Application of artificial intelligence models to predict the compressive strength of concrete
The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of auto...
Saved in:
Published in | Advances in computational intelligence Vol. 4; no. 2; p. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2730-7794 2730-7808 |
DOI | 10.1007/s43674-024-00072-8 |
Cover
Abstract | The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination (
R
2
) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving. |
---|---|
AbstractList | The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination (R2) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving. The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination ( R 2 ) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving. |
ArticleNumber | 4 |
Author | Pereira, Wanderlei Malaquias de Lima Araújo, Daniel de Assis Costa, Gustavo Sarmento, Antover Panazzolo de Andrade Cruvinel, Lucas Elias de Campos, Amanda Isabela Espíndola, Rogério Pinto Dutra, Roberto Viegas |
Author_xml | – sequence: 1 givenname: Lucas Elias surname: de Andrade Cruvinel fullname: de Andrade Cruvinel, Lucas Elias organization: Federal University of Catalão – sequence: 2 givenname: Wanderlei Malaquias orcidid: 0000-0002-7404-3666 surname: Pereira fullname: Pereira, Wanderlei Malaquias email: wanderlei_junior@ufcat.edu.br organization: Federal University of Catalão – sequence: 3 givenname: Amanda Isabela surname: de Campos fullname: de Campos, Amanda Isabela organization: Federal University of Rio de Janeiro – sequence: 4 givenname: Rogério Pinto surname: Espíndola fullname: Espíndola, Rogério Pinto organization: Federal University of Rio de Janeiro – sequence: 5 givenname: Antover Panazzolo surname: Sarmento fullname: Sarmento, Antover Panazzolo organization: Federal University of Catalão – sequence: 6 givenname: Daniel surname: de Lima Araújo fullname: de Lima Araújo, Daniel organization: Federal University of Goiás – sequence: 7 givenname: Gustavo surname: de Assis Costa fullname: de Assis Costa, Gustavo organization: Federal Institute of Goiás–Campus Jataí – sequence: 8 givenname: Roberto Viegas surname: Dutra fullname: Dutra, Roberto Viegas organization: Federal University of Catalão |
BookMark | eNp9kE1LxDAQhoMoqKt_wFPAc3WStE17FPELFrzoUUI2nexGuklNsoL_3rirCB48hMnA-8wMzzHZ98EjIWcMLhiAvEy1aGVdAS-v9Lzq9sgRlwIq2UG3__OXfX1ITlN6LSEuGXDOj8jL1TSNzujsgqfBUh2zs844PVLnM46jW6I3SNdhwDHRHOgUcXAm07xCasK6tCm5d6QpR_TLvPqaYoI3ETOekAOrx4Sn33VGnm9vnq7vq_nj3cP11bwyrK27SgwGrC63SgQjFkxzxgGtNrxuWd_phdGmRrC2WdRtOwy6YR1AL2vZMAmDFDNyvps7xfC2wZTVa9hEX1YqAUL0DYeelxTfpUwMKUW0aopureOHYqC-TKqdSVVMqq1J1RWo-wMZl7e6ctRu_B8VOzSVPX6J8feqf6hP1daKqA |
CitedBy_id | crossref_primary_10_1016_j_nanoso_2024_101373 crossref_primary_10_1590_1517_7076_rmat_2024_0315 |
Cites_doi | 10.1016/j.cemconres.2004.07.037 10.1016/S0008-8846(98)00165-3 10.3390/f14081552 10.1155/2016/7648467 10.1016/j.eij.2015.06.005 10.1109/23.589532 10.18512/rbms2022vol21e1257 10.1016/j.cemconcomp.2020.103597 10.1007/978-981-32-9990-0 10.1016/j.conbuildmat.2020.120800 10.1016/j.cemconcomp.2010.09.020 10.1016/j.jclepro.2020.122922 10.1016/j.jobe.2015.09.003 10.1016/j.conbuildmat.2019.117000 10.3390/ma13051023 10.1016/j.cemconres.2006.01.005 10.1016/j.engappai.2013.03.014 10.1007/978-3-319-50017-1 10.1016/j.conbuildmat.2020.121117 10.1016/j.cemconres.2003.12.022 10.1016/j.conbuildmat.2005.06.051 10.1016/j.engstruct.2018.09.074 10.1016/j.csbj.2018.01.001 10.1016/j.cemconcomp.2021.104114 10.1016/j.aca.2018.10.055 10.3905/jfds.2020.1.042 10.3390/ma12020299 10.1016/j.advengsoft.2008.05.005 10.1016/S0008-8846(03)00004-8 10.1590/s1517-707620190003.0758 10.3389/fnbot.2013.00021 10.1016/j.conbuildmat.2020.118152 10.1017/CBO9781107298019 10.1016/S0008-8846(00)00397-5 10.1016/j.cemconres.2004.04.017 10.1016/j.cemconcomp.2007.01.001 10.1016/0951-8320(96)00002-6 10.1038/s41598-023-30606-y 10.1016/j.conbuildmat.2014.09.054 10.1016/j.mtcomm.2021.102278 10.1016/j.media.2016.06.037 10.1016/j.conbuildmat.2005.08.009 10.1590/0103-6513.20190144 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s43674-024-00072-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2730-7808 |
ExternalDocumentID | 10_1007_s43674_024_00072_8 |
GroupedDBID | 0R~ 406 88I AACDK AAFHI AAJBT AASML AATNV AAUYE ABAKF ABJNI ABTEG ABTKH ABUWG ACAOD ACDTI ACHSB ACPIV ACYDH ACZOJ ADTPH AEFQL AEMSY AESKC AFBBN AFKRA AGMZJ AGQEE AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS AZQEC BENPR BGLVJ CCPQU DPUIP DWQXO EBLON EBS FIGPU GNUQQ HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM M2P NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK ABRTQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
ID | FETCH-LOGICAL-c1648-3dc0fa8087e0c3b1a2120efac246198abcac4e0ff5b466dda5180097475170d73 |
IEDL.DBID | 8FG |
ISSN | 2730-7794 |
IngestDate | Fri Jul 25 09:38:25 EDT 2025 Tue Jul 01 01:37:59 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Trees Regressions Prediction Concrete Compressive strength Artificial intelligence Ensembles Mix proportioning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1648-3dc0fa8087e0c3b1a2120efac246198abcac4e0ff5b466dda5180097475170d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7404-3666 |
PQID | 3033952092 |
PQPubID | 6623282 |
ParticipantIDs | proquest_journals_3033952092 crossref_primary_10_1007_s43674_024_00072_8 crossref_citationtrail_10_1007_s43674_024_00072_8 springer_journals_10_1007_s43674_024_00072_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240600 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Salerno |
PublicationTitle | Advances in computational intelligence |
PublicationTitleAbbrev | Adv. in Comp. Int |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Abbass, Khan, Mourad (CR1) 2019; 12 Kang, Yoo, Gupta (CR27) 2021; 266 Bilim, Atiş, Tanyildizi (CR9) 2009; 40 Demirboğa, Türkmen, Karakoç (CR14) 2004; 34 Fan, Yu, Shui (CR18) 2020; 110 CR38 Erdal (CR17) 2013; 26 Lee, Lee, Lee (CR29) 2006; 36 Pala, Özbay, Öztaş (CR40) 2007; 21 Natekin, Knoll (CR35) 2013 CR31 Shalev-Shwartz, Ben-David (CR46) 2014 Jiang, Malhotra (CR26) 2000; 30 Singh, Munjal, Thammishetti (CR47) 2015; 4 Zhang, Huang, Aslani (CR55) 2020; 273 Behnood, Golafshani (CR8) 2020; 243 Hild-Aono, Gonzaga-Pimenta, Francisco (CR22) 2022 Komura, Ishikawa (CR28) 2018; 16 Chou, Tsai, Pham (CR13) 2014; 73 CR45 CR44 Breiman (CR11) 1998 Yeh (CR53) 1998; 28 Arroyo, Christoforo, Salvini (CR4) 2020; 262 Madabhushi, Lee (CR30) 2016; 33 Homma, Saltelli (CR23) 1996; 52 Isinkaye, Folajimi, Ojokoh (CR25) 2015; 16 Al-Shamiri, Yuan, Kim (CR3) 2020; 13 Beck (CR7) 2009 Igual, Seguí (CR24) 2017 Chopra, Sharma, Kumar (CR12) 2016; 2016 Güçlüer, Özbeyaz, Göymen (CR21) 2021; 27 Yaseen, Tran, Kim (CR52) 2018; 177 Bouzoubaâ, Fournier (CR10) 2003; 33 CR51 Mirjalili, Faris, Aljarah (CR33) 2020 CR50 Géron (CR20) 2019 Pakzad, Roshan, Ghalehnovi (CR39) 2023; 13 Duran-Atiş (CR15) 2005; 35 Montgomery (CR34) 2013 Ribeiro, Pinto, Amorim Júnior (CR43) 2021; 122 Alabduljabbar, Khan, Awan (CR2) 2023; 18 (CR6) 2018 Arroyo, Borges, Junior (CR5) 2023; 14 Oner, Akyuz (CR37) 2007; 29 Sonebi (CR49) 2004; 34 Yen, Hsu, Liu (CR54) 2007; 21 Sola, Sevilla (CR48) 1997; 44 Pitroda (CR41) 2014; 1 Durán-Herrera, Juárez, Valdez (CR16) 2011; 33 Oliveri, Malegori, Simonetti (CR36) 2019; 1058 Feng, Liu, Wang (CR19) 2020; 230 Milhomem, Dantas (CR32) 2020; 30 Zhang, Zohren, Roberts (CR56) 2020; 2 Rauecker, Pereira Junior, Pituba (CR42) 2019; 24 M Sonebi (72_CR49) 2004; 34 FN Arroyo (72_CR4) 2020; 262 ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (72_CR6) 2018 L Breiman (72_CR11) 1998 W Abbass (72_CR1) 2019; 12 72_CR51 J Sola (72_CR48) 1997; 44 72_CR50 SM Beck (72_CR7) 2009 D Komura (72_CR28) 2018; 16 J Zhang (72_CR55) 2020; 273 C Duran-Atiş (72_CR15) 2005; 35 J-S Chou (72_CR13) 2014; 73 DC Montgomery (72_CR34) 2013 L Igual (72_CR24) 2017 SB Singh (72_CR47) 2015; 4 DA Milhomem (72_CR32) 2020; 30 P Chopra (72_CR12) 2016; 2016 K Güçlüer (72_CR21) 2021; 27 ZM Yaseen (72_CR52) 2018; 177 A Géron (72_CR20) 2019 A Hild-Aono (72_CR22) 2022 DV Ribeiro (72_CR43) 2021; 122 72_CR44 S Shalev-Shwartz (72_CR46) 2014 M Pala (72_CR40) 2007; 21 C Bilim (72_CR9) 2009; 40 72_CR45 AK Al-Shamiri (72_CR3) 2020; 13 A Oner (72_CR37) 2007; 29 DQ Fan (72_CR18) 2020; 110 A Durán-Herrera (72_CR16) 2011; 33 FO Isinkaye (72_CR25) 2015; 16 N Bouzoubaâ (72_CR10) 2003; 33 T Yen (72_CR54) 2007; 21 A Madabhushi (72_CR30) 2016; 33 72_CR31 S Mirjalili (72_CR33) 2020 P Oliveri (72_CR36) 2019; 1058 M-C Kang (72_CR27) 2021; 266 R Demirboğa (72_CR14) 2004; 34 72_CR38 J Pitroda (72_CR41) 2014; 1 HI Erdal (72_CR17) 2013; 26 A Natekin (72_CR35) 2013 T Homma (72_CR23) 1996; 52 A Behnood (72_CR8) 2020; 243 JCN Rauecker (72_CR42) 2019; 24 KM Lee (72_CR29) 2006; 36 Z Zhang (72_CR56) 2020; 2 FN Arroyo (72_CR5) 2023; 14 H Alabduljabbar (72_CR2) 2023; 18 I-C Yeh (72_CR53) 1998; 28 LH Jiang (72_CR26) 2000; 30 SS Pakzad (72_CR39) 2023; 13 D-C Feng (72_CR19) 2020; 230 |
References_xml | – ident: CR45 – year: 1998 ident: CR11 publication-title: Classification and regression trees – year: 2019 ident: CR20 publication-title: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems – volume: 35 start-page: 1112 issue: 6 year: 2005 end-page: 1121 ident: CR15 article-title: Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.07.037 – volume: 28 start-page: 1797 issue: 12 year: 1998 end-page: 1808 ident: CR53 article-title: Modeling of strength of high-performance concrete using artificial neural networks publication-title: Cem Concr Res doi: 10.1016/S0008-8846(98)00165-3 – ident: CR51 – volume: 14 start-page: 1552 issue: 8 year: 2023 ident: CR5 article-title: Estimation of flexural tensile strength as a function of shear of timber structures publication-title: Forests doi: 10.3390/f14081552 – volume: 2016 start-page: 1 year: 2016 end-page: 10 ident: CR12 article-title: Prediction of compressive strength of concrete using artificial neural network and genetic programming publication-title: Adv Mater Sci Eng doi: 10.1155/2016/7648467 – volume: 16 start-page: 261 issue: 3 year: 2015 end-page: 273 ident: CR25 article-title: Recommendation systems: principles, methods and evaluation publication-title: Egypt Inform J doi: 10.1016/j.eij.2015.06.005 – volume: 18 year: 2023 ident: CR2 article-title: Predicting ultra-high-performance concrete compressive strength using gene expression programming method publication-title: Case Stud Constr Mater – volume: 44 start-page: 1464 issue: 3 year: 1997 end-page: 1468 ident: CR48 article-title: Importance of input data normalization for the application of neural networks to complex industrial problems publication-title: IEEE Trans Nucl Sci doi: 10.1109/23.589532 – year: 2022 ident: CR22 article-title: Machine learning for crop science: applications and perspectives in maize breeding publication-title: Rev Bras Milho Sorgo doi: 10.18512/rbms2022vol21e1257 – volume: 110 year: 2020 ident: CR18 article-title: A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2020.103597 – year: 2020 ident: CR33 publication-title: Evolutionary machine learning techniques: algorithms and applications doi: 10.1007/978-981-32-9990-0 – volume: 262 year: 2020 ident: CR4 article-title: Development of plaster foam for thermal and acoustic applications publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.120800 – volume: 33 start-page: 39 issue: 1 year: 2011 end-page: 45 ident: CR16 article-title: Evaluation of sustainable high-volume fly ash concretes publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2010.09.020 – volume: 273 year: 2020 ident: CR55 article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122922 – year: 2018 ident: CR6 publication-title: ABNT NBR 5739 - Concreto - Ensaios de compressão de corpos-de-prova cilíndricos – volume: 4 start-page: 94 year: 2015 end-page: 100 ident: CR47 article-title: Role of water/cement ratio on strength development of cement mortar publication-title: J Build Eng doi: 10.1016/j.jobe.2015.09.003 – ident: CR50 – volume: 230 year: 2020 ident: CR19 article-title: Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – volume: 13 start-page: 1023 issue: 5 year: 2020 ident: CR3 article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete publication-title: Materials doi: 10.3390/ma13051023 – volume: 36 start-page: 1279 issue: 7 year: 2006 end-page: 1285 ident: CR29 article-title: Autogenous shrinkage of concrete containing granulated blast-furnace slag publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2006.01.005 – volume: 26 start-page: 1689 issue: 7 year: 2013 end-page: 1697 ident: CR17 article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.03.014 – year: 2017 ident: CR24 publication-title: Introduction to data science doi: 10.1007/978-3-319-50017-1 – volume: 266 year: 2021 ident: CR27 article-title: Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – volume: 34 start-page: 1199 issue: 7 year: 2004 end-page: 1208 ident: CR49 article-title: Medium strength self-compacting concrete containing fly ash: modelling using factorial experimental plans publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2003.12.022 – volume: 21 start-page: 458 issue: 2 year: 2007 end-page: 463 ident: CR54 article-title: Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.06.051 – volume: 177 start-page: 244 year: 2018 end-page: 255 ident: CR52 article-title: Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.09.074 – volume: 16 start-page: 34 year: 2018 end-page: 42 ident: CR28 article-title: Machine learning methods for histopathological image analysis publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2018.01.001 – volume: 122 start-page: 104114 year: 2021 ident: CR43 article-title: Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104114 – year: 2009 ident: CR7 publication-title: Efeitos nas propriedades mecânicas, elásticas e de deformação em concretos com altos teores de escória e cinza volante – volume: 1058 start-page: 9 year: 2019 end-page: 17 ident: CR36 article-title: The impact of signal pre-processing on the final interpretation of analytical outcomes—a tutorial publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.10.055 – volume: 1 start-page: 1 year: 2014 end-page: 11 ident: CR41 article-title: Prediction of strength for fly ash cement concrete through soft computing approaches publication-title: Int J Adv Res Eng, Sci Manag – volume: 2 start-page: 8 issue: 4 year: 2020 end-page: 20 ident: CR56 article-title: Deep learning for portfolio optimization publication-title: J Financ Data Sci doi: 10.3905/jfds.2020.1.042 – volume: 12 start-page: 299 issue: 2 year: 2019 ident: CR1 article-title: Experimentation and predictive models for properties of concrete added with active and inactive SiO fillers publication-title: Materials doi: 10.3390/ma12020299 – volume: 40 start-page: 334 issue: 5 year: 2009 end-page: 340 ident: CR9 article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.05.005 – volume: 33 start-page: 1029 issue: 7 year: 2003 end-page: 1037 ident: CR10 article-title: Optimization of fly ash content in concrete publication-title: Cem Concr Res doi: 10.1016/S0008-8846(03)00004-8 – volume: 24 start-page: e12476 issue: 3 year: 2019 ident: CR42 article-title: Uma abordagem experimental e numérica para determinação de curvas de compressão para concreto simples e reforçados com fibras de aço publication-title: Matéria (rio De Janeiro) doi: 10.1590/s1517-707620190003.0758 – year: 2013 ident: CR35 article-title: Gradient boosting machines, a tutorial publication-title: Front Neurorobot doi: 10.3389/fnbot.2013.00021 – volume: 243 year: 2020 ident: CR8 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118152 – year: 2014 ident: CR46 publication-title: Understanding machine learning: from theory to algorithms doi: 10.1017/CBO9781107298019 – volume: 30 start-page: 1785 issue: 11 year: 2000 end-page: 1789 ident: CR26 article-title: Reduction in water demand of non-air-entrained concrete incorporating large volumes of fly ash publication-title: Cem Concr Res doi: 10.1016/S0008-8846(00)00397-5 – ident: CR44 – volume: 34 start-page: 2329 issue: 12 year: 2004 end-page: 2336 ident: CR14 article-title: Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.04.017 – volume: 29 start-page: 505 issue: 6 year: 2007 end-page: 514 ident: CR37 article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2007.01.001 – ident: CR38 – ident: CR31 – volume: 52 start-page: 1 issue: 1 year: 1996 end-page: 17 ident: CR23 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliab Eng Syst Saf doi: 10.1016/0951-8320(96)00002-6 – volume: 13 start-page: 3646 issue: 1 year: 2023 ident: CR39 article-title: Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete publication-title: Sci Rep doi: 10.1038/s41598-023-30606-y – volume: 73 start-page: 771 year: 2014 end-page: 780 ident: CR13 article-title: Machine learning in concrete strength simulations: multi-nation data analytics publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.09.054 – volume: 27 year: 2021 ident: CR21 article-title: A comparative investigation using machine learning methods for concrete compressive strength estimation publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102278 – volume: 33 start-page: 170 year: 2016 end-page: 175 ident: CR30 article-title: Image analysis and machine learning in digital pathology: challenges and opportunities publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.037 – start-page: 2013 year: 2013 ident: CR34 publication-title: Design and analysis of experiments – volume: 21 start-page: 384 issue: 2 year: 2007 end-page: 394 ident: CR40 article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.08.009 – volume: 30 year: 2020 ident: CR32 article-title: Analysis of new approaches used in portfolio optimization: a systematic literature review publication-title: Production doi: 10.1590/0103-6513.20190144 – volume: 21 start-page: 458 issue: 2 year: 2007 ident: 72_CR54 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.06.051 – volume: 122 start-page: 104114 year: 2021 ident: 72_CR43 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104114 – volume: 230 year: 2020 ident: 72_CR19 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – year: 2022 ident: 72_CR22 publication-title: Rev Bras Milho Sorgo doi: 10.18512/rbms2022vol21e1257 – volume: 26 start-page: 1689 issue: 7 year: 2013 ident: 72_CR17 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2013.03.014 – volume: 40 start-page: 334 issue: 5 year: 2009 ident: 72_CR9 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2008.05.005 – volume: 2016 start-page: 1 year: 2016 ident: 72_CR12 publication-title: Adv Mater Sci Eng doi: 10.1155/2016/7648467 – volume: 35 start-page: 1112 issue: 6 year: 2005 ident: 72_CR15 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.07.037 – volume: 34 start-page: 2329 issue: 12 year: 2004 ident: 72_CR14 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.04.017 – volume: 27 year: 2021 ident: 72_CR21 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102278 – volume: 177 start-page: 244 year: 2018 ident: 72_CR52 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.09.074 – volume: 110 year: 2020 ident: 72_CR18 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2020.103597 – volume: 16 start-page: 34 year: 2018 ident: 72_CR28 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2018.01.001 – volume: 1058 start-page: 9 year: 2019 ident: 72_CR36 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2018.10.055 – volume-title: ABNT NBR 5739 - Concreto - Ensaios de compressão de corpos-de-prova cilíndricos year: 2018 ident: 72_CR6 – volume: 33 start-page: 1029 issue: 7 year: 2003 ident: 72_CR10 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(03)00004-8 – volume: 2 start-page: 8 issue: 4 year: 2020 ident: 72_CR56 publication-title: J Financ Data Sci doi: 10.3905/jfds.2020.1.042 – volume: 18 year: 2023 ident: 72_CR2 publication-title: Case Stud Constr Mater – volume-title: Evolutionary machine learning techniques: algorithms and applications year: 2020 ident: 72_CR33 doi: 10.1007/978-981-32-9990-0 – ident: 72_CR51 – volume: 44 start-page: 1464 issue: 3 year: 1997 ident: 72_CR48 publication-title: IEEE Trans Nucl Sci doi: 10.1109/23.589532 – volume: 24 start-page: e12476 issue: 3 year: 2019 ident: 72_CR42 publication-title: Matéria (rio De Janeiro) doi: 10.1590/s1517-707620190003.0758 – volume: 243 year: 2020 ident: 72_CR8 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.118152 – volume: 73 start-page: 771 year: 2014 ident: 72_CR13 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.09.054 – volume: 13 start-page: 1023 issue: 5 year: 2020 ident: 72_CR3 publication-title: Materials doi: 10.3390/ma13051023 – volume: 33 start-page: 170 year: 2016 ident: 72_CR30 publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.037 – volume: 13 start-page: 3646 issue: 1 year: 2023 ident: 72_CR39 publication-title: Sci Rep doi: 10.1038/s41598-023-30606-y – ident: 72_CR44 – volume: 34 start-page: 1199 issue: 7 year: 2004 ident: 72_CR49 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2003.12.022 – volume: 266 year: 2021 ident: 72_CR27 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – ident: 72_CR31 – volume: 30 start-page: 1785 issue: 11 year: 2000 ident: 72_CR26 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(00)00397-5 – ident: 72_CR38 – ident: 72_CR50 – volume-title: Efeitos nas propriedades mecânicas, elásticas e de deformação em concretos com altos teores de escória e cinza volante year: 2009 ident: 72_CR7 – volume-title: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems year: 2019 ident: 72_CR20 – volume-title: Classification and regression trees year: 1998 ident: 72_CR11 – volume: 21 start-page: 384 issue: 2 year: 2007 ident: 72_CR40 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2005.08.009 – volume: 16 start-page: 261 issue: 3 year: 2015 ident: 72_CR25 publication-title: Egypt Inform J doi: 10.1016/j.eij.2015.06.005 – volume: 52 start-page: 1 issue: 1 year: 1996 ident: 72_CR23 publication-title: Reliab Eng Syst Saf doi: 10.1016/0951-8320(96)00002-6 – volume: 30 year: 2020 ident: 72_CR32 publication-title: Production doi: 10.1590/0103-6513.20190144 – volume-title: Introduction to data science year: 2017 ident: 72_CR24 doi: 10.1007/978-3-319-50017-1 – volume: 1 start-page: 1 year: 2014 ident: 72_CR41 publication-title: Int J Adv Res Eng, Sci Manag – ident: 72_CR45 – volume: 14 start-page: 1552 issue: 8 year: 2023 ident: 72_CR5 publication-title: Forests doi: 10.3390/f14081552 – volume-title: Understanding machine learning: from theory to algorithms year: 2014 ident: 72_CR46 doi: 10.1017/CBO9781107298019 – volume: 36 start-page: 1279 issue: 7 year: 2006 ident: 72_CR29 publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2006.01.005 – volume: 273 year: 2020 ident: 72_CR55 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122922 – year: 2013 ident: 72_CR35 publication-title: Front Neurorobot doi: 10.3389/fnbot.2013.00021 – volume: 12 start-page: 299 issue: 2 year: 2019 ident: 72_CR1 publication-title: Materials doi: 10.3390/ma12020299 – volume: 4 start-page: 94 year: 2015 ident: 72_CR47 publication-title: J Build Eng doi: 10.1016/j.jobe.2015.09.003 – volume: 28 start-page: 1797 issue: 12 year: 1998 ident: 72_CR53 publication-title: Cem Concr Res doi: 10.1016/S0008-8846(98)00165-3 – volume: 33 start-page: 39 issue: 1 year: 2011 ident: 72_CR16 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2010.09.020 – start-page: 2013 volume-title: Design and analysis of experiments year: 2013 ident: 72_CR34 – volume: 29 start-page: 505 issue: 6 year: 2007 ident: 72_CR37 publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2007.01.001 – volume: 262 year: 2020 ident: 72_CR4 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.120800 |
SSID | ssj0002710222 |
Score | 2.2616427 |
Snippet | The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4 |
SubjectTerms | Algorithms Artificial Intelligence Compressive strength Computational Intelligence Concrete Datasets Design Engineering Machine Learning Measurement techniques Mixtures Original Article Problem solving Proportioning (mixing) Reinforced concrete Variables |
Title | Application of artificial intelligence models to predict the compressive strength of concrete |
URI | https://link.springer.com/article/10.1007/s43674-024-00072-8 https://www.proquest.com/docview/3033952092 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2730-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710222 issn: 2730-7794 databaseCode: AFBBN dateStart: 20210522 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-7808 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0002710222 issn: 2730-7794 databaseCode: BENPR dateStart: 20210901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVgQCBCFUnlggwgnsWNnQgW1VAwVQlTqgqLEsQEJNaUN_H7u3KQBJDonueH5cl--u0fIOZM2tpHmyF4WQ4LCQi_OTeYZm1olmMZ9eNhtMY5GE34_FdOq4Las2iprm-gMdV5orJFfgakNY-zZCK7nHx6yRuHtakWhsU3afgCahJPiw7t1jSWQLp9BfjlQZAgkY17NzbjpOR5GknvgpHC0WoJh-O2bmoDzzx2pcz3DPbJbxYy0vzrkfbJlZgfkud9cPdPCUlSB1TYI-vZjzSZ1VDdLWhZ0vsBLmZJCyEexk9x1wH4ZiuMis5fyFaVAdgxhZGkOyWQ4eLodeRVXgqch4VFemGtmU8WUNEyHmZ-CS2IAuMZ9cbFKM51qbpi1IuNRlOep8BXOcHApfMlyGR6R1qyYmWNCrdA8D7hRIkg5pI8gioXCWimtBoxFh_g1SomuFokjn8V7sl6B7JBNANnEIZuoDrlYfzNfrdHY-Ha3Bj-pfqll0ihAh1zWB9I8_l_ayWZpp2QncDqAlZUuaZWLT3MGgUaZ9Zw29Uj7ZjB-ePwGTQvO3w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t6YFeEKgglkfrQ3uCCG9sx84BVahl2S2PE0hcUEgcu0VCuwsbQPwpfmNnvMkuIJUb5ySjaDwez3hmvg_gG9c-9YmVxF6WYoLCRZSWroicz71R3BIeHnVbnCS9M_n7XJ234KmZhaG2ysYnBkddDi3dke-gqxUp9WzEP0Y3EbFGUXW1odCYmMWhe3zAlG282_-F6_s9jrv7pz97Uc0qEFlMDUwkSst9brjRjltRdHJ03hx_zRKyWmrywuZWOu69KmSSlGWuOoamHaRWHc1LLVDuB_gohRCE1W-6B9M7nViH_In47HDjYOCaynpOJ0zrSZFoGeGhSKPcGh3Ry7NwFuC-qsmGo667CAt1jMr2Jka1BC03-AwXe7NSNxt6RiY3QZ9gV89gPVmg1hmzashGt1QEqhiGmIw610PH7b1jNJ4y-FP9JSmYjWPYWrllOHsXLa7A3GA4cKvAvLKyjKUzKs4lpqsoigvlvdbeondQbeg0WspsDVxO_BnX2RRyOWg2Q81mQbOZacPW9JvRBLbjzbc3GuVn9RYeZzODa8N2syCzx_-Xtva2tK8w3zs9PsqO-ieH6_ApDvZAtzobMFfd3rlNDHKq4kuwLAaX723K_wCxiQmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+models+to+predict+the+compressive+strength+of+concrete&rft.jtitle=Advances+in+computational+intelligence&rft.au=de+Andrade+Cruvinel%2C+Lucas+Elias&rft.au=Pereira%2C+Wanderlei+Malaquias&rft.au=de+Campos%2C+Amanda+Isabela&rft.au=Esp%C3%ADndola%2C+Rog%C3%A9rio+Pinto&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=2&rft.spage=4&rft_id=info:doi/10.1007%2Fs43674-024-00072-8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon |