A Multi-objective Generalized Teacher-Learning-Based-Optimization Algorithm
Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimoda...
Saved in:
| Published in | Journal of the Institution of Engineers (India). Series B, Electrical Engineering, Electronics and telecommunication engineering, Computer engineering Vol. 103; no. 5; pp. 1415 - 1430 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.10.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2250-2106 2250-2114 |
| DOI | 10.1007/s40031-022-00731-9 |
Cover
| Abstract | Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimodal problems. To solve multimodal problems and maintain good exploration, we made significant changes to the operators of basic TLBO. The changes we made are to add multiple teachers in the Teacher phase and Euclidean distance in the Student phase. With this modification to TLBO, we developed a multi-objective variant of TLBO to produce more diverse solutions to solve multi-objective optimization problems. The proposed algorithm, named multi-objective generalized TLBO (MOGTLBO), is tested on standard benchmark test problems. The simulated result of the proposed algorithm is compared with the other existing multi-objective optimization algorithms, and it is found that MOGTLBO performs better comparatively. |
|---|---|
| AbstractList | Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning mechanism, which works better for unimodal problems. However, TLBO’s exploration is weak, and hence its performance is not better for multimodal problems. To solve multimodal problems and maintain good exploration, we made significant changes to the operators of basic TLBO. The changes we made are to add multiple teachers in the Teacher phase and Euclidean distance in the Student phase. With this modification to TLBO, we developed a multi-objective variant of TLBO to produce more diverse solutions to solve multi-objective optimization problems. The proposed algorithm, named multi-objective generalized TLBO (MOGTLBO), is tested on standard benchmark test problems. The simulated result of the proposed algorithm is compared with the other existing multi-objective optimization algorithms, and it is found that MOGTLBO performs better comparatively. |
| Author | Srivastava, Shashank Ram, Satya Deo Kumar Mishra, K. K. |
| Author_xml | – sequence: 1 givenname: Satya Deo Kumar orcidid: 0000-0002-5982-3138 surname: Ram fullname: Ram, Satya Deo Kumar email: sdkumar64@gmail.com organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad – sequence: 2 givenname: Shashank surname: Srivastava fullname: Srivastava, Shashank organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad – sequence: 3 givenname: K. K. surname: Mishra fullname: Mishra, K. K. organization: Computer Science & Engineering Department, National Institute of Technology, Allahabad |
| BookMark | eNp9kE1PAjEQhhuDiaj8AU-beK5Ou92lPSJRNGK44LnptgOULLvYLiby611Yo4kHLvORzDPvzHtJelVdISE3DO4YwPA-CoCUUeCctm1bqTPS5zwDyhkTvd8a8gsyiHENAEyKjCvVJ6-j5G1XNp7WxRpt4z8xmWCFwZR-jy6Zo7ErDHSKJlS-WtIHE9HR2bbxG783ja-rZFQu6-Cb1eaanC9MGXHwk6_I-9PjfPxMp7PJy3g0pZblQtHUWWucg6JAhxJwCEZlsnBtdNxwaZQ0UgBXQ25TIXObKbWQKgerwDAQ6RW57fZuQ_2xw9jodb0LVSup-ZALBTLND1O8m7KhjjHgQm-D35jwpRnog2-68023vumjb1q1kPwHWd8c32yC8eVpNO3Q2OpUSwx_V52gvgFSEYMH |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2023_109700 crossref_primary_10_1007_s13198_024_02386_9 crossref_primary_10_1007_s13198_023_02007_x crossref_primary_10_1016_j_swevo_2024_101565 crossref_primary_10_1088_1361_6501_acfe2d |
| Cites_doi | 10.1016/j.ijepes.2012.06.049 10.1007/978-1-4939-3094-4 10.1049/iet-gtd.2015.0892 10.1007/s00158-003-0368-6 10.1016/j.swevo.2011.08.001 10.1016/j.asoc.2009.11.003 10.1007/s10489-019-01522-4 10.1002/cpe.6425 10.1016/j.neucom.2020.04.149 10.1016/j.cad.2010.12.015 10.1016/j.asoc.2009.12.008 10.1016/j.cie.2007.08.003 10.1109/TEVC.2007.892759 10.1007/s10489-017-0980-6 10.1016/j.knosys.2018.08.030 10.1016/j.jairtraman.2019.101757 10.1007/s00521-019-04159-z 10.1016/j.eswa.2011.08.157 10.1007/s10489-018-1158-6 10.1259/bjr.20210303 10.1109/4235.797969 10.1023/A:1008202821328 10.1007/s40031-021-00645-y 10.1016/j.patcog.2020.107649 10.1007/BF00932634 10.1016/j.eswa.2020.113774 10.1007/s10586-020-03075-5 10.1109/4235.996017 10.1016/j.seps.2003.10.005 10.1007/s40031-021-00656-9 10.1162/evco.1994.2.3.221 10.1109/CEC.2008.4630967 10.1504/IJBIC.2011.042259 10.1007/s00521-021-06002-w 10.1016/j.swevo.2011.03.001 10.1007/978-3-030-72795-6_15 10.1016/j.asoc.2011.12.020 10.1007/BFb0029752 10.1109/ICNN.1995.488968 10.1007/s10589-011-9441-z 10.1145/2576768.2598342 10.1016/j.eswa.2016.10.015 10.1007/s40031-021-00587-5 10.1007/s00521-014-1806-7 10.1109/3468.650319 10.1016/j.ejor.2020.11.016 10.1504/IJICA.2014.066498 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineers (India) 2022 The Institution of Engineers (India) 2022. |
| Copyright_xml | – notice: The Institution of Engineers (India) 2022 – notice: The Institution of Engineers (India) 2022. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40031-022-00731-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2250-2114 |
| EndPage | 1430 |
| ExternalDocumentID | 10_1007_s40031_022_00731_9 |
| GroupedDBID | -EM 06D 0R~ 203 29~ 30V 4.4 406 408 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HMJXF HRMNR HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J PT4 RIG RLLFE ROL RSV SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7Y Z7Z ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c1649-3dccadd0bbede80e70a958bda95d2a28a98a8402972c3486c599f8960c90a1043 |
| IEDL.DBID | AGYKE |
| ISSN | 2250-2106 |
| IngestDate | Wed Sep 17 23:59:06 EDT 2025 Wed Oct 01 01:03:39 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Fri Feb 21 02:47:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | TLBO Multi-objective Meta-heuristic Pareto optimal set Euclidean distance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1649-3dccadd0bbede80e70a958bda95d2a28a98a8402972c3486c599f8960c90a1043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5982-3138 |
| PQID | 2724908364 |
| PQPubID | 2043887 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2724908364 crossref_primary_10_1007_s40031_022_00731_9 crossref_citationtrail_10_1007_s40031_022_00731_9 springer_journals_10_1007_s40031_022_00731_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221000 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
| PublicationDecade | 2020 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
| PublicationSubtitle | Electrical, Electronics & Telecommunication and Computer Engineering |
| PublicationTitle | Journal of the Institution of Engineers (India). Series B, Electrical Engineering, Electronics and telecommunication engineering, Computer engineering |
| PublicationTitleAbbrev | J. Inst. Eng. India Ser. B |
| PublicationYear | 2022 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | StadlerWA survey of multicriteria optimization or the vector maximum problem, part i: 1776–1960J. Optim. Theory Appl.197929115254555210.1007/BF00932634 YagmahanBYeniseyMMAnt colony optimization for multi-objective flow shop scheduling problemComput. Indus. Eng.200854341142010.1016/j.cie.2007.08.003 K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business Media, 2012) A. Kumar, S. Suhag, Whale optimization algorithm optimized fuzzy-pid plus pid hybrid controller for frequency regulation in hybrid power system. J. Inst. Eng. Ser. B 1–16 (2021) C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators in multiobjective optimization. Eur. J. Oper. Res. (2020) S. Mondal, A. Bhattacharya, S.H. nee Dey, Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Elect. Power Energy Syst. 44(1), 282–292 (2013) C.M. Fonseca, P.J. Fleming, et al., in ICGA, vol. 93. Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization (Citeseer, 1993), pp. 416–423 M. Bagamanova, M.M. Mota, A multi-objective optimization with a delay-aware component for airport stand allocation. J. Air Transp. Manage. 83, 101757 (2020) S. Greco, J. Figueira, H. Ehrgott, Multiple Criteria Decision Analysis (Springer, 2016) C.E. da Silva Santos, R.C. Sampaio, L. dos Santos Coelho, G.A. Bestard, C.H. Llanos, Multi-objective adaptive differential evolution for svm/svr hyperparameters selection. Pattern Recogn. 110, 107649 (2021) A. Modiri, I. Vogelius, L.A. Rechner, L. Nygård, S.M. Bentzen, L. Specht, Outcome-based multi-objective optimization of lymphoma radiation therapy plans. Br. J. Radiol. 94, 20210303 (2021) ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol. Comput.201111324910.1016/j.swevo.2011.03.001 RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015 W. Daneshyari, G.G. Yen, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Cultural mopso: A Cultural Framework to Adapt Parameters of Multiobjective Particle Swarm Optimization (IEEE, 2008), pp. 1325–1332 K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (John Wiley & Sons, 2001) J. Kennedy, R. Eberhart, in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4. Particle swarm optimization (IEEE, 1995), pp 1942–1948 A. Tharwat, T. Gabel, Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Comput. Appl. 1–14 (2019) F. Kursawe, in International Conference on Parallel Problem Solving from Nature. A Variant of Evolution Strategies for Vector Optimization (Springer, 1990), pp. 193–197 PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExp. Syst. Appl.20123932956296410.1016/j.eswa.2011.08.157 C.C. Coello, G.T. Pulido, E.M. Montes, in Information Processing with Evolutionary Algorithms. Current and Future Research Trends in evolutionary multiobjective optimization (Springer, 2005), pp. 213–231 StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.1997114341359147955310.1023/A:1008202821328 M. Ehrgott, Multicriteria Optimization, vol. 491 (Springer Science & Business Media, 2005) DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017 SchniederjansMJHollcroftEA multi-criteria modeling approach to jury selectionSocioecon. Plann. Sci.20053918110210.1016/j.seps.2003.10.005 SaremiSMirjaliliSZMirjaliliSMEvolutionary population dynamics and grey wolf optimizerNeural Comput. Appl.20152651257126310.1007/s00521-014-1806-7 Y. Yuan, H. Xu, B. Wang, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. An Improved nsga-iii Procedure for Evolutionary Many-objective Optimization (2014), pp. 661–668 AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol. Comput.20122395210.1016/j.swevo.2011.08.001 MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct. Multidiscip. Optim.2004266369395205737710.1007/s00158-003-0368-6 P. Pirozmand, A.A.R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S. Mirkamali, A. Slowik, Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 1–14 (2021) ShaheenAMEl-SehiemyRAFarragSMSolving multi-objective optimal power flow problem via forced initialised differential evolution algorithmIET Gen. Trans. Distrib.20161071634164710.1049/iet-gtd.2015.0892 S. Bansal, Nature-inspired hybrid multi-objective optimization algorithms in search of near-ogrs to eliminate fwm noise signals in optical wdm systems and their performance comparison. J. Inst. Eng. Ser. B 1–27 (2021) J.D. Schaffer, in Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms (Lawrence Erlbaum Associates. Inc., Publishers, 1985) AydinIKarakoseMAkinEA multi-objective artificial immune algorithm for parameter optimization in support vector machineAppl. Soft Comput.201111112012910.1016/j.asoc.2009.11.003 AbualigahLDiabatAA novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environmentsClust. Comput.202124120522310.1007/s10586-020-03075-5 ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl.-Based Syst.201916328330410.1016/j.knosys.2018.08.030 SayedGIKhoribaGHaggagMHA novel chaotic salp swarm algorithm for global optimization and feature selectionAppl. Intell.201848103462348110.1007/s10489-018-1158-6 J. Horn, N. Nafpliotis, D.E. Goldberg, in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. A Niched Pareto Genetic Algorithm for Multiobjective Optimization (IEEE, 1994), pp. 82–87 S.P. Singh, Improved based differential evolution algorithm using new environment adaption operator. J. Inst. Eng. Ser. B 1–11 (2021) ZhangQLiHMoea/d: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759 C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 28(1), 26–37 (1998) HouckCRJoinesJKayMGA genetic algorithm for function optimization: a matlab implementationNcsu-ie tr19959509110 JamunaKSwarupKMulti-objective biogeography based optimization for optimal pmu placementAppl. Soft Comput.20121251503151010.1016/j.asoc.2011.12.020 ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans. Evol. Comput.19993425727110.1109/4235.797969 WangZLiHYuHMoea/ue: a novel multi-objective evolutionary algorithm using a uniformly evolving schemeNeurocomputing202145853554510.1016/j.neucom.2020.04.149 S.D.K. Ram, S. Srivastava, K. Kumar Mishra, A variant of teaching-learning-based optimization and its application for minimizing the cost of workflow execution in the cloud computing. Concurr. Comput. Pract. Exp. e6425 (2021) SinghSPKumarAMultiobjective differential evolution using homeostasis based mutation for application in software cost estimationAppl. Intell.201848362865010.1007/s10489-017-0980-6 SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221 J.N. Kuk, R.A. Goncalves, L.M. Pavelski, S.M.G.S. Venske, C.P. de Almeida, A.T.R. Pozo, An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the environmental/economic load dispatch problem. Exp. Syst. Appl. 165, 113774 (2021) BouzoubiaSLayebAChikhiSA multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problemInt. J. Innov. Comput. Appl.2014628710110.1504/IJICA.2014.066498 X. Wang, F. Zhang, Z. Liu, C. Zhang, Q. Zhao, B. Zhang, in International Conference on Simulation Tools and Techniques. A Novel Multi-objective Squirrel Search Algorithm: Mossa (Springer, 2020), pp. 180–195 HartikainenMMiettinenKWiecekMMPaint: Pareto front interpolation for nonlinear multiobjective optimizationComput. Optim. Appl.2012523845867295050810.1007/s10589-011-9441-z OmkarSSenthilnathJKhandelwalRNaikGNGopalakrishnanSArtificial bee colony (abc) for multi-objective design optimization of composite structuresAppl. Soft Comput.201111148949910.1016/j.asoc.2009.12.008 A. Goicoechea, D.R. Hansen, L. Duckstein, Multiobjective Decision Analysis with Engineering and Business Applications (John Wiley & Sons, 1982) (Technical report) YangXSBat algorithm for multi-objective optimisationInt. J. Bio-Inspired Comput.20113526727410.1504/IJBIC.2011.042259 DhimanGMoshepo: a hybrid multi-objective approach to solve economic load dispatch and micro grid problemsAppl. Intell.202050111913710.1007/s10489-019-01522-4 BandaruSNgAHDebKData mining methods for knowledge discovery in multi-objective optimization: Part a-surveyExpert Syst. Appl.20177013915910.1016/j.eswa.2016.10.015 L Abualigah (731_CR9) 2021; 24 731_CR37 R Akbari (731_CR31) 2012; 2 E Zitzler (731_CR16) 1999; 3 731_CR29 W Zhao (731_CR47) 2019; 163 MJ Schniederjans (731_CR5) 2005; 39 A Zhou (731_CR12) 2011; 1 731_CR27 731_CR26 B Yagmahan (731_CR40) 2008; 54 731_CR21 PM Pradhan (731_CR35) 2012; 39 731_CR18 SP Singh (731_CR25) 2018; 48 AM Shaheen (731_CR24) 2016; 10 CR Houck (731_CR39) 1995; 95 R Storn (731_CR41) 1997; 11 731_CR52 731_CR53 K Jamuna (731_CR33) 2012; 12 731_CR51 RT Marler (731_CR6) 2004; 26 W Stadler (731_CR50) 1979; 29 XS Yang (731_CR36) 2011; 3 731_CR17 K Deb (731_CR20) 2002; 6 G Dhiman (731_CR2) 2020; 50 S Omkar (731_CR34) 2011; 11 731_CR15 731_CR56 731_CR13 N Srinivas (731_CR19) 1994; 2 731_CR10 731_CR54 731_CR11 Z Wang (731_CR23) 2021; 458 731_CR55 GI Sayed (731_CR45) 2018; 48 731_CR42 731_CR7 Q Zhang (731_CR22) 2007; 11 731_CR8 M Hartikainen (731_CR14) 2012; 52 731_CR1 I Aydin (731_CR32) 2011; 11 S Bouzoubia (731_CR28) 2014; 6 731_CR3 731_CR4 731_CR49 731_CR48 731_CR46 731_CR43 S Saremi (731_CR44) 2015; 26 RV Rao (731_CR38) 2011; 43 S Bandaru (731_CR30) 2017; 70 |
| References_xml | – reference: A. Tharwat, T. Gabel, Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Comput. Appl. 1–14 (2019) – reference: YagmahanBYeniseyMMAnt colony optimization for multi-objective flow shop scheduling problemComput. Indus. Eng.200854341142010.1016/j.cie.2007.08.003 – reference: C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Performance indicators in multiobjective optimization. Eur. J. Oper. Res. (2020) – reference: S. Bansal, Nature-inspired hybrid multi-objective optimization algorithms in search of near-ogrs to eliminate fwm noise signals in optical wdm systems and their performance comparison. J. Inst. Eng. Ser. B 1–27 (2021) – reference: M. Bagamanova, M.M. Mota, A multi-objective optimization with a delay-aware component for airport stand allocation. J. Air Transp. Manage. 83, 101757 (2020) – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: Nsga-iiIEEE Trans. Evol. Comput.20026218219710.1109/4235.996017 – reference: SchniederjansMJHollcroftEA multi-criteria modeling approach to jury selectionSocioecon. Plann. Sci.20053918110210.1016/j.seps.2003.10.005 – reference: SayedGIKhoribaGHaggagMHA novel chaotic salp swarm algorithm for global optimization and feature selectionAppl. Intell.201848103462348110.1007/s10489-018-1158-6 – reference: SinghSPKumarAMultiobjective differential evolution using homeostasis based mutation for application in software cost estimationAppl. Intell.201848362865010.1007/s10489-017-0980-6 – reference: M. Ehrgott, Multicriteria Optimization, vol. 491 (Springer Science & Business Media, 2005) – reference: S.P. Singh, Improved based differential evolution algorithm using new environment adaption operator. J. Inst. Eng. Ser. B 1–11 (2021) – reference: C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms. i. a unified formulation. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 28(1), 26–37 (1998) – reference: Y. Yuan, H. Xu, B. Wang, in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. An Improved nsga-iii Procedure for Evolutionary Many-objective Optimization (2014), pp. 661–668 – reference: WangZLiHYuHMoea/ue: a novel multi-objective evolutionary algorithm using a uniformly evolving schemeNeurocomputing202145853554510.1016/j.neucom.2020.04.149 – reference: PradhanPMPandaGSolving multiobjective problems using cat swarm optimizationExp. Syst. Appl.20123932956296410.1016/j.eswa.2011.08.157 – reference: HartikainenMMiettinenKWiecekMMPaint: Pareto front interpolation for nonlinear multiobjective optimizationComput. Optim. Appl.2012523845867295050810.1007/s10589-011-9441-z – reference: BandaruSNgAHDebKData mining methods for knowledge discovery in multi-objective optimization: Part a-surveyExpert Syst. Appl.20177013915910.1016/j.eswa.2016.10.015 – reference: J.N. Kuk, R.A. Goncalves, L.M. Pavelski, S.M.G.S. Venske, C.P. de Almeida, A.T.R. Pozo, An empirical analysis of constraint handling on evolutionary multi-objective algorithms for the environmental/economic load dispatch problem. Exp. Syst. Appl. 165, 113774 (2021) – reference: HouckCRJoinesJKayMGA genetic algorithm for function optimization: a matlab implementationNcsu-ie tr19959509110 – reference: J.D. Schaffer, in Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 1985. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms (Lawrence Erlbaum Associates. Inc., Publishers, 1985) – reference: P. Pirozmand, A.A.R. Hosseinabadi, M. Farrokhzad, M. Sadeghilalimi, S. Mirkamali, A. Slowik, Multi-objective hybrid genetic algorithm for task scheduling problem in cloud computing. Neural Comput. Appl. 1–14 (2021) – reference: C.M. Fonseca, P.J. Fleming, et al., in ICGA, vol. 93. Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization (Citeseer, 1993), pp. 416–423 – reference: OmkarSSenthilnathJKhandelwalRNaikGNGopalakrishnanSArtificial bee colony (abc) for multi-objective design optimization of composite structuresAppl. Soft Comput.201111148949910.1016/j.asoc.2009.12.008 – reference: ZhangQLiHMoea/d: a multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759 – reference: K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12 (Springer Science & Business Media, 2012) – reference: K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16 (John Wiley & Sons, 2001) – reference: AydinIKarakoseMAkinEA multi-objective artificial immune algorithm for parameter optimization in support vector machineAppl. Soft Comput.201111112012910.1016/j.asoc.2009.11.003 – reference: S. Greco, J. Figueira, H. Ehrgott, Multiple Criteria Decision Analysis (Springer, 2016) – reference: YangXSBat algorithm for multi-objective optimisationInt. J. Bio-Inspired Comput.20113526727410.1504/IJBIC.2011.042259 – reference: ZhaoWWangLZhangZAtom search optimization and its application to solve a hydrogeologic parameter estimation problemKnowl.-Based Syst.201916328330410.1016/j.knosys.2018.08.030 – reference: X. Wang, F. Zhang, Z. Liu, C. Zhang, Q. Zhao, B. Zhang, in International Conference on Simulation Tools and Techniques. A Novel Multi-objective Squirrel Search Algorithm: Mossa (Springer, 2020), pp. 180–195 – reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ. Global Optim.1997114341359147955310.1023/A:1008202821328 – reference: SrinivasNDebKMuiltiobjective optimization using nondominated sorting in genetic algorithmsEvol. Comput.19942322124810.1162/evco.1994.2.3.221 – reference: ZhouAQuBYLiHZhaoSZSuganthanPNZhangQMultiobjective evolutionary algorithms: a survey of the state of the artSwarm Evol. Comput.201111324910.1016/j.swevo.2011.03.001 – reference: F. Kursawe, in International Conference on Parallel Problem Solving from Nature. A Variant of Evolution Strategies for Vector Optimization (Springer, 1990), pp. 193–197 – reference: DhimanGMoshepo: a hybrid multi-objective approach to solve economic load dispatch and micro grid problemsAppl. Intell.202050111913710.1007/s10489-019-01522-4 – reference: RaoRVSavsaniVJVakhariaDTeaching-learning-based optimization: a novel method for constrained mechanical design optimization problemsComput. Aided Des.201143330331510.1016/j.cad.2010.12.015 – reference: AbualigahLDiabatAA novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environmentsClust. Comput.202124120522310.1007/s10586-020-03075-5 – reference: W. Daneshyari, G.G. Yen, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Cultural mopso: A Cultural Framework to Adapt Parameters of Multiobjective Particle Swarm Optimization (IEEE, 2008), pp. 1325–1332 – reference: JamunaKSwarupKMulti-objective biogeography based optimization for optimal pmu placementAppl. Soft Comput.20121251503151010.1016/j.asoc.2011.12.020 – reference: S. Mondal, A. Bhattacharya, S.H. nee Dey, Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. Int. J. Elect. Power Energy Syst. 44(1), 282–292 (2013) – reference: BouzoubiaSLayebAChikhiSA multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problemInt. J. Innov. Comput. Appl.2014628710110.1504/IJICA.2014.066498 – reference: J. Horn, N. Nafpliotis, D.E. Goldberg, in Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. A Niched Pareto Genetic Algorithm for Multiobjective Optimization (IEEE, 1994), pp. 82–87 – reference: S.D.K. Ram, S. Srivastava, K. Kumar Mishra, A variant of teaching-learning-based optimization and its application for minimizing the cost of workflow execution in the cloud computing. Concurr. Comput. Pract. Exp. e6425 (2021) – reference: StadlerWA survey of multicriteria optimization or the vector maximum problem, part i: 1776–1960J. Optim. Theory Appl.197929115254555210.1007/BF00932634 – reference: J. Kennedy, R. Eberhart, in Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4. Particle swarm optimization (IEEE, 1995), pp 1942–1948 – reference: MarlerRTAroraJSSurvey of multi-objective optimization methods for engineeringStruct. Multidiscip. Optim.2004266369395205737710.1007/s00158-003-0368-6 – reference: C.C. Coello, G.T. Pulido, E.M. Montes, in Information Processing with Evolutionary Algorithms. Current and Future Research Trends in evolutionary multiobjective optimization (Springer, 2005), pp. 213–231 – reference: SaremiSMirjaliliSZMirjaliliSMEvolutionary population dynamics and grey wolf optimizerNeural Comput. Appl.20152651257126310.1007/s00521-014-1806-7 – reference: C.E. da Silva Santos, R.C. Sampaio, L. dos Santos Coelho, G.A. Bestard, C.H. Llanos, Multi-objective adaptive differential evolution for svm/svr hyperparameters selection. Pattern Recogn. 110, 107649 (2021) – reference: AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evol. Comput.20122395210.1016/j.swevo.2011.08.001 – reference: ShaheenAMEl-SehiemyRAFarragSMSolving multi-objective optimal power flow problem via forced initialised differential evolution algorithmIET Gen. Trans. Distrib.20161071634164710.1049/iet-gtd.2015.0892 – reference: ZitzlerEThieleLMultiobjective evolutionary algorithms: a comparative case study and the strength pareto approachIEEE Trans. Evol. Comput.19993425727110.1109/4235.797969 – reference: A. Goicoechea, D.R. Hansen, L. Duckstein, Multiobjective Decision Analysis with Engineering and Business Applications (John Wiley & Sons, 1982) (Technical report) – reference: A. Modiri, I. Vogelius, L.A. Rechner, L. Nygård, S.M. Bentzen, L. Specht, Outcome-based multi-objective optimization of lymphoma radiation therapy plans. Br. J. Radiol. 94, 20210303 (2021) – reference: A. Kumar, S. Suhag, Whale optimization algorithm optimized fuzzy-pid plus pid hybrid controller for frequency regulation in hybrid power system. J. Inst. Eng. Ser. B 1–16 (2021) – ident: 731_CR1 doi: 10.1016/j.ijepes.2012.06.049 – ident: 731_CR15 doi: 10.1007/978-1-4939-3094-4 – volume: 10 start-page: 1634 issue: 7 year: 2016 ident: 731_CR24 publication-title: IET Gen. Trans. Distrib. doi: 10.1049/iet-gtd.2015.0892 – volume: 26 start-page: 369 issue: 6 year: 2004 ident: 731_CR6 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-003-0368-6 – volume: 2 start-page: 39 year: 2012 ident: 731_CR31 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.08.001 – volume: 11 start-page: 120 issue: 1 year: 2011 ident: 731_CR32 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.003 – volume: 50 start-page: 119 issue: 1 year: 2020 ident: 731_CR2 publication-title: Appl. Intell. doi: 10.1007/s10489-019-01522-4 – ident: 731_CR8 – ident: 731_CR49 doi: 10.1002/cpe.6425 – ident: 731_CR18 – ident: 731_CR52 – volume: 458 start-page: 535 year: 2021 ident: 731_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.149 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 731_CR38 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 11 start-page: 489 issue: 1 year: 2011 ident: 731_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.008 – volume: 54 start-page: 411 issue: 3 year: 2008 ident: 731_CR40 publication-title: Comput. Indus. Eng. doi: 10.1016/j.cie.2007.08.003 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 731_CR22 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 48 start-page: 628 issue: 3 year: 2018 ident: 731_CR25 publication-title: Appl. Intell. doi: 10.1007/s10489-017-0980-6 – volume: 163 start-page: 283 year: 2019 ident: 731_CR47 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.08.030 – ident: 731_CR4 doi: 10.1016/j.jairtraman.2019.101757 – ident: 731_CR48 doi: 10.1007/s00521-019-04159-z – volume: 39 start-page: 2956 issue: 3 year: 2012 ident: 731_CR35 publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2011.08.157 – volume: 48 start-page: 3462 issue: 10 year: 2018 ident: 731_CR45 publication-title: Appl. Intell. doi: 10.1007/s10489-018-1158-6 – ident: 731_CR11 doi: 10.1259/bjr.20210303 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 731_CR16 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 731_CR41 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: 731_CR7 – ident: 731_CR53 – ident: 731_CR42 doi: 10.1007/s40031-021-00645-y – ident: 731_CR26 doi: 10.1016/j.patcog.2020.107649 – volume: 29 start-page: 1 issue: 1 year: 1979 ident: 731_CR50 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00932634 – ident: 731_CR3 doi: 10.1016/j.eswa.2020.113774 – volume: 24 start-page: 205 issue: 1 year: 2021 ident: 731_CR9 publication-title: Clust. Comput. doi: 10.1007/s10586-020-03075-5 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 731_CR20 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 39 start-page: 81 issue: 1 year: 2005 ident: 731_CR5 publication-title: Socioecon. Plann. Sci. doi: 10.1016/j.seps.2003.10.005 – ident: 731_CR46 doi: 10.1007/s40031-021-00656-9 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 731_CR19 publication-title: Evol. Comput. doi: 10.1162/evco.1994.2.3.221 – ident: 731_CR29 doi: 10.1109/CEC.2008.4630967 – volume: 3 start-page: 267 issue: 5 year: 2011 ident: 731_CR36 publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2011.042259 – ident: 731_CR10 doi: 10.1007/s00521-021-06002-w – volume: 1 start-page: 32 issue: 1 year: 2011 ident: 731_CR12 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.03.001 – ident: 731_CR27 doi: 10.1007/978-3-030-72795-6_15 – volume: 12 start-page: 1503 issue: 5 year: 2012 ident: 731_CR33 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.12.020 – ident: 731_CR54 doi: 10.1007/BFb0029752 – ident: 731_CR43 doi: 10.1109/ICNN.1995.488968 – ident: 731_CR13 – volume: 52 start-page: 845 issue: 3 year: 2012 ident: 731_CR14 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-011-9441-z – ident: 731_CR21 doi: 10.1145/2576768.2598342 – volume: 70 start-page: 139 year: 2017 ident: 731_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.10.015 – ident: 731_CR37 doi: 10.1007/s40031-021-00587-5 – volume: 26 start-page: 1257 issue: 5 year: 2015 ident: 731_CR44 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1806-7 – ident: 731_CR55 doi: 10.1109/3468.650319 – volume: 95 start-page: 1 issue: 09 year: 1995 ident: 731_CR39 publication-title: Ncsu-ie tr – ident: 731_CR56 doi: 10.1016/j.ejor.2020.11.016 – volume: 6 start-page: 87 issue: 2 year: 2014 ident: 731_CR28 publication-title: Int. J. Innov. Comput. Appl. doi: 10.1504/IJICA.2014.066498 – ident: 731_CR17 – ident: 731_CR51 |
| SSID | ssj0001845299 |
| Score | 2.198919 |
| Snippet | Teaching–Learning-Based Optimization (TLBO) was developed to solve single-objective optimization problems. It is inspired by the theory of teaching–learning... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1415 |
| SubjectTerms | Algorithms Communications Engineering Engineering Euclidean geometry Machine learning Multiple objective analysis Networks Optimization Original Contribution Teachers |
| Title | A Multi-objective Generalized Teacher-Learning-Based-Optimization Algorithm |
| URI | https://link.springer.com/article/10.1007/s40031-022-00731-9 https://www.proquest.com/docview/2724908364 |
| Volume | 103 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2250-2114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001845299 issn: 2250-2106 databaseCode: AFBBN dateStart: 20120301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2250-2114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001845299 issn: 2250-2106 databaseCode: AGYKE dateStart: 20120101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EoKAMbuEocJ7bHgiiIClioVKbIjpNS6AO16dJfj506bakAqUuWOFZydznf-e77DHDJQl8pGhCU-l6ICMYSSSo9lFA3DhUNSZoacPLTc_jQIo_toG1BYeOi270oSeaeeg52I8YAkek-N-UlD_FNKOd8WyUo1-_fmkt7K8yUE03kq63VRTqrCS1e5veJfq5Ji0BzpTaaLzmNXWgVLzvrNPmsTTJZi6crPI7rfs0e7NgY1KnPjGYfNpLBAWwvMRMeQrPu5NBcNJQfM5foWILq7jRRjuWBRpadtYNu9GKo0Iv2P30L7HTqvc5w1M3e-0fQaty93j4ge-4CinXyxJGvtFqVcqVMVMJcrTbBAyaVviosMBOcCZ0XYk5x7BMWxgHnKdOpUMxdodM7_xhKg-EgOQFHMNcXKVOUKEWwi4VKqBIkNlGSoEFaAa-QfBRbUnJzNkYvmtMp54KKtKCiXFARr8DV_JmvGSXHv6OrhUIj-3uOI0yxKXj6IanAdaGfxe2_Zztdb_gZbGGj4rz5rwqlbDRJznUQk8kLa7PfXBjk6A |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5ZmADo8RxYnsMCCiUlqWVYLLsOOHVB4J26a_HTp3yECCxZIljJXeX832-u88ABywOtaYRQXkYxIhgrJCiKkAZ9dNY05jkuW1Obrbieodc3Ua3rinsrax2L1OShaeeNrsRa4DIVp_b9FKA-CxUiQEouALV5OKu8Wlvhdl0oo18jbX6yKCa2PXL_DzR1zXpI9D8lhstlpzzJeiULzupNHk-Hg3VcTr-xuP4369ZhkUXg3rJxGhWYCbrr8LCJ2bCNWgkXtGaiwbqaeISPUdQ_TjOtOd4oJFjZ71HJ2Yx1OjG-J-ea-z0ku794PVx-NBbh875Wfu0jty5Cyg14ImjUBu1au0rlemM-UZtkkdMaXPVWGImOZMGF2JOcRoSFqcR5zkzUCjlvjTwLtyASn_QzzbBk8wPZc40JVoT7GOpM6olSW2UJGmU1yAoJS9SR0puz8boiimdciEoYQQlCkEJXoPD6TMvE0qOP0fvlAoV7vd8E5him_AMY1KDo1I_H7d_n23rf8P3Ya7ebl6L68tWYxvmsVV3UQi4A5Xh6yjbNQHNUO05-30HGOXnxw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy5sANDKnjxPaxLGUp2wEkOEV2JilriyBc-HrsxCkFARLikkscK5mZeGY8854B1kQUIPKQkSyoR4RRqonmuk5S7icR8ohlmQUnn5xGB5fs6Cq86kPxF93uVUmyxDRYlqZOvvWE2VYP-MasMRLbiW5LTXUiB2HYpCbcWPpwY_-61bfPImxp0UbBxnJ9YjKcyGFnvp_os3_6CDq_1EkL99OcAFW9eNl1cr_5muvN5O0Lp-N_vmwSxl1s6jVKY5qCgbQzDWN9jIUz0Gp4BWSXdPVduVR6jrj69i1Fz_FDE8fa2ibbxkkiOTPr0qMDfHqNh3b3-Ta_eZyFy-bexc4BcecxkMQkVZIEaNSN6GudYip8o04lQ6HRXJEqKpQUyuSLVHKaBExESShlJkyKlEhfmbQvmIOhTreTzoOnhB-oTCBniIz6VGHKUbHERk-Kh1kN6pUW4sSRldszMx7iHs1yIajYCCouBBXLGqz3nnkqqTp-Hb1UKTd2v-1LTDm1hdAgYjXYqHT1cfvn2Rb-NnwVRs53m_Hx4WlrEUap1XbRH7gEQ_nza7ps4pxcrzhTfgdlk_Cr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-objective+Generalized+Teacher-Learning-Based-Optimization+Algorithm&rft.jtitle=Journal+of+the+Institution+of+Engineers+%28India%29.+Series+B%2C+Electrical+Engineering%2C+Electronics+and+telecommunication+engineering%2C+Computer+engineering&rft.au=Ram%2C+Satya+Deo+Kumar&rft.au=Srivastava%2C+Shashank&rft.au=Mishra%2C+K.+K.&rft.date=2022-10-01&rft.pub=Springer+India&rft.issn=2250-2106&rft.eissn=2250-2114&rft.volume=103&rft.issue=5&rft.spage=1415&rft.epage=1430&rft_id=info:doi/10.1007%2Fs40031-022-00731-9&rft.externalDocID=10_1007_s40031_022_00731_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2250-2106&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2250-2106&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2250-2106&client=summon |