. The simulated result of the proposed algorithm is compared with the other existing multi-objective optimization algorithms, and it is found that MOGTLBO performs better comparatively.
Author Srivastava, Shashank
Ram, Satya Deo Kumar
Mishra, K. K.
Author_xml – sequence: 1
  givenname: Satya Deo Kumar
  orcidid: 0000-0002-5982-3138
  surname: Ram
  fullname: Ram, Satya Deo Kumar
  email: sdkumar64@gmail.com
  organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad
– sequence: 2
  givenname: Shashank
  surname: Srivastava
  fullname: Srivastava, Shashank
  organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad
– sequence: 3
  givenname: K. K.
  surname: Mishra
  fullname: Mishra, K. K.
  organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad
BookMark eNp9kE1PAjEQhhuDiaj8AU-beK5Ou92lPSJRNGK44LnptgOULLvYLiby611Yo4kHLvORzDPvzHtJelVdISE3DO4YwPA-CoCUUeCctm1bqTPS5zwDyhkTvd8a8gsyiHENAEyKjCvVJ6-j5G1XNp7WxRpt4z8xmWCFwZR-jy6Zo7ErDHSKJlS-WtIHE9HR2bbxG783ja-rZFQu6-Cb1eaanC9MGXHwk6_I-9PjfPxMp7PJy3g0pZblQtHUWWucg6JAhxJwCEZlsnBtdNxwaZQ0UgBXQ25TIXObKbWQKgerwDAQ6RW57fZuQ_2xw9jodb0LVSup-ZALBTLND1O8m7KhjjHgQm-D35jwpRnog2-68023vumjb1q1kPwHWd8c32yC8eVpNO3Q2OpUSwx_V52gvgFSEYMH
CitedBy_id crossref_primary_10_1016_j_epsr_2023_109700
crossref_primary_10_1007_s13198_024_02386_9
crossref_primary_10_1007_s13198_023_02007_x
crossref_primary_10_1016_j_swevo_2024_101565
crossref_primary_10_1088_1361_6501_acfe2d
Cites_doi 10.1016/j.ijepes.2012.06.049
10.1007/978-1-4939-3094-4
10.1049/iet-gtd.2015.0892
10.1007/s00158-003-0368-6
10.1016/j.swevo.2011.08.001
10.1016/j.asoc.2009.11.003
10.1007/s10489-019-01522-4
10.1002/cpe.6425
10.1016/j.neucom.2020.04.149
10.1016/j.cad.2010.12.015
10.1016/j.asoc.2009.12.008
10.1016/j.cie.2007.08.003
10.1109/TEVC.2007.892759
10.1007/s10489-017-0980-6
10.1016/j.knosys.2018.08.030
10.1016/j.jairtraman.2019.101757
10.1007/s00521-019-04159-z
10.1016/j.eswa.2011.08.157
10.1007/s10489-018-1158-6
10.1259/bjr.20210303
10.1109/4235.797969
10.1023/A:1008202821328
10.1007/s40031-021-00645-y
10.1016/j.patcog.2020.107649
10.1007/BF00932634
10.1016/j.eswa.2020.113774
10.1007/s10586-020-03075-5
10.1109/4235.996017
10.1016/j.seps.2003.10.005
10.1007/s40031-021-00656-9
10.1162/evco.1994.2.3.221
10.1109/CEC.2008.4630967
10.1504/IJBIC.2011.042259
10.1007/s00521-021-06002-w
10.1016/j.swevo.2011.03.001
10.1007/978-3-030-72795-6_15
10.1016/j.asoc.2011.12.020
10.1007/BFb0029752
10.1109/ICNN.1995.488968
10.1007/s10589-011-9441-z
10.1145/2576768.2598342
10.1016/j.eswa.2016.10.015
10.1007/s40031-021-00587-5
10.1007/s00521-014-1806-7
10.1109/3468.650319
10.1016/j.ejor.2020.11.016
10.1504/IJICA.2014.066498
ContentType Journal Article
Copyright The Institution of Engineers (India) 2022
The Institution of Engineers (India) 2022.
Copyright_xml – notice: The Institution of Engineers (India) 2022
– notice: The Institution of Engineers (India) 2022.
DBID AAYXX
CITATION
DOI 10.1007/s40031-022-00731-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2250-2114
EndPage 1430
ExternalDocumentID 10_1007_s40031_022_00731_9
GroupedDBID -EM
06D
0R~
203
29~
30V
4.4
406
408
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
PT4
RIG
RLLFE
ROL
RSV
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7Y
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c1649-3dccadd0bbede80e70a958bda95d2a28a98a8402972c3486c599f8960c90a1043
IEDL.DBID AGYKE
ISSN 2250-2106
IngestDate Wed Sep 17 23:59:06 EDT 2025
Wed Oct 01 01:03:39 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Fri Feb 21 02:47:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords TLBO
Multi-objective
Meta-heuristic
Pareto optimal set
Euclidean distance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1649-3dccadd0bbede80e70a958bda95d2a28a98a8402972c3486c599f8960c90a1043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5982-3138
PQID 2724908364
PQPubID 2043887
PageCount 16
ParticipantIDs proquest_journals_2724908364
crossref_primary_10_1007_s40031_022_00731_9
crossref_citationtrail_10_1007_s40031_022_00731_9
springer_journals_10_1007_s40031_022_00731_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Electrical, Electronics & Telecommunication and Computer Engineering
PublicationTitle Journal of the Institution of Engineers (India). Series B, Electrical Engineering, Electronics and telecommunication engineering, Computer engineering
PublicationTitleAbbrev J. Inst. Eng. India Ser. B
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References StadlerWA survey of multicriteria optimization or the vector maximum problem, part i: 1776–1960J. Optim. Theory Appl.197929115254555210.1007/BF00932634
YagmahanBYeniseyMMAnt colony optimization for multi-objective flow shop scheduling problemComput. Indus. Eng.200854341142010.1016/j.cie.2007.08.003
K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business Media, 2012)
A. Kumar, S. Suhag, Whale optimization algorithm optimized fuzzy-pid plus pid hybrid controller for frequency regulation in hybrid power system. J. Inst. Eng. Ser. B 1–16 (2021)
C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators in multiobjective optimization. Eur. J. Oper. Res. (2020)
S. Mondal, A. Bhattacharya, S.H. nee Dey, Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Elect. Power Energy Syst. 44(1), 282–292 (2013)
C.M. Fonseca, P.J. Fleming, et al., in ICGA, vol. 93. Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization (Citeseer, 1993), pp. 416–423
M. Bagamanova, M.M. Mota, A multi-objective optimization with a delay-aware component for airport stand allocation. J. Air Transp. Manage. 83, 101757 (2020)
S. Greco, J. Figueira, H. Ehrgott, Multiple Criteria Decision Analysis (Springer, 2016)
C.E. da Silva Santos, R.C. Sampaio, L. dos Santos Coelho, G.A. Bestard, C.H. Llanos, Multi-objective adaptive differential evolution for svm/svr hyperparameters selection. Pattern Recogn. 110, 107649 (2021)
A. Modiri, I. Vogelius, L.A. Rechner, L. Nygård, S.M. Bentzen, L. Specht, Outcome-based multi-objective optimization of lymphoma radiation therapy plans. Br. J. Radiol. 94, 20210303 (2021)
ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol. Comput.201111324910.1016/j.swevo.2011.03.001
RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015
W. Daneshyari, G.G. Yen, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Cultural mopso: A Cultural Framework to Adapt Parameters of Multiobjective Particle Swarm Optimization (IEEE, 2008), pp. 1325–1332
K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (John Wiley & Sons, 2001)
J. Kennedy, R. Eberhart, in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4. Particle swarm optimization (IEEE, 1995), pp 1942–1948
A. Tharwat, T. Gabel, Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Comput. Appl. 1–14 (2019)
F. Kursawe, in International Conference on Parallel Problem Solving from Nature. A Variant of Evolution Strategies for Vector Optimization (Springer, 1990), pp. 193–197
PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExp. Syst. Appl.20123932956296410.1016/j.eswa.2011.08.157
C.C. Coello, G.T. Pulido, E.M. Montes, in Information Processing with Evolutionary Algorithms. Current and Future Research Trends in evolutionary multiobjective optimization (Springer, 2005), pp. 213–231
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.1997114341359147955310.1023/A:1008202821328
M. Ehrgott, Multicriteria Optimization, vol. 491 (Springer Science & Business Media, 2005)
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
SchniederjansMJHollcroftEA multi-criteria modeling approach to jury selectionSocioecon. Plann. Sci.20053918110210.1016/j.seps.2003.10.005
SaremiSMirjaliliSZMirjaliliSMEvolutionary population dynamics and grey wolf optimizerNeural Comput. Appl.20152651257126310.1007/s00521-014-1806-7
Y. Yuan, H. Xu, B. Wang, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. An Improved nsga-iii Procedure for Evolutionary Many-objective Optimization (2014), pp. 661–668
AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol. Comput.20122395210.1016/j.swevo.2011.08.001
MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct. Multidiscip. Optim.2004266369395205737710.1007/s00158-003-0368-6
P. Pirozmand, A.A.R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S. Mirkamali, A. Slowik, Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 1–14 (2021)
ShaheenAMEl-SehiemyRAFarragSMSolving multi-objective optimal power flow problem via forced initialised differential evolution algorithmIET Gen. Trans. Distrib.20161071634164710.1049/iet-gtd.2015.0892
S. Bansal, Nature-inspired hybrid multi-objective optimization algorithms in search of near-ogrs to eliminate fwm noise signals in optical wdm systems and their performance comparison. J. Inst. Eng. Ser. B 1–27 (2021)
J.D. Schaffer, in Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms (Lawrence Erlbaum Associates. Inc., Publishers, 1985)
AydinIKarakoseMAkinEA multi-objective artificial immune algorithm for parameter optimization in support vector machineAppl. Soft Comput.201111112012910.1016/j.asoc.2009.11.003
AbualigahLDiabatAA novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environmentsClust. Comput.202124120522310.1007/s10586-020-03075-5
ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl.-Based Syst.201916328330410.1016/j.knosys.2018.08.030
SayedGIKhoribaGHaggagMHA novel chaotic salp swarm algorithm for global optimization and feature selectionAppl. Intell.201848103462348110.1007/s10489-018-1158-6
J. Horn, N. Nafpliotis, D.E. Goldberg, in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. A Niched Pareto Genetic Algorithm for Multiobjective Optimization (IEEE, 1994), pp. 82–87
S.P. Singh, Improved based differential evolution algorithm using new environment adaption operator. J. Inst. Eng. Ser. B 1–11 (2021)
ZhangQLiHMoea/d: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 28(1), 26–37 (1998)
HouckCRJoinesJKayMGA genetic algorithm for function optimization: a matlab implementationNcsu-ie tr19959509110
JamunaKSwarupKMulti-objective biogeography based optimization for optimal pmu placementAppl. Soft Comput.20121251503151010.1016/j.asoc.2011.12.020
ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans. Evol. Comput.19993425727110.1109/4235.797969
WangZLiHYuHMoea/ue: a novel multi-objective evolutionary algorithm using a uniformly evolving schemeNeurocomputing202145853554510.1016/j.neucom.2020.04.149
S.D.K. Ram, S. Srivastava, K. Kumar Mishra, A variant of teaching-learning-based optimization and its application for minimizing the cost of workflow execution in the cloud computing. Concurr. Comput. Pract. Exp. e6425 (2021)
SinghSPKumarAMultiobjective differential evolution using homeostasis based mutation for application in software cost estimationAppl. Intell.201848362865010.1007/s10489-017-0980-6
SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221
J.N. Kuk, R.A. Goncalves, L.M. Pavelski, S.M.G.S. Venske, C.P. de Almeida, A.T.R. Pozo, An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the environmental/economic load dispatch problem. Exp. Syst. Appl. 165, 113774 (2021)
BouzoubiaSLayebAChikhiSA multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problemInt. J. Innov. Comput. Appl.2014628710110.1504/IJICA.2014.066498
X. Wang, F. Zhang, Z. Liu, C. Zhang, Q. Zhao, B. Zhang, in International Conference on Simulation Tools and Techniques. A Novel Multi-objective Squirrel Search Algorithm: Mossa (Springer, 2020), pp. 180–195
HartikainenMMiettinenKWiecekMMPaint: Pareto front interpolation for nonlinear multiobjective optimizationComput. Optim. Appl.2012523845867295050810.1007/s10589-011-9441-z
OmkarSSenthilnathJKhandelwalRNaikGNGopalakrishnanSArtificial bee colony (abc) for multi-objective design optimization of composite structuresAppl. Soft Comput.201111148949910.1016/j.asoc.2009.12.008
A. Goicoechea, D.R. Hansen, L. Duckstein, Multiobjective Decision Analysis with Engineering and Business Applications (John Wiley & Sons, 1982) (Technical report)
YangXSBat algorithm for multi-objective optimisationInt. J. Bio-Inspired Comput.20113526727410.1504/IJBIC.2011.042259
DhimanGMoshepo: a hybrid multi-objective approach to solve economic load dispatch and micro grid problemsAppl. Intell.202050111913710.1007/s10489-019-01522-4
BandaruSNgAHDebKData mining methods for knowledge discovery in multi-objective optimization: Part a-surveyExpert Syst. Appl.20177013915910.1016/j.eswa.2016.10.015
L Abualigah (731_CR9) 2021; 24
731_CR37
R Akbari (731_CR31) 2012; 2
E Zitzler (731_CR16) 1999; 3
731_CR29
W Zhao (731_CR47) 2019; 163
MJ Schniederjans (731_CR5) 2005; 39
A Zhou (731_CR12) 2011; 1
731_CR27
731_CR26
B Yagmahan (731_CR40) 2008; 54
731_CR21
PM Pradhan (731_CR35) 2012; 39
731_CR18
SP Singh (731_CR25) 2018; 48
AM Shaheen (731_CR24) 2016; 10
CR Houck (731_CR39) 1995; 95
R Storn (731_CR41) 1997; 11
731_CR52
731_CR53
K Jamuna (731_CR33) 2012; 12
731_CR51
RT Marler (731_CR6) 2004; 26
W Stadler (731_CR50) 1979; 29
XS Yang (731_CR36) 2011; 3
731_CR17
K Deb (731_CR20) 2002; 6
G Dhiman (731_CR2) 2020; 50
S Omkar (731_CR34) 2011; 11
731_CR15
731_CR56
731_CR13
N Srinivas (731_CR19) 1994; 2
731_CR10
731_CR54
731_CR11
Z Wang (731_CR23) 2021; 458
731_CR55
GI Sayed (731_CR45) 2018; 48
731_CR42
731_CR7
Q Zhang (731_CR22) 2007; 11
731_CR8
M Hartikainen (731_CR14) 2012; 52
731_CR1
I Aydin (731_CR32) 2011; 11
S Bouzoubia (731_CR28) 2014; 6
731_CR3
731_CR4
731_CR49
731_CR48
731_CR46
731_CR43
S Saremi (731_CR44) 2015; 26
RV Rao (731_CR38) 2011; 43
S Bandaru (731_CR30) 2017; 70
References_xml – reference: A. Tharwat, T. Gabel, Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Comput. Appl. 1–14 (2019)
– reference: YagmahanBYeniseyMMAnt colony optimization for multi-objective flow shop scheduling problemComput. Indus. Eng.200854341142010.1016/j.cie.2007.08.003
– reference: C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators in multiobjective optimization. Eur. J. Oper. Res. (2020)
– reference: S. Bansal, Nature-inspired hybrid multi-objective optimization algorithms in search of near-ogrs to eliminate fwm noise signals in optical wdm systems and their performance comparison. J. Inst. Eng. Ser. B 1–27 (2021)
– reference: M. Bagamanova, M.M. Mota, A multi-objective optimization with a delay-aware component for airport stand allocation. J. Air Transp. Manage. 83, 101757 (2020)
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017
– reference: SchniederjansMJHollcroftEA multi-criteria modeling approach to jury selectionSocioecon. Plann. Sci.20053918110210.1016/j.seps.2003.10.005
– reference: SayedGIKhoribaGHaggagMHA novel chaotic salp swarm algorithm for global optimization and feature selectionAppl. Intell.201848103462348110.1007/s10489-018-1158-6
– reference: SinghSPKumarAMultiobjective differential evolution using homeostasis based mutation for application in software cost estimationAppl. Intell.201848362865010.1007/s10489-017-0980-6
– reference: M. Ehrgott, Multicriteria Optimization, vol. 491 (Springer Science & Business Media, 2005)
– reference: S.P. Singh, Improved based differential evolution algorithm using new environment adaption operator. J. Inst. Eng. Ser. B 1–11 (2021)
– reference: C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 28(1), 26–37 (1998)
– reference: Y. Yuan, H. Xu, B. Wang, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. An Improved nsga-iii Procedure for Evolutionary Many-objective Optimization (2014), pp. 661–668
– reference: WangZLiHYuHMoea/ue: a novel multi-objective evolutionary algorithm using a uniformly evolving schemeNeurocomputing202145853554510.1016/j.neucom.2020.04.149
– reference: PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExp. Syst. Appl.20123932956296410.1016/j.eswa.2011.08.157
– reference: HartikainenMMiettinenKWiecekMMPaint: Pareto front interpolation for nonlinear multiobjective optimizationComput. Optim. Appl.2012523845867295050810.1007/s10589-011-9441-z
– reference: BandaruSNgAHDebKData mining methods for knowledge discovery in multi-objective optimization: Part a-surveyExpert Syst. Appl.20177013915910.1016/j.eswa.2016.10.015
– reference: J.N. Kuk, R.A. Goncalves, L.M. Pavelski, S.M.G.S. Venske, C.P. de Almeida, A.T.R. Pozo, An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the environmental/economic load dispatch problem. Exp. Syst. Appl. 165, 113774 (2021)
– reference: HouckCRJoinesJKayMGA genetic algorithm for function optimization: a matlab implementationNcsu-ie tr19959509110
– reference: J.D. Schaffer, in Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms (Lawrence Erlbaum Associates. Inc., Publishers, 1985)
– reference: P. Pirozmand, A.A.R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S. Mirkamali, A. Slowik, Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 1–14 (2021)
– reference: C.M. Fonseca, P.J. Fleming, et al., in ICGA, vol. 93. Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization (Citeseer, 1993), pp. 416–423
– reference: OmkarSSenthilnathJKhandelwalRNaikGNGopalakrishnanSArtificial bee colony (abc) for multi-objective design optimization of composite structuresAppl. Soft Comput.201111148949910.1016/j.asoc.2009.12.008
– reference: ZhangQLiHMoea/d: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
– reference: K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business Media, 2012)
– reference: K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (John Wiley & Sons, 2001)
– reference: AydinIKarakoseMAkinEA multi-objective artificial immune algorithm for parameter optimization in support vector machineAppl. Soft Comput.201111112012910.1016/j.asoc.2009.11.003
– reference: S. Greco, J. Figueira, H. Ehrgott, Multiple Criteria Decision Analysis (Springer, 2016)
– reference: YangXSBat algorithm for multi-objective optimisationInt. J. Bio-Inspired Comput.20113526727410.1504/IJBIC.2011.042259
– reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl.-Based Syst.201916328330410.1016/j.knosys.2018.08.030
– reference: X. Wang, F. Zhang, Z. Liu, C. Zhang, Q. Zhao, B. Zhang, in International Conference on Simulation Tools and Techniques. A Novel Multi-objective Squirrel Search Algorithm: Mossa (Springer, 2020), pp. 180–195
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.1997114341359147955310.1023/A:1008202821328
– reference: SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221
– reference: ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol. Comput.201111324910.1016/j.swevo.2011.03.001
– reference: F. Kursawe, in International Conference on Parallel Problem Solving from Nature. A Variant of Evolution Strategies for Vector Optimization (Springer, 1990), pp. 193–197
– reference: DhimanGMoshepo: a hybrid multi-objective approach to solve economic load dispatch and micro grid problemsAppl. Intell.202050111913710.1007/s10489-019-01522-4
– reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015
– reference: AbualigahLDiabatAA novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environmentsClust. Comput.202124120522310.1007/s10586-020-03075-5
– reference: W. Daneshyari, G.G. Yen, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Cultural mopso: A Cultural Framework to Adapt Parameters of Multiobjective Particle Swarm Optimization (IEEE, 2008), pp. 1325–1332
– reference: JamunaKSwarupKMulti-objective biogeography based optimization for optimal pmu placementAppl. Soft Comput.20121251503151010.1016/j.asoc.2011.12.020
– reference: S. Mondal, A. Bhattacharya, S.H. nee Dey, Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Elect. Power Energy Syst. 44(1), 282–292 (2013)
– reference: BouzoubiaSLayebAChikhiSA multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problemInt. J. Innov. Comput. Appl.2014628710110.1504/IJICA.2014.066498
– reference: J. Horn, N. Nafpliotis, D.E. Goldberg, in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. A Niched Pareto Genetic Algorithm for Multiobjective Optimization (IEEE, 1994), pp. 82–87
– reference: S.D.K. Ram, S. Srivastava, K. Kumar Mishra, A variant of teaching-learning-based optimization and its application for minimizing the cost of workflow execution in the cloud computing. Concurr. Comput. Pract. Exp. e6425 (2021)
– reference: StadlerWA survey of multicriteria optimization or the vector maximum problem, part i: 1776–1960J. Optim. Theory Appl.197929115254555210.1007/BF00932634
– reference: J. Kennedy, R. Eberhart, in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4. Particle swarm optimization (IEEE, 1995), pp 1942–1948
– reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct. Multidiscip. Optim.2004266369395205737710.1007/s00158-003-0368-6
– reference: C.C. Coello, G.T. Pulido, E.M. Montes, in Information Processing with Evolutionary Algorithms. Current and Future Research Trends in evolutionary multiobjective optimization (Springer, 2005), pp. 213–231
– reference: SaremiSMirjaliliSZMirjaliliSMEvolutionary population dynamics and grey wolf optimizerNeural Comput. Appl.20152651257126310.1007/s00521-014-1806-7
– reference: C.E. da Silva Santos, R.C. Sampaio, L. dos Santos Coelho, G.A. Bestard, C.H. Llanos, Multi-objective adaptive differential evolution for svm/svr hyperparameters selection. Pattern Recogn. 110, 107649 (2021)
– reference: AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol. Comput.20122395210.1016/j.swevo.2011.08.001
– reference: ShaheenAMEl-SehiemyRAFarragSMSolving multi-objective optimal power flow problem via forced initialised differential evolution algorithmIET Gen. Trans. Distrib.20161071634164710.1049/iet-gtd.2015.0892
– reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans. Evol. Comput.19993425727110.1109/4235.797969
– reference: A. Goicoechea, D.R. Hansen, L. Duckstein, Multiobjective Decision Analysis with Engineering and Business Applications (John Wiley & Sons, 1982) (Technical report)
– reference: A. Modiri, I. Vogelius, L.A. Rechner, L. Nygård, S.M. Bentzen, L. Specht, Outcome-based multi-objective optimization of lymphoma radiation therapy plans. Br. J. Radiol. 94, 20210303 (2021)
– reference: A. Kumar, S. Suhag, Whale optimization algorithm optimized fuzzy-pid plus pid hybrid controller for frequency regulation in hybrid power system. J. Inst. Eng. Ser. B 1–16 (2021)
– ident: 731_CR1
  doi: 10.1016/j.ijepes.2012.06.049
– ident: 731_CR15
  doi: 10.1007/978-1-4939-3094-4
– volume: 10
  start-page: 1634
  issue: 7
  year: 2016
  ident: 731_CR24
  publication-title: IET Gen. Trans. Distrib.
  doi: 10.1049/iet-gtd.2015.0892
– volume: 26
  start-page: 369
  issue: 6
  year: 2004
  ident: 731_CR6
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0368-6
– volume: 2
  start-page: 39
  year: 2012
  ident: 731_CR31
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.08.001
– volume: 11
  start-page: 120
  issue: 1
  year: 2011
  ident: 731_CR32
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.003
– volume: 50
  start-page: 119
  issue: 1
  year: 2020
  ident: 731_CR2
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01522-4
– ident: 731_CR8
– ident: 731_CR49
  doi: 10.1002/cpe.6425
– ident: 731_CR18
– ident: 731_CR52
– volume: 458
  start-page: 535
  year: 2021
  ident: 731_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.149
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 731_CR38
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 11
  start-page: 489
  issue: 1
  year: 2011
  ident: 731_CR34
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.008
– volume: 54
  start-page: 411
  issue: 3
  year: 2008
  ident: 731_CR40
  publication-title: Comput. Indus. Eng.
  doi: 10.1016/j.cie.2007.08.003
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 731_CR22
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 48
  start-page: 628
  issue: 3
  year: 2018
  ident: 731_CR25
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-0980-6
– volume: 163
  start-page: 283
  year: 2019
  ident: 731_CR47
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– ident: 731_CR4
  doi: 10.1016/j.jairtraman.2019.101757
– ident: 731_CR48
  doi: 10.1007/s00521-019-04159-z
– volume: 39
  start-page: 2956
  issue: 3
  year: 2012
  ident: 731_CR35
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2011.08.157
– volume: 48
  start-page: 3462
  issue: 10
  year: 2018
  ident: 731_CR45
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1158-6
– ident: 731_CR11
  doi: 10.1259/bjr.20210303
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 731_CR16
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 731_CR41
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: 731_CR7
– ident: 731_CR53
– ident: 731_CR42
  doi: 10.1007/s40031-021-00645-y
– ident: 731_CR26
  doi: 10.1016/j.patcog.2020.107649
– volume: 29
  start-page: 1
  issue: 1
  year: 1979
  ident: 731_CR50
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00932634
– ident: 731_CR3
  doi: 10.1016/j.eswa.2020.113774
– volume: 24
  start-page: 205
  issue: 1
  year: 2021
  ident: 731_CR9
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-020-03075-5
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 731_CR20
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 39
  start-page: 81
  issue: 1
  year: 2005
  ident: 731_CR5
  publication-title: Socioecon. Plann. Sci.
  doi: 10.1016/j.seps.2003.10.005
– ident: 731_CR46
  doi: 10.1007/s40031-021-00656-9
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 731_CR19
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– ident: 731_CR29
  doi: 10.1109/CEC.2008.4630967
– volume: 3
  start-page: 267
  issue: 5
  year: 2011
  ident: 731_CR36
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2011.042259
– ident: 731_CR10
  doi: 10.1007/s00521-021-06002-w
– volume: 1
  start-page: 32
  issue: 1
  year: 2011
  ident: 731_CR12
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.03.001
– ident: 731_CR27
  doi: 10.1007/978-3-030-72795-6_15
– volume: 12
  start-page: 1503
  issue: 5
  year: 2012
  ident: 731_CR33
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.12.020
– ident: 731_CR54
  doi: 10.1007/BFb0029752
– ident: 731_CR43
  doi: 10.1109/ICNN.1995.488968
– ident: 731_CR13
– volume: 52
  start-page: 845
  issue: 3
  year: 2012
  ident: 731_CR14
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-011-9441-z
– ident: 731_CR21
  doi: 10.1145/2576768.2598342
– volume: 70
  start-page: 139
  year: 2017
  ident: 731_CR30
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.10.015
– ident: 731_CR37
  doi: 10.1007/s40031-021-00587-5
– volume: 26
  start-page: 1257
  issue: 5
  year: 2015
  ident: 731_CR44
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1806-7
– ident: 731_CR55
  doi: 10.1109/3468.650319
– volume: 95
  start-page: 1
  issue: 09
  year: 1995
  ident: 731_CR39
  publication-title: Ncsu-ie tr
– ident: 731_CR56
  doi: 10.1016/j.ejor.2020.11.016
– volume: 6
  start-page: 87
  issue: 2
  year: 2014
  ident: 731_CR28
  publication-title: Int. J. Innov. Comput. Appl.
  doi: 10.1504/IJICA.2014.066498
– ident: 731_CR17
– ident: 731_CR51
SSID ssj0001845299
Score 2.198919
Snippet Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1415
SubjectTerms Algorithms
Communications Engineering
Engineering
Euclidean geometry
Machine learning
Multiple objective analysis
Networks
Optimization
Original Contribution
Teachers
Title A Multi-objective Generalized Teacher-Learning-Based-Optimization Algorithm
URI https://link.springer.com/article/10.1007/s40031-022-00731-9
https://www.proquest.com/docview/2724908364
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2250-2114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001845299
  issn: 2250-2106
  databaseCode: AFBBN
  dateStart: 20120301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2250-2114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001845299
  issn: 2250-2106
  databaseCode: AGYKE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoKAMbuEocJ7bHgiiIClioVKbIjpNS6AO16dJfj506bakAqUuWOFZydznf-e77DHDJQl8pGhCU-l6ICMYSSSo9lFA3DhUNSZoacPLTc_jQIo_toG1BYeOi270oSeaeeg52I8YAkek-N-UlD_FNKOd8WyUo1-_fmkt7K8yUE03kq63VRTqrCS1e5veJfq5Ji0BzpTaaLzmNXWgVLzvrNPmsTTJZi6crPI7rfs0e7NgY1KnPjGYfNpLBAWwvMRMeQrPu5NBcNJQfM5foWILq7jRRjuWBRpadtYNu9GKo0Iv2P30L7HTqvc5w1M3e-0fQaty93j4ge-4CinXyxJGvtFqVcqVMVMJcrTbBAyaVviosMBOcCZ0XYk5x7BMWxgHnKdOpUMxdodM7_xhKg-EgOQFHMNcXKVOUKEWwi4VKqBIkNlGSoEFaAa-QfBRbUnJzNkYvmtMp54KKtKCiXFARr8DV_JmvGSXHv6OrhUIj-3uOI0yxKXj6IanAdaGfxe2_Zztdb_gZbGGj4rz5rwqlbDRJznUQk8kLa7PfXBjk6A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5ZmADo8RxYnsMCCiUlqWVYLLsOOHVB4J26a_HTp3yECCxZIljJXeX832-u88ABywOtaYRQXkYxIhgrJCiKkAZ9dNY05jkuW1Obrbieodc3Ua3rinsrax2L1OShaeeNrsRa4DIVp_b9FKA-CxUiQEouALV5OKu8Wlvhdl0oo18jbX6yKCa2PXL_DzR1zXpI9D8lhstlpzzJeiULzupNHk-Hg3VcTr-xuP4369ZhkUXg3rJxGhWYCbrr8LCJ2bCNWgkXtGaiwbqaeISPUdQ_TjOtOd4oJFjZ71HJ2Yx1OjG-J-ea-z0ku794PVx-NBbh875Wfu0jty5Cyg14ImjUBu1au0rlemM-UZtkkdMaXPVWGImOZMGF2JOcRoSFqcR5zkzUCjlvjTwLtyASn_QzzbBk8wPZc40JVoT7GOpM6olSW2UJGmU1yAoJS9SR0puz8boiimdciEoYQQlCkEJXoPD6TMvE0qOP0fvlAoV7vd8E5him_AMY1KDo1I_H7d_n23rf8P3Ya7ebl6L68tWYxvmsVV3UQi4A5Xh6yjbNQHNUO05-30HGOXnxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy5sANDKnjxPaxLGUp2wEkOEV2JilriyBc-HrsxCkFARLikkscK5mZeGY8854B1kQUIPKQkSyoR4RRqonmuk5S7icR8ohlmQUnn5xGB5fs6Cq86kPxF93uVUmyxDRYlqZOvvWE2VYP-MasMRLbiW5LTXUiB2HYpCbcWPpwY_-61bfPImxp0UbBxnJ9YjKcyGFnvp_os3_6CDq_1EkL99OcAFW9eNl1cr_5muvN5O0Lp-N_vmwSxl1s6jVKY5qCgbQzDWN9jIUz0Gp4BWSXdPVduVR6jrj69i1Fz_FDE8fa2ibbxkkiOTPr0qMDfHqNh3b3-Ta_eZyFy-bexc4BcecxkMQkVZIEaNSN6GudYip8o04lQ6HRXJEqKpQUyuSLVHKaBExESShlJkyKlEhfmbQvmIOhTreTzoOnhB-oTCBniIz6VGHKUbHERk-Kh1kN6pUW4sSRldszMx7iHs1yIajYCCouBBXLGqz3nnkqqTp-Hb1UKTd2v-1LTDm1hdAgYjXYqHT1cfvn2Rb-NnwVRs53m_Hx4WlrEUap1XbRH7gEQ_nza7ps4pxcrzhTfgdlk_Cr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-objective+Generalized+Teacher-Learning-Based-Optimization+Algorithm&rft.jtitle=Journal+of+the+Institution+of+Engineers+%28India%29.+Series+B%2C+Electrical+Engineering%2C+Electronics+and+telecommunication+engineering%2C+Computer+engineering&rft.au=Ram%2C+Satya+Deo+Kumar&rft.au=Srivastava%2C+Shashank&rft.au=Mishra%2C+K.+K.&rft.date=2022-10-01&rft.pub=Springer+India&rft.issn=2250-2106&rft.eissn=2250-2114&rft.volume=103&rft.issue=5&rft.spage=1415&rft.epage=1430&rft_id=info:doi/10.1007%2Fs40031-022-00731-9&rft.externalDocID=10_1007_s40031_022_00731_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2250-2106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2250-2106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2250-2106&client=summon