Genetic Algorithm Based Hyper-Parameter Tuning to Improve the Performance of Machine Learning Models

Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various paramet...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 2; p. 119
Main Authors Shanthi, D. L., Chethan, N.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 22.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-022-01537-8

Cover

Abstract Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various parameters to create the final model architecture. There are two types of parameters in machine learning model, one is referred as model parameters that are estimated by fitting the given data to the model. And the other is referred as model hyperparameters, these parameters are used to control the learning process. Model parameters are determined by machine ideally by exploration and automatically picks the optimum value; for example, the weights given to a neural network continuously update throughout each iteration until an optimal value is not reached. The method of hyperparameter tuning aims to determine the optimal combination of hyperparameters that will enable the model to function optimally. Setting the optimal mix of hyperparameters is the only method to maximize model performance. However, the designer is responsible for setting the hyperparameters that define the model architecture, such as the value of k in a kNN model, and the process of finding the optimum hyperparameter is referred to as hyperparameter tuning. Currently, this is handled in a variety of methods, including random searching of a specific solution space, sequential searching of the solution space using grids, and so on. In this article, comparative analysis of these methods to the genetic algorithm methodology for hyperparameter tuning is tested.
AbstractList Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements, model convergence, and model accuracy. While training machine learning models, it is very difficult to choose optimum values for various parameters to create the final model architecture. There are two types of parameters in machine learning model, one is referred as model parameters that are estimated by fitting the given data to the model. And the other is referred as model hyperparameters, these parameters are used to control the learning process. Model parameters are determined by machine ideally by exploration and automatically picks the optimum value; for example, the weights given to a neural network continuously update throughout each iteration until an optimal value is not reached. The method of hyperparameter tuning aims to determine the optimal combination of hyperparameters that will enable the model to function optimally. Setting the optimal mix of hyperparameters is the only method to maximize model performance. However, the designer is responsible for setting the hyperparameters that define the model architecture, such as the value of k in a kNN model, and the process of finding the optimum hyperparameter is referred to as hyperparameter tuning. Currently, this is handled in a variety of methods, including random searching of a specific solution space, sequential searching of the solution space using grids, and so on. In this article, comparative analysis of these methods to the genetic algorithm methodology for hyperparameter tuning is tested.
ArticleNumber 119
Author Chethan, N.
Shanthi, D. L.
Author_xml – sequence: 1
  givenname: D. L.
  orcidid: 0000-0001-8312-7821
  surname: Shanthi
  fullname: Shanthi, D. L.
  email: gopalaiahshanthi@bmsit.in
  organization: BMS Institute of Technology and Management
– sequence: 2
  givenname: N.
  surname: Chethan
  fullname: Chethan, N.
  organization: BMS Institute of Technology and Management
BookMark eNp9kE1LAzEQhoNU8PMPeAp4Xp1k87F71KKtULEHPYewmW1XuklNUqH_3rUVFA89zRzeZ-blOSMjHzwScsXghgHo2yR4resCOC-AyVIX1RE55UqxoqpBj_7sJ-QypXcA4BKEUPKUuAl6zF1D71aLELu87Om9TejodLvGWMxttD1mjPR14zu_oDnQp34dwyfSvEQ6x9iG2FvfIA0tfbbNsvNIZ2jjLv4cHK7SBTlu7Srh5c88J2-PD6_jaTF7mTyN72ZFw5SoCm1d47jVirlaaO0QpKhVA6XlGksoQUJrQVQ1E0w6xZ2WQmElkSNiLdvynFzv7w4FPzaYsnkPm-iHl4bXnHEtK1BDqtqnmhhSitiapss2d8HnaLuVYWC-tZq9VjNoNTutphpQ_g9dx663cXsYKvdQGsJ-gfG31QHqCw3Qi28
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3443145
crossref_primary_10_1016_j_jhydrol_2024_132066
crossref_primary_10_2118_219731_PA
crossref_primary_10_3390_app13148124
crossref_primary_10_1007_s10115_024_02202_7
crossref_primary_10_1061_JCEMD4_COENG_15934
crossref_primary_10_1016_j_aej_2025_03_022
crossref_primary_10_1109_ACCESS_2025_3543030
Cites_doi 10.11989/JEST.1674-862X.80904120
10.5555/2627435.2697065
10.1007/978-1-4614-6849-3
10.1007/s11042-020-10139-6
10.1109/TCYB.2019.2950779
10.1016/j.compeleceng.2013.11.024
10.1147/JRD.2017.2709578
10.1007/s42979-021-00592-x
10.1109/ICACCP.2019.8882943
10.1109/BigData.2018.8622384
10.1109/ROBIO49542.2019.8961836
10.1109/ICMCECS47690.2020.240861
10.1109/CSIT.2018.8486176
10.1109/ICCAKM46823.2020.9051502
10.1109/SCAM.2018.00025
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-022-01537-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_022_01537_8
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c1648-7adcd2a761d9477de05496c03a27e303050fa04891415d62d7546e85e2eee95f3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 23:27:37 EDT 2025
Wed Oct 01 03:59:10 EDT 2025
Thu Apr 24 23:03:10 EDT 2025
Fri Feb 21 02:45:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hyperparameter
Genetic algorithm
Tuning
Optimization
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1648-7adcd2a761d9477de05496c03a27e303050fa04891415d62d7546e85e2eee95f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8312-7821
PQID 2921275806
PQPubID 6623307
ParticipantIDs proquest_journals_2921275806
crossref_citationtrail_10_1007_s42979_022_01537_8
crossref_primary_10_1007_s42979_022_01537_8
springer_journals_10_1007_s42979_022_01537_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221222
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 20221222
  day: 22
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References CR4
CR3
Jia, Xiu-Yun, Hao, Li-Dong, Hang, Si-Hao (CR21) 2019; 17
CR6
CR5
CR8
CR19
Katoch, Chauhan, Kumar (CR1) 2021; 80
CR16
Goodfellow, Bengio, Courville (CR10) 2016
CR15
Girish, Ferat (CR17) 2014; 40
CR14
CR13
Sarker (CR2) 2021; 2
CR12
CR11
Sun, Cao, Zhu, Zhao (CR9) 2020; 50
Max, Kjell (CR20) 2013
Manuel, Eva, Senen, Dinani (CR18) 2014; 15
Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (CR7) 2017; 61
Philipp, Anne-Laure, Bernd (CR22) 2021; 20
1537_CR15
1537_CR16
I Goodfellow (1537_CR10) 2016
1537_CR13
C Girish (1537_CR17) 2014; 40
1537_CR14
1537_CR19
1537_CR8
1537_CR11
1537_CR12
P Philipp (1537_CR22) 2021; 20
1537_CR6
1537_CR4
1537_CR5
S Sun (1537_CR9) 2020; 50
F-D Manuel (1537_CR18) 2014; 15
W Jia (1537_CR21) 2019; 17
1537_CR3
S Katoch (1537_CR1) 2021; 80
IH Sarker (1537_CR2) 2021; 2
GI Diaz (1537_CR7) 2017; 61
K Max (1537_CR20) 2013
References_xml – year: 2016
  ident: CR10
  publication-title: Deep learning
– ident: CR19
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  end-page: 40
  ident: CR21
  article-title: Hyperparameter optimization for machine learning models based on bayesian optimization
  publication-title: J Electron Sci Technol
  doi: 10.11989/JEST.1674-862X.80904120
– volume: 15
  start-page: 3133
  issue: 90
  year: 2014
  end-page: 3181
  ident: CR18
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
  doi: 10.5555/2627435.2697065
– year: 2013
  ident: CR20
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: CR1
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– ident: CR3
– ident: CR4
– ident: CR14
– ident: CR15
– ident: CR16
– volume: 50
  start-page: 3668
  issue: 8
  year: 2020
  end-page: 3681
  ident: CR9
  article-title: A survey of optimization methods from a machine learning perspective
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950779
– ident: CR12
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  end-page: 28
  ident: CR17
  article-title: A survey on feature selection methods
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: CR13
– ident: CR11
– ident: CR6
– ident: CR5
– ident: CR8
– volume: 61
  start-page: 91
  issue: 4/5
  year: 2017
  end-page: 911
  ident: CR7
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2017.2709578
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: CR2
  article-title: Machine learning: algorithms, real-world applications and research directions
  publication-title: SN Comput Sci.
  doi: 10.1007/s42979-021-00592-x
– volume: 20
  start-page: 1934
  issue: 1
  year: 2021
  end-page: 1965
  ident: CR22
  article-title: Tunability: importance of hyperparameters of machine learning algorithms
  publication-title: J Mach Learn
– ident: 1537_CR8
  doi: 10.1109/ICACCP.2019.8882943
– ident: 1537_CR6
  doi: 10.1109/BigData.2018.8622384
– ident: 1537_CR3
  doi: 10.1109/ROBIO49542.2019.8961836
– volume: 61
  start-page: 91
  issue: 4/5
  year: 2017
  ident: 1537_CR7
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2017.2709578
– ident: 1537_CR5
  doi: 10.1109/ICMCECS47690.2020.240861
– ident: 1537_CR13
  doi: 10.1109/CSIT.2018.8486176
– volume: 2
  start-page: 160
  issue: 3
  year: 2021
  ident: 1537_CR2
  publication-title: SN Comput Sci.
  doi: 10.1007/s42979-021-00592-x
– volume-title: Applied predictive modeling
  year: 2013
  ident: 1537_CR20
  doi: 10.1007/978-1-4614-6849-3
– volume: 20
  start-page: 1934
  issue: 1
  year: 2021
  ident: 1537_CR22
  publication-title: J Mach Learn
– ident: 1537_CR14
– volume: 80
  start-page: 8091
  year: 2021
  ident: 1537_CR1
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– ident: 1537_CR12
– ident: 1537_CR11
– ident: 1537_CR16
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 1537_CR17
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: 1537_CR4
  doi: 10.1109/ICCAKM46823.2020.9051502
– volume: 15
  start-page: 3133
  issue: 90
  year: 2014
  ident: 1537_CR18
  publication-title: J Mach Learn Res
  doi: 10.5555/2627435.2697065
– ident: 1537_CR19
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 1537_CR21
  publication-title: J Electron Sci Technol
  doi: 10.11989/JEST.1674-862X.80904120
– ident: 1537_CR15
  doi: 10.1109/SCAM.2018.00025
– volume-title: Deep learning
  year: 2016
  ident: 1537_CR10
– volume: 50
  start-page: 3668
  issue: 8
  year: 2020
  ident: 1537_CR9
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2950779
SSID ssj0002504465
Score 2.2072093
Snippet Parameter setting will have a great impact on overall behavior of a machine learning model in terms of training time, infrastructure resource requirements,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Advances in Computational Intelligence for Artificial Intelligence
Cloning
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Discriminant analysis
Feature selection
Generalized linear models
Genetic algorithms
Information Systems and Communication Service
Internet of Things and Data Analytics
Iterative methods
Machine Learning
Mathematical models
Model accuracy
Neural networks
Optimization
Optimization techniques
Original Research
Parameters
Pattern Recognition and Graphics
Performance enhancement
Python
Real time
Searching
Software Engineering/Programming and Operating Systems
Solution space
Tuning
Vision
Title Genetic Algorithm Based Hyper-Parameter Tuning to Improve the Performance of Machine Learning Models
URI https://link.springer.com/article/10.1007/s42979-022-01537-8
https://www.proquest.com/docview/2921275806
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8MwDLXGduGCQIAYH1MO3CCiTdM2OSC0IcaExDQhkHar2sSFw9gGjP-Pk7WbQGLXfkSVk_i5jv0ewDlalQRFWHBF6MSla-JSRkZcRqgQg0KH1uU7HofJ4EU-jONxA4Z1L4wrq6x9onfUdmZcjvxKaM9FroLkZv7BnWqUO12tJTTySlrBXnuKsS1oCceM1YRW7244elplXRxhl_T6kgRMgmsdj6tOGt9PR8451dwVuBNKRuS-f6PVOgT9c2rqwai_CztVFMm6y2nfgwZO98E6Cmm6wLqTV_ryxds76xFGWTagf81PPspdHRaZkT1_u2QIW8zYMqWAjKJANlq3ELBZyR59lSWyioD1lTnVtMnXAbz0755vB7wSUeCG_oQUT3NrrMjTJLRapqlFitF0YoIoFylGbrsHZU7bWIcE5TYRNo1lgipGgYg6LqNDaE5nUzwCRiYNSmESGUiUUVFqYcvAyIIgzqRCYhvC2liZqRjGndDFJFtxI3sDZ2TgzBs4U224WL0zX_JrbHz6tJ6DrNprX9l6ZbThsp6X9e3_RzvePNoJbAu3FELBhTiF5uLzG88oAlkUHdhS_fsOtLr9Xm_YqRbZD0pN1wU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMAFFbUVAVp8KCdqsev1PnxAVcJDoZAoqoKU27Jrz4ZDSIAEVf1z_W0dO95EIJUb1334MDP2NzOe-QbgG5osCcqw5BmhE5e2iSvTMuIywgwxKFVobL6j003aN_LnIB6swN-6F8aWVdZnojuozUTbHPmxUI6LPAuSHw-P3E6Nsrer9QiNwo9WMCeOYsw3dlzhn98Uwk1PLs9I34dCXJz3T9vcTxngmkKFjKeF0UYUFM4bJdPUIDkxKtFBVIgUI7sfgqogO1chYZ1JhEljmWAWo0BEFVcRrbsK6zKSioK_9dZ5t_drkeWxBGHSzbMkIBRcqXjgO3dc_x6BQaq4LagnVI4ILl6i49LlfXVL68Dv4gNsea-VNedmtg0rOP4IxlJW0wPWHA1JUrO7e9YiTDSsTbHtE-8Vtu6L1Mb6zzb5wmYTNk9hICOvk_WWLQtsUrGOq-pE5glfh8xOaRtNP8HNu4jzM6yNJ2PcAUYKDyqhExlIlFFZKWGqQMuSIFWnQmIDwlpYufaM5nawxihfcDE7Aeck4NwJOM8acLT452HO5_Hm1_u1DnK_t6f50hIb8L3Wy_L1_1fbfXu1A9ho9zvX-fVl92oPNoU1i1BwIfZhbfb0jF_I-5mVX72JMbh9b6v-B3GED-Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+Based+Hyper-Parameter+Tuning+to+Improve+the+Performance+of+Machine+Learning+Models&rft.jtitle=SN+computer+science&rft.au=Shanthi%2C+D.+L&rft.au=Chethan%2C+N&rft.date=2022-12-22&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=2&rft.spage=119&rft_id=info:doi/10.1007%2Fs42979-022-01537-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon