Genetic Algorithm Based Hyper-Parameter Tuning to Improve the Performance of Machine Learning Models
Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various paramet...
Saved in:
| Published in | SN computer science Vol. 4; no. 2; p. 119 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
22.12.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-022-01537-8 |
Cover
| Abstract | Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various parameters to create the final model architecture. There are two types of parameters in machine learning model, one is referred as model parameters that are estimated by fitting the given data to the model. And the other is referred as model hyperparameters, these parameters are used to control the learning process. Model parameters are determined by machine ideally by exploration and automatically picks the optimum value; for example, the weights given to a neural network continuously update throughout each iteration until an optimal value is not reached. The method of hyperparameter tuning aims to determine the optimal combination of hyperparameters that will enable the model to function optimally. Setting the optimal mix of hyperparameters is the only method to maximize model performance. However, the designer is responsible for setting the hyperparameters that define the model architecture, such as the value of k in a kNN model, and the process of finding the optimum hyperparameter is referred to as hyperparameter tuning. Currently, this is handled in a variety of methods, including random searching of a specific solution space, sequential searching of the solution space using grids, and so on. In this article, comparative analysis of these methods to the genetic algorithm methodology for hyperparameter tuning is tested. |
|---|---|
| AbstractList | Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various parameters to create the final model architecture. There are two types of parameters in machine learning model, one is referred as model parameters that are estimated by fitting the given data to the model. And the other is referred as model hyperparameters, these parameters are used to control the learning process. Model parameters are determined by machine ideally by exploration and automatically picks the optimum value; for example, the weights given to a neural network continuously update throughout each iteration until an optimal value is not reached. The method of hyperparameter tuning aims to determine the optimal combination of hyperparameters that will enable the model to function optimally. Setting the optimal mix of hyperparameters is the only method to maximize model performance. However, the designer is responsible for setting the hyperparameters that define the model architecture, such as the value of k in a kNN model, and the process of finding the optimum hyperparameter is referred to as hyperparameter tuning. Currently, this is handled in a variety of methods, including random searching of a specific solution space, sequential searching of the solution space using grids, and so on. In this article, comparative analysis of these methods to the genetic algorithm methodology for hyperparameter tuning is tested. |
| ArticleNumber | 119 |
| Author | Chethan, N. Shanthi, D. L. |
| Author_xml | – sequence: 1 givenname: D. L. orcidid: 0000-0001-8312-7821 surname: Shanthi fullname: Shanthi, D. L. email: gopalaiahshanthi@bmsit.in organization: BMS Institute of Technology and Management – sequence: 2 givenname: N. surname: Chethan fullname: Chethan, N. organization: BMS Institute of Technology and Management |
| BookMark | eNp9kE1LAzEQhoNU8PMPeAp4Xp1k87F71KKtULEHPYewmW1XuklNUqH_3rUVFA89zRzeZ-blOSMjHzwScsXghgHo2yR4resCOC-AyVIX1RE55UqxoqpBj_7sJ-QypXcA4BKEUPKUuAl6zF1D71aLELu87Om9TejodLvGWMxttD1mjPR14zu_oDnQp34dwyfSvEQ6x9iG2FvfIA0tfbbNsvNIZ2jjLv4cHK7SBTlu7Srh5c88J2-PD6_jaTF7mTyN72ZFw5SoCm1d47jVirlaaO0QpKhVA6XlGksoQUJrQVQ1E0w6xZ2WQmElkSNiLdvynFzv7w4FPzaYsnkPm-iHl4bXnHEtK1BDqtqnmhhSitiapss2d8HnaLuVYWC-tZq9VjNoNTutphpQ_g9dx663cXsYKvdQGsJ-gfG31QHqCw3Qi28 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3443145 crossref_primary_10_1016_j_jhydrol_2024_132066 crossref_primary_10_2118_219731_PA crossref_primary_10_3390_app13148124 crossref_primary_10_1007_s10115_024_02202_7 crossref_primary_10_1061_JCEMD4_COENG_15934 crossref_primary_10_1016_j_aej_2025_03_022 crossref_primary_10_1109_ACCESS_2025_3543030 |
| Cites_doi | 10.11989/JEST.1674-862X.80904120 10.5555/2627435.2697065 10.1007/978-1-4614-6849-3 10.1007/s11042-020-10139-6 10.1109/TCYB.2019.2950779 10.1016/j.compeleceng.2013.11.024 10.1147/JRD.2017.2709578 10.1007/s42979-021-00592-x 10.1109/ICACCP.2019.8882943 10.1109/BigData.2018.8622384 10.1109/ROBIO49542.2019.8961836 10.1109/ICMCECS47690.2020.240861 10.1109/CSIT.2018.8486176 10.1109/ICCAKM46823.2020.9051502 10.1109/SCAM.2018.00025 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-022-01537-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_022_01537_8 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c1648-7adcd2a761d9477de05496c03a27e303050fa04891415d62d7546e85e2eee95f3 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Fri Jul 25 23:27:37 EDT 2025 Wed Oct 01 03:59:10 EDT 2025 Thu Apr 24 23:03:10 EDT 2025 Fri Feb 21 02:45:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Hyperparameter Genetic algorithm Tuning Optimization Prediction |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1648-7adcd2a761d9477de05496c03a27e303050fa04891415d62d7546e85e2eee95f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8312-7821 |
| PQID | 2921275806 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921275806 crossref_citationtrail_10_1007_s42979_022_01537_8 crossref_primary_10_1007_s42979_022_01537_8 springer_journals_10_1007_s42979_022_01537_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20221222 |
| PublicationDateYYYYMMDD | 2022-12-22 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221222 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | CR4 CR3 Jia, Xiu-Yun, Hao, Li-Dong, Hang, Si-Hao (CR21) 2019; 17 CR6 CR5 CR8 CR19 Katoch, Chauhan, Kumar (CR1) 2021; 80 CR16 Goodfellow, Bengio, Courville (CR10) 2016 CR15 Girish, Ferat (CR17) 2014; 40 CR14 CR13 Sarker (CR2) 2021; 2 CR12 CR11 Sun, Cao, Zhu, Zhao (CR9) 2020; 50 Max, Kjell (CR20) 2013 Manuel, Eva, Senen, Dinani (CR18) 2014; 15 Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (CR7) 2017; 61 Philipp, Anne-Laure, Bernd (CR22) 2021; 20 1537_CR15 1537_CR16 I Goodfellow (1537_CR10) 2016 1537_CR13 C Girish (1537_CR17) 2014; 40 1537_CR14 1537_CR19 1537_CR8 1537_CR11 1537_CR12 P Philipp (1537_CR22) 2021; 20 1537_CR6 1537_CR4 1537_CR5 S Sun (1537_CR9) 2020; 50 F-D Manuel (1537_CR18) 2014; 15 W Jia (1537_CR21) 2019; 17 1537_CR3 S Katoch (1537_CR1) 2021; 80 IH Sarker (1537_CR2) 2021; 2 GI Diaz (1537_CR7) 2017; 61 K Max (1537_CR20) 2013 |
| References_xml | – year: 2016 ident: CR10 publication-title: Deep learning – ident: CR19 – volume: 17 start-page: 26 issue: 1 year: 2019 end-page: 40 ident: CR21 article-title: Hyperparameter optimization for machine learning models based on bayesian optimization publication-title: J Electron Sci Technol doi: 10.11989/JEST.1674-862X.80904120 – volume: 15 start-page: 3133 issue: 90 year: 2014 end-page: 3181 ident: CR18 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res doi: 10.5555/2627435.2697065 – year: 2013 ident: CR20 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: CR1 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR15 – ident: CR16 – volume: 50 start-page: 3668 issue: 8 year: 2020 end-page: 3681 ident: CR9 article-title: A survey of optimization methods from a machine learning perspective publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950779 – ident: CR12 – volume: 40 start-page: 16 issue: 1 year: 2014 end-page: 28 ident: CR17 article-title: A survey on feature selection methods publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – ident: CR13 – ident: CR11 – ident: CR6 – ident: CR5 – ident: CR8 – volume: 61 start-page: 91 issue: 4/5 year: 2017 end-page: 911 ident: CR7 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J Res Dev doi: 10.1147/JRD.2017.2709578 – volume: 2 start-page: 160 issue: 3 year: 2021 ident: CR2 article-title: Machine learning: algorithms, real-world applications and research directions publication-title: SN Comput Sci. doi: 10.1007/s42979-021-00592-x – volume: 20 start-page: 1934 issue: 1 year: 2021 end-page: 1965 ident: CR22 article-title: Tunability: importance of hyperparameters of machine learning algorithms publication-title: J Mach Learn – ident: 1537_CR8 doi: 10.1109/ICACCP.2019.8882943 – ident: 1537_CR6 doi: 10.1109/BigData.2018.8622384 – ident: 1537_CR3 doi: 10.1109/ROBIO49542.2019.8961836 – volume: 61 start-page: 91 issue: 4/5 year: 2017 ident: 1537_CR7 publication-title: IBM J Res Dev doi: 10.1147/JRD.2017.2709578 – ident: 1537_CR5 doi: 10.1109/ICMCECS47690.2020.240861 – ident: 1537_CR13 doi: 10.1109/CSIT.2018.8486176 – volume: 2 start-page: 160 issue: 3 year: 2021 ident: 1537_CR2 publication-title: SN Comput Sci. doi: 10.1007/s42979-021-00592-x – volume-title: Applied predictive modeling year: 2013 ident: 1537_CR20 doi: 10.1007/978-1-4614-6849-3 – volume: 20 start-page: 1934 issue: 1 year: 2021 ident: 1537_CR22 publication-title: J Mach Learn – ident: 1537_CR14 – volume: 80 start-page: 8091 year: 2021 ident: 1537_CR1 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – ident: 1537_CR12 – ident: 1537_CR11 – ident: 1537_CR16 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 1537_CR17 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – ident: 1537_CR4 doi: 10.1109/ICCAKM46823.2020.9051502 – volume: 15 start-page: 3133 issue: 90 year: 2014 ident: 1537_CR18 publication-title: J Mach Learn Res doi: 10.5555/2627435.2697065 – ident: 1537_CR19 – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 1537_CR21 publication-title: J Electron Sci Technol doi: 10.11989/JEST.1674-862X.80904120 – ident: 1537_CR15 doi: 10.1109/SCAM.2018.00025 – volume-title: Deep learning year: 2016 ident: 1537_CR10 – volume: 50 start-page: 3668 issue: 8 year: 2020 ident: 1537_CR9 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2950779 |
| SSID | ssj0002504465 |
| Score | 2.2072093 |
| Snippet | Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119 |
| SubjectTerms | Advances in Computational Intelligence for Artificial Intelligence Cloning Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Discriminant analysis Feature selection Generalized linear models Genetic algorithms Information Systems and Communication Service Internet of Things and Data Analytics Iterative methods Machine Learning Mathematical models Model accuracy Neural networks Optimization Optimization techniques Original Research Parameters Pattern Recognition and Graphics Performance enhancement Python Real time Searching Software Engineering/Programming and Operating Systems Solution space Tuning Vision |
| Title | Genetic Algorithm Based Hyper-Parameter Tuning to Improve the Performance of Machine Learning Models |
| URI | https://link.springer.com/article/10.1007/s42979-022-01537-8 https://www.proquest.com/docview/2921275806 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDLXGduGCQIAYH1MO3CCiTdM2OSC0IcaExDQhkHar2sSFw9gGjP-Pk7WbQGLXfkSVk_i5jv0ewDlalQRFWHBF6MSla-JSRkZcRqgQg0KH1uU7HofJ4EU-jONxA4Z1L4wrq6x9onfUdmZcjvxKaM9FroLkZv7BnWqUO12tJTTySlrBXnuKsS1oCceM1YRW7244elplXRxhl_T6kgRMgmsdj6tOGt9PR8451dwVuBNKRuS-f6PVOgT9c2rqwai_CztVFMm6y2nfgwZO98E6Cmm6wLqTV_ryxds76xFGWTagf81PPspdHRaZkT1_u2QIW8zYMqWAjKJANlq3ELBZyR59lSWyioD1lTnVtMnXAbz0755vB7wSUeCG_oQUT3NrrMjTJLRapqlFitF0YoIoFylGbrsHZU7bWIcE5TYRNo1lgipGgYg6LqNDaE5nUzwCRiYNSmESGUiUUVFqYcvAyIIgzqRCYhvC2liZqRjGndDFJFtxI3sDZ2TgzBs4U224WL0zX_JrbHz6tJ6DrNprX9l6ZbThsp6X9e3_RzvePNoJbAu3FELBhTiF5uLzG88oAlkUHdhS_fsOtLr9Xm_YqRbZD0pN1wU |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMAFFbUVAVp8KCdqsev1PnxAVcJDoZAoqoKU27Jrz4ZDSIAEVf1z_W0dO95EIJUb1334MDP2NzOe-QbgG5osCcqw5BmhE5e2iSvTMuIywgwxKFVobL6j003aN_LnIB6swN-6F8aWVdZnojuozUTbHPmxUI6LPAuSHw-P3E6Nsrer9QiNwo9WMCeOYsw3dlzhn98Uwk1PLs9I34dCXJz3T9vcTxngmkKFjKeF0UYUFM4bJdPUIDkxKtFBVIgUI7sfgqogO1chYZ1JhEljmWAWo0BEFVcRrbsK6zKSioK_9dZ5t_drkeWxBGHSzbMkIBRcqXjgO3dc_x6BQaq4LagnVI4ILl6i49LlfXVL68Dv4gNsea-VNedmtg0rOP4IxlJW0wPWHA1JUrO7e9YiTDSsTbHtE-8Vtu6L1Mb6zzb5wmYTNk9hICOvk_WWLQtsUrGOq-pE5glfh8xOaRtNP8HNu4jzM6yNJ2PcAUYKDyqhExlIlFFZKWGqQMuSIFWnQmIDwlpYufaM5nawxihfcDE7Aeck4NwJOM8acLT452HO5_Hm1_u1DnK_t6f50hIb8L3Wy_L1_1fbfXu1A9ho9zvX-fVl92oPNoU1i1BwIfZhbfb0jF_I-5mVX72JMbh9b6v-B3GED-Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+Based+Hyper-Parameter+Tuning+to+Improve+the+Performance+of+Machine+Learning+Models&rft.jtitle=SN+computer+science&rft.au=Shanthi%2C+D.+L&rft.au=Chethan%2C+N&rft.date=2022-12-22&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=2&rft.spage=119&rft_id=info:doi/10.1007%2Fs42979-022-01537-8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |