Application of artificial intelligence models to predict the compressive strength of concrete

The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of auto...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational intelligence Vol. 4; no. 2; p. 4
Main Authors de Andrade Cruvinel, Lucas Elias, Pereira, Wanderlei Malaquias, de Campos, Amanda Isabela, Espíndola, Rogério Pinto, Sarmento, Antover Panazzolo, de Lima Araújo, Daniel, de Assis Costa, Gustavo, Dutra, Roberto Viegas
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2730-7794
2730-7808
DOI10.1007/s43674-024-00072-8

Cover

Abstract The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination ( R 2 ) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving.
AbstractList The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination (R2) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving.
The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil engineering that requires the execution of numerous tests. With the emergence of modern machine learning techniques, the possibility of automating this process has become a reality. However, a significant volume of data is necessary to take advantage of existing models and algorithms. Recent literature presents different datasets, each with its own unique details, for training their models. In this paper, we integrated some of these existing datasets to improve training and, consequently, the models' results. Therefore, using this new dataset, we tested various models for the prediction task. The resulting dataset comprises 2358 records with seven input variables related to the mixture design, while the output represents the compressive strength of concrete. The dataset was subjected to several pre-processing techniques, and afterward, machine learning models, such as regressions, trees, and ensembles, were used to estimate the compressive strength. Some of these methods proved satisfactory for the prediction problem, with the best models achieving a coefficient of determination ( R 2 ) above 80%. Furthermore, a website with the trained model was created, allowing professionals in the field to utilize the AI technique in their everyday problem-solving.
ArticleNumber 4
Author Pereira, Wanderlei Malaquias
de Lima Araújo, Daniel
de Assis Costa, Gustavo
Sarmento, Antover Panazzolo
de Andrade Cruvinel, Lucas Elias
de Campos, Amanda Isabela
Espíndola, Rogério Pinto
Dutra, Roberto Viegas
Author_xml – sequence: 1
  givenname: Lucas Elias
  surname: de Andrade Cruvinel
  fullname: de Andrade Cruvinel, Lucas Elias
  organization: Federal University of Catalão
– sequence: 2
  givenname: Wanderlei Malaquias
  orcidid: 0000-0002-7404-3666
  surname: Pereira
  fullname: Pereira, Wanderlei Malaquias
  email: wanderlei_junior@ufcat.edu.br
  organization: Federal University of Catalão
– sequence: 3
  givenname: Amanda Isabela
  surname: de Campos
  fullname: de Campos, Amanda Isabela
  organization: Federal University of Rio de Janeiro
– sequence: 4
  givenname: Rogério Pinto
  surname: Espíndola
  fullname: Espíndola, Rogério Pinto
  organization: Federal University of Rio de Janeiro
– sequence: 5
  givenname: Antover Panazzolo
  surname: Sarmento
  fullname: Sarmento, Antover Panazzolo
  organization: Federal University of Catalão
– sequence: 6
  givenname: Daniel
  surname: de Lima Araújo
  fullname: de Lima Araújo, Daniel
  organization: Federal University of Goiás
– sequence: 7
  givenname: Gustavo
  surname: de Assis Costa
  fullname: de Assis Costa, Gustavo
  organization: Federal Institute of Goiás–Campus Jataí
– sequence: 8
  givenname: Roberto Viegas
  surname: Dutra
  fullname: Dutra, Roberto Viegas
  organization: Federal University of Catalão
BookMark eNp9kE1LxDAQhoMoqKt_wFPAc3WStE17FPELFrzoUUI2nexGuklNsoL_3rirCB48hMnA-8wMzzHZ98EjIWcMLhiAvEy1aGVdAS-v9Lzq9sgRlwIq2UG3__OXfX1ITlN6LSEuGXDOj8jL1TSNzujsgqfBUh2zs844PVLnM46jW6I3SNdhwDHRHOgUcXAm07xCasK6tCm5d6QpR_TLvPqaYoI3ETOekAOrx4Sn33VGnm9vnq7vq_nj3cP11bwyrK27SgwGrC63SgQjFkxzxgGtNrxuWd_phdGmRrC2WdRtOwy6YR1AL2vZMAmDFDNyvps7xfC2wZTVa9hEX1YqAUL0DYeelxTfpUwMKUW0aopureOHYqC-TKqdSVVMqq1J1RWo-wMZl7e6ctRu_B8VOzSVPX6J8feqf6hP1daKqA
CitedBy_id crossref_primary_10_1016_j_nanoso_2024_101373
crossref_primary_10_1590_1517_7076_rmat_2024_0315
Cites_doi 10.1016/j.cemconres.2004.07.037
10.1016/S0008-8846(98)00165-3
10.3390/f14081552
10.1155/2016/7648467
10.1016/j.eij.2015.06.005
10.1109/23.589532
10.18512/rbms2022vol21e1257
10.1016/j.cemconcomp.2020.103597
10.1007/978-981-32-9990-0
10.1016/j.conbuildmat.2020.120800
10.1016/j.cemconcomp.2010.09.020
10.1016/j.jclepro.2020.122922
10.1016/j.jobe.2015.09.003
10.1016/j.conbuildmat.2019.117000
10.3390/ma13051023
10.1016/j.cemconres.2006.01.005
10.1016/j.engappai.2013.03.014
10.1007/978-3-319-50017-1
10.1016/j.conbuildmat.2020.121117
10.1016/j.cemconres.2003.12.022
10.1016/j.conbuildmat.2005.06.051
10.1016/j.engstruct.2018.09.074
10.1016/j.csbj.2018.01.001
10.1016/j.cemconcomp.2021.104114
10.1016/j.aca.2018.10.055
10.3905/jfds.2020.1.042
10.3390/ma12020299
10.1016/j.advengsoft.2008.05.005
10.1016/S0008-8846(03)00004-8
10.1590/s1517-707620190003.0758
10.3389/fnbot.2013.00021
10.1016/j.conbuildmat.2020.118152
10.1017/CBO9781107298019
10.1016/S0008-8846(00)00397-5
10.1016/j.cemconres.2004.04.017
10.1016/j.cemconcomp.2007.01.001
10.1016/0951-8320(96)00002-6
10.1038/s41598-023-30606-y
10.1016/j.conbuildmat.2014.09.054
10.1016/j.mtcomm.2021.102278
10.1016/j.media.2016.06.037
10.1016/j.conbuildmat.2005.08.009
10.1590/0103-6513.20190144
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s43674-024-00072-8
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2730-7808
ExternalDocumentID 10_1007_s43674_024_00072_8
GroupedDBID 0R~
406
88I
AACDK
AAFHI
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABJNI
ABTEG
ABTKH
ABUWG
ACAOD
ACDTI
ACHSB
ACPIV
ACYDH
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AGMZJ
AGQEE
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DPUIP
DWQXO
EBLON
EBS
FIGPU
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
M2P
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
ABRTQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c1648-3dc0fa8087e0c3b1a2120efac246198abcac4e0ff5b466dda5180097475170d73
IEDL.DBID 8FG
ISSN 2730-7794
IngestDate Fri Jul 25 09:38:25 EDT 2025
Tue Jul 01 01:37:59 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Trees
Regressions
Prediction
Concrete
Compressive strength
Artificial intelligence
Ensembles
Mix proportioning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1648-3dc0fa8087e0c3b1a2120efac246198abcac4e0ff5b466dda5180097475170d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7404-3666
PQID 3033952092
PQPubID 6623282
ParticipantIDs proquest_journals_3033952092
crossref_primary_10_1007_s43674_024_00072_8
crossref_citationtrail_10_1007_s43674_024_00072_8
springer_journals_10_1007_s43674_024_00072_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Salerno
PublicationTitle Advances in computational intelligence
PublicationTitleAbbrev Adv. in Comp. Int
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Abbass, Khan, Mourad (CR1) 2019; 12
Kang, Yoo, Gupta (CR27) 2021; 266
Bilim, Atiş, Tanyildizi (CR9) 2009; 40
Demirboğa, Türkmen, Karakoç (CR14) 2004; 34
Fan, Yu, Shui (CR18) 2020; 110
CR38
Erdal (CR17) 2013; 26
Lee, Lee, Lee (CR29) 2006; 36
Pala, Özbay, Öztaş (CR40) 2007; 21
Natekin, Knoll (CR35) 2013
CR31
Shalev-Shwartz, Ben-David (CR46) 2014
Jiang, Malhotra (CR26) 2000; 30
Singh, Munjal, Thammishetti (CR47) 2015; 4
Zhang, Huang, Aslani (CR55) 2020; 273
Behnood, Golafshani (CR8) 2020; 243
Hild-Aono, Gonzaga-Pimenta, Francisco (CR22) 2022
Komura, Ishikawa (CR28) 2018; 16
Chou, Tsai, Pham (CR13) 2014; 73
CR45
CR44
Breiman (CR11) 1998
Yeh (CR53) 1998; 28
Arroyo, Christoforo, Salvini (CR4) 2020; 262
Madabhushi, Lee (CR30) 2016; 33
Homma, Saltelli (CR23) 1996; 52
Isinkaye, Folajimi, Ojokoh (CR25) 2015; 16
Al-Shamiri, Yuan, Kim (CR3) 2020; 13
Beck (CR7) 2009
Igual, Seguí (CR24) 2017
Chopra, Sharma, Kumar (CR12) 2016; 2016
Güçlüer, Özbeyaz, Göymen (CR21) 2021; 27
Yaseen, Tran, Kim (CR52) 2018; 177
Bouzoubaâ, Fournier (CR10) 2003; 33
CR51
Mirjalili, Faris, Aljarah (CR33) 2020
CR50
Géron (CR20) 2019
Pakzad, Roshan, Ghalehnovi (CR39) 2023; 13
Duran-Atiş (CR15) 2005; 35
Montgomery (CR34) 2013
Ribeiro, Pinto, Amorim Júnior (CR43) 2021; 122
Alabduljabbar, Khan, Awan (CR2) 2023; 18
(CR6) 2018
Arroyo, Borges, Junior (CR5) 2023; 14
Oner, Akyuz (CR37) 2007; 29
Sonebi (CR49) 2004; 34
Yen, Hsu, Liu (CR54) 2007; 21
Sola, Sevilla (CR48) 1997; 44
Pitroda (CR41) 2014; 1
Durán-Herrera, Juárez, Valdez (CR16) 2011; 33
Oliveri, Malegori, Simonetti (CR36) 2019; 1058
Feng, Liu, Wang (CR19) 2020; 230
Milhomem, Dantas (CR32) 2020; 30
Zhang, Zohren, Roberts (CR56) 2020; 2
Rauecker, Pereira Junior, Pituba (CR42) 2019; 24
M Sonebi (72_CR49) 2004; 34
FN Arroyo (72_CR4) 2020; 262
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (72_CR6) 2018
L Breiman (72_CR11) 1998
W Abbass (72_CR1) 2019; 12
72_CR51
J Sola (72_CR48) 1997; 44
72_CR50
SM Beck (72_CR7) 2009
D Komura (72_CR28) 2018; 16
J Zhang (72_CR55) 2020; 273
C Duran-Atiş (72_CR15) 2005; 35
J-S Chou (72_CR13) 2014; 73
DC Montgomery (72_CR34) 2013
L Igual (72_CR24) 2017
SB Singh (72_CR47) 2015; 4
DA Milhomem (72_CR32) 2020; 30
P Chopra (72_CR12) 2016; 2016
K Güçlüer (72_CR21) 2021; 27
ZM Yaseen (72_CR52) 2018; 177
A Géron (72_CR20) 2019
A Hild-Aono (72_CR22) 2022
DV Ribeiro (72_CR43) 2021; 122
72_CR44
S Shalev-Shwartz (72_CR46) 2014
M Pala (72_CR40) 2007; 21
C Bilim (72_CR9) 2009; 40
72_CR45
AK Al-Shamiri (72_CR3) 2020; 13
A Oner (72_CR37) 2007; 29
DQ Fan (72_CR18) 2020; 110
A Durán-Herrera (72_CR16) 2011; 33
FO Isinkaye (72_CR25) 2015; 16
N Bouzoubaâ (72_CR10) 2003; 33
T Yen (72_CR54) 2007; 21
A Madabhushi (72_CR30) 2016; 33
72_CR31
S Mirjalili (72_CR33) 2020
P Oliveri (72_CR36) 2019; 1058
M-C Kang (72_CR27) 2021; 266
R Demirboğa (72_CR14) 2004; 34
72_CR38
J Pitroda (72_CR41) 2014; 1
HI Erdal (72_CR17) 2013; 26
A Natekin (72_CR35) 2013
T Homma (72_CR23) 1996; 52
A Behnood (72_CR8) 2020; 243
JCN Rauecker (72_CR42) 2019; 24
KM Lee (72_CR29) 2006; 36
Z Zhang (72_CR56) 2020; 2
FN Arroyo (72_CR5) 2023; 14
H Alabduljabbar (72_CR2) 2023; 18
I-C Yeh (72_CR53) 1998; 28
LH Jiang (72_CR26) 2000; 30
SS Pakzad (72_CR39) 2023; 13
D-C Feng (72_CR19) 2020; 230
References_xml – ident: CR45
– year: 1998
  ident: CR11
  publication-title: Classification and regression trees
– year: 2019
  ident: CR20
  publication-title: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems
– volume: 35
  start-page: 1112
  issue: 6
  year: 2005
  end-page: 1121
  ident: CR15
  article-title: Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.07.037
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  end-page: 1808
  ident: CR53
  article-title: Modeling of strength of high-performance concrete using artificial neural networks
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(98)00165-3
– ident: CR51
– volume: 14
  start-page: 1552
  issue: 8
  year: 2023
  ident: CR5
  article-title: Estimation of flexural tensile strength as a function of shear of timber structures
  publication-title: Forests
  doi: 10.3390/f14081552
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR12
  article-title: Prediction of compressive strength of concrete using artificial neural network and genetic programming
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2016/7648467
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  end-page: 273
  ident: CR25
  article-title: Recommendation systems: principles, methods and evaluation
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2015.06.005
– volume: 18
  year: 2023
  ident: CR2
  article-title: Predicting ultra-high-performance concrete compressive strength using gene expression programming method
  publication-title: Case Stud Constr Mater
– volume: 44
  start-page: 1464
  issue: 3
  year: 1997
  end-page: 1468
  ident: CR48
  article-title: Importance of input data normalization for the application of neural networks to complex industrial problems
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/23.589532
– year: 2022
  ident: CR22
  article-title: Machine learning for crop science: applications and perspectives in maize breeding
  publication-title: Rev Bras Milho Sorgo
  doi: 10.18512/rbms2022vol21e1257
– volume: 110
  year: 2020
  ident: CR18
  article-title: A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2020.103597
– year: 2020
  ident: CR33
  publication-title: Evolutionary machine learning techniques: algorithms and applications
  doi: 10.1007/978-981-32-9990-0
– volume: 262
  year: 2020
  ident: CR4
  article-title: Development of plaster foam for thermal and acoustic applications
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.120800
– volume: 33
  start-page: 39
  issue: 1
  year: 2011
  end-page: 45
  ident: CR16
  article-title: Evaluation of sustainable high-volume fly ash concretes
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2010.09.020
– volume: 273
  year: 2020
  ident: CR55
  article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122922
– year: 2018
  ident: CR6
  publication-title: ABNT NBR 5739 - Concreto - Ensaios de compressão de corpos-de-prova cilíndricos
– volume: 4
  start-page: 94
  year: 2015
  end-page: 100
  ident: CR47
  article-title: Role of water/cement ratio on strength development of cement mortar
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2015.09.003
– ident: CR50
– volume: 230
  year: 2020
  ident: CR19
  article-title: Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117000
– volume: 13
  start-page: 1023
  issue: 5
  year: 2020
  ident: CR3
  article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete
  publication-title: Materials
  doi: 10.3390/ma13051023
– volume: 36
  start-page: 1279
  issue: 7
  year: 2006
  end-page: 1285
  ident: CR29
  article-title: Autogenous shrinkage of concrete containing granulated blast-furnace slag
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2006.01.005
– volume: 26
  start-page: 1689
  issue: 7
  year: 2013
  end-page: 1697
  ident: CR17
  article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.03.014
– year: 2017
  ident: CR24
  publication-title: Introduction to data science
  doi: 10.1007/978-3-319-50017-1
– volume: 266
  year: 2021
  ident: CR27
  article-title: Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.121117
– volume: 34
  start-page: 1199
  issue: 7
  year: 2004
  end-page: 1208
  ident: CR49
  article-title: Medium strength self-compacting concrete containing fly ash: modelling using factorial experimental plans
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2003.12.022
– volume: 21
  start-page: 458
  issue: 2
  year: 2007
  end-page: 463
  ident: CR54
  article-title: Influence of class F fly ash on the abrasion–erosion resistance of high-strength concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.06.051
– volume: 177
  start-page: 244
  year: 2018
  end-page: 255
  ident: CR52
  article-title: Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.09.074
– volume: 16
  start-page: 34
  year: 2018
  end-page: 42
  ident: CR28
  article-title: Machine learning methods for histopathological image analysis
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2018.01.001
– volume: 122
  start-page: 104114
  year: 2021
  ident: CR43
  article-title: Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2021.104114
– year: 2009
  ident: CR7
  publication-title: Efeitos nas propriedades mecânicas, elásticas e de deformação em concretos com altos teores de escória e cinza volante
– volume: 1058
  start-page: 9
  year: 2019
  end-page: 17
  ident: CR36
  article-title: The impact of signal pre-processing on the final interpretation of analytical outcomes—a tutorial
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.10.055
– volume: 1
  start-page: 1
  year: 2014
  end-page: 11
  ident: CR41
  article-title: Prediction of strength for fly ash cement concrete through soft computing approaches
  publication-title: Int J Adv Res Eng, Sci Manag
– volume: 2
  start-page: 8
  issue: 4
  year: 2020
  end-page: 20
  ident: CR56
  article-title: Deep learning for portfolio optimization
  publication-title: J Financ Data Sci
  doi: 10.3905/jfds.2020.1.042
– volume: 12
  start-page: 299
  issue: 2
  year: 2019
  ident: CR1
  article-title: Experimentation and predictive models for properties of concrete added with active and inactive SiO fillers
  publication-title: Materials
  doi: 10.3390/ma12020299
– volume: 40
  start-page: 334
  issue: 5
  year: 2009
  end-page: 340
  ident: CR9
  article-title: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.05.005
– volume: 33
  start-page: 1029
  issue: 7
  year: 2003
  end-page: 1037
  ident: CR10
  article-title: Optimization of fly ash content in concrete
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(03)00004-8
– volume: 24
  start-page: e12476
  issue: 3
  year: 2019
  ident: CR42
  article-title: Uma abordagem experimental e numérica para determinação de curvas de compressão para concreto simples e reforçados com fibras de aço
  publication-title: Matéria (rio De Janeiro)
  doi: 10.1590/s1517-707620190003.0758
– year: 2013
  ident: CR35
  article-title: Gradient boosting machines, a tutorial
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2013.00021
– volume: 243
  year: 2020
  ident: CR8
  article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.118152
– year: 2014
  ident: CR46
  publication-title: Understanding machine learning: from theory to algorithms
  doi: 10.1017/CBO9781107298019
– volume: 30
  start-page: 1785
  issue: 11
  year: 2000
  end-page: 1789
  ident: CR26
  article-title: Reduction in water demand of non-air-entrained concrete incorporating large volumes of fly ash
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(00)00397-5
– ident: CR44
– volume: 34
  start-page: 2329
  issue: 12
  year: 2004
  end-page: 2336
  ident: CR14
  article-title: Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.04.017
– volume: 29
  start-page: 505
  issue: 6
  year: 2007
  end-page: 514
  ident: CR37
  article-title: An experimental study on optimum usage of GGBS for the compressive strength of concrete
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2007.01.001
– ident: CR38
– ident: CR31
– volume: 52
  start-page: 1
  issue: 1
  year: 1996
  end-page: 17
  ident: CR23
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/0951-8320(96)00002-6
– volume: 13
  start-page: 3646
  issue: 1
  year: 2023
  ident: CR39
  article-title: Comparison of various machine learning algorithms used for compressive strength prediction of steel fiber-reinforced concrete
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-30606-y
– volume: 73
  start-page: 771
  year: 2014
  end-page: 780
  ident: CR13
  article-title: Machine learning in concrete strength simulations: multi-nation data analytics
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.09.054
– volume: 27
  year: 2021
  ident: CR21
  article-title: A comparative investigation using machine learning methods for concrete compressive strength estimation
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.102278
– volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  ident: CR30
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.037
– start-page: 2013
  year: 2013
  ident: CR34
  publication-title: Design and analysis of experiments
– volume: 21
  start-page: 384
  issue: 2
  year: 2007
  end-page: 394
  ident: CR40
  article-title: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume: 30
  year: 2020
  ident: CR32
  article-title: Analysis of new approaches used in portfolio optimization: a systematic literature review
  publication-title: Production
  doi: 10.1590/0103-6513.20190144
– volume: 21
  start-page: 458
  issue: 2
  year: 2007
  ident: 72_CR54
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.06.051
– volume: 122
  start-page: 104114
  year: 2021
  ident: 72_CR43
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2021.104114
– volume: 230
  year: 2020
  ident: 72_CR19
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2019.117000
– year: 2022
  ident: 72_CR22
  publication-title: Rev Bras Milho Sorgo
  doi: 10.18512/rbms2022vol21e1257
– volume: 26
  start-page: 1689
  issue: 7
  year: 2013
  ident: 72_CR17
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2013.03.014
– volume: 40
  start-page: 334
  issue: 5
  year: 2009
  ident: 72_CR9
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2008.05.005
– volume: 2016
  start-page: 1
  year: 2016
  ident: 72_CR12
  publication-title: Adv Mater Sci Eng
  doi: 10.1155/2016/7648467
– volume: 35
  start-page: 1112
  issue: 6
  year: 2005
  ident: 72_CR15
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.07.037
– volume: 34
  start-page: 2329
  issue: 12
  year: 2004
  ident: 72_CR14
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2004.04.017
– volume: 27
  year: 2021
  ident: 72_CR21
  publication-title: Mater Today Commun
  doi: 10.1016/j.mtcomm.2021.102278
– volume: 177
  start-page: 244
  year: 2018
  ident: 72_CR52
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.09.074
– volume: 110
  year: 2020
  ident: 72_CR18
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2020.103597
– volume: 16
  start-page: 34
  year: 2018
  ident: 72_CR28
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2018.01.001
– volume: 1058
  start-page: 9
  year: 2019
  ident: 72_CR36
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2018.10.055
– volume-title: ABNT NBR 5739 - Concreto - Ensaios de compressão de corpos-de-prova cilíndricos
  year: 2018
  ident: 72_CR6
– volume: 33
  start-page: 1029
  issue: 7
  year: 2003
  ident: 72_CR10
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(03)00004-8
– volume: 2
  start-page: 8
  issue: 4
  year: 2020
  ident: 72_CR56
  publication-title: J Financ Data Sci
  doi: 10.3905/jfds.2020.1.042
– volume: 18
  year: 2023
  ident: 72_CR2
  publication-title: Case Stud Constr Mater
– volume-title: Evolutionary machine learning techniques: algorithms and applications
  year: 2020
  ident: 72_CR33
  doi: 10.1007/978-981-32-9990-0
– ident: 72_CR51
– volume: 44
  start-page: 1464
  issue: 3
  year: 1997
  ident: 72_CR48
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/23.589532
– volume: 24
  start-page: e12476
  issue: 3
  year: 2019
  ident: 72_CR42
  publication-title: Matéria (rio De Janeiro)
  doi: 10.1590/s1517-707620190003.0758
– volume: 243
  year: 2020
  ident: 72_CR8
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.118152
– volume: 73
  start-page: 771
  year: 2014
  ident: 72_CR13
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.09.054
– volume: 13
  start-page: 1023
  issue: 5
  year: 2020
  ident: 72_CR3
  publication-title: Materials
  doi: 10.3390/ma13051023
– volume: 33
  start-page: 170
  year: 2016
  ident: 72_CR30
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.037
– volume: 13
  start-page: 3646
  issue: 1
  year: 2023
  ident: 72_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-30606-y
– ident: 72_CR44
– volume: 34
  start-page: 1199
  issue: 7
  year: 2004
  ident: 72_CR49
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2003.12.022
– volume: 266
  year: 2021
  ident: 72_CR27
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.121117
– ident: 72_CR31
– volume: 30
  start-page: 1785
  issue: 11
  year: 2000
  ident: 72_CR26
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(00)00397-5
– ident: 72_CR38
– ident: 72_CR50
– volume-title: Efeitos nas propriedades mecânicas, elásticas e de deformação em concretos com altos teores de escória e cinza volante
  year: 2009
  ident: 72_CR7
– volume-title: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems
  year: 2019
  ident: 72_CR20
– volume-title: Classification and regression trees
  year: 1998
  ident: 72_CR11
– volume: 21
  start-page: 384
  issue: 2
  year: 2007
  ident: 72_CR40
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2005.08.009
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  ident: 72_CR25
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2015.06.005
– volume: 52
  start-page: 1
  issue: 1
  year: 1996
  ident: 72_CR23
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/0951-8320(96)00002-6
– volume: 30
  year: 2020
  ident: 72_CR32
  publication-title: Production
  doi: 10.1590/0103-6513.20190144
– volume-title: Introduction to data science
  year: 2017
  ident: 72_CR24
  doi: 10.1007/978-3-319-50017-1
– volume: 1
  start-page: 1
  year: 2014
  ident: 72_CR41
  publication-title: Int J Adv Res Eng, Sci Manag
– ident: 72_CR45
– volume: 14
  start-page: 1552
  issue: 8
  year: 2023
  ident: 72_CR5
  publication-title: Forests
  doi: 10.3390/f14081552
– volume-title: Understanding machine learning: from theory to algorithms
  year: 2014
  ident: 72_CR46
  doi: 10.1017/CBO9781107298019
– volume: 36
  start-page: 1279
  issue: 7
  year: 2006
  ident: 72_CR29
  publication-title: Cem Concr Res
  doi: 10.1016/j.cemconres.2006.01.005
– volume: 273
  year: 2020
  ident: 72_CR55
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122922
– year: 2013
  ident: 72_CR35
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2013.00021
– volume: 12
  start-page: 299
  issue: 2
  year: 2019
  ident: 72_CR1
  publication-title: Materials
  doi: 10.3390/ma12020299
– volume: 4
  start-page: 94
  year: 2015
  ident: 72_CR47
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2015.09.003
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  ident: 72_CR53
  publication-title: Cem Concr Res
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 33
  start-page: 39
  issue: 1
  year: 2011
  ident: 72_CR16
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2010.09.020
– start-page: 2013
  volume-title: Design and analysis of experiments
  year: 2013
  ident: 72_CR34
– volume: 29
  start-page: 505
  issue: 6
  year: 2007
  ident: 72_CR37
  publication-title: Cem Concr Compos
  doi: 10.1016/j.cemconcomp.2007.01.001
– volume: 262
  year: 2020
  ident: 72_CR4
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2020.120800
SSID ssj0002710222
Score 2.2616427
Snippet The concrete mixture design and mix proportioning procedure, along with its influence on the compressive strength of concrete, is a well-known problem in civil...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4
SubjectTerms Algorithms
Artificial Intelligence
Compressive strength
Computational Intelligence
Concrete
Datasets
Design
Engineering
Machine Learning
Measurement techniques
Mixtures
Original Article
Problem solving
Proportioning (mixing)
Reinforced concrete
Variables
Title Application of artificial intelligence models to predict the compressive strength of concrete
URI https://link.springer.com/article/10.1007/s43674-024-00072-8
https://www.proquest.com/docview/3033952092
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2730-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710222
  issn: 2730-7794
  databaseCode: AFBBN
  dateStart: 20210522
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-7808
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0002710222
  issn: 2730-7794
  databaseCode: BENPR
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVgQCBCFUnlggwgnsWNnQgW1VAwVQlTqgqLEsQEJNaUN_H7u3KQBJDonueH5cl--u0fIOZM2tpHmyF4WQ4LCQi_OTeYZm1olmMZ9eNhtMY5GE34_FdOq4Las2iprm-gMdV5orJFfgakNY-zZCK7nHx6yRuHtakWhsU3afgCahJPiw7t1jSWQLp9BfjlQZAgkY17NzbjpOR5GknvgpHC0WoJh-O2bmoDzzx2pcz3DPbJbxYy0vzrkfbJlZgfkud9cPdPCUlSB1TYI-vZjzSZ1VDdLWhZ0vsBLmZJCyEexk9x1wH4ZiuMis5fyFaVAdgxhZGkOyWQ4eLodeRVXgqch4VFemGtmU8WUNEyHmZ-CS2IAuMZ9cbFKM51qbpi1IuNRlOep8BXOcHApfMlyGR6R1qyYmWNCrdA8D7hRIkg5pI8gioXCWimtBoxFh_g1SomuFokjn8V7sl6B7JBNANnEIZuoDrlYfzNfrdHY-Ha3Bj-pfqll0ihAh1zWB9I8_l_ayWZpp2QncDqAlZUuaZWLT3MGgUaZ9Zw29Uj7ZjB-ePwGTQvO3w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5t6YFeEKgglkfrQ3uCCG9sx84BVahl2S2PE0hcUEgcu0VCuwsbQPwpfmNnvMkuIJUb5ySjaDwez3hmvg_gG9c-9YmVxF6WYoLCRZSWroicz71R3BIeHnVbnCS9M_n7XJ234KmZhaG2ysYnBkddDi3dke-gqxUp9WzEP0Y3EbFGUXW1odCYmMWhe3zAlG282_-F6_s9jrv7pz97Uc0qEFlMDUwkSst9brjRjltRdHJ03hx_zRKyWmrywuZWOu69KmSSlGWuOoamHaRWHc1LLVDuB_gohRCE1W-6B9M7nViH_In47HDjYOCaynpOJ0zrSZFoGeGhSKPcGh3Ry7NwFuC-qsmGo667CAt1jMr2Jka1BC03-AwXe7NSNxt6RiY3QZ9gV89gPVmg1hmzashGt1QEqhiGmIw610PH7b1jNJ4y-FP9JSmYjWPYWrllOHsXLa7A3GA4cKvAvLKyjKUzKs4lpqsoigvlvdbeondQbeg0WspsDVxO_BnX2RRyOWg2Q81mQbOZacPW9JvRBLbjzbc3GuVn9RYeZzODa8N2syCzx_-Xtva2tK8w3zs9PsqO-ieH6_ApDvZAtzobMFfd3rlNDHKq4kuwLAaX723K_wCxiQmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+artificial+intelligence+models+to+predict+the+compressive+strength+of+concrete&rft.jtitle=Advances+in+computational+intelligence&rft.au=de+Andrade+Cruvinel%2C+Lucas+Elias&rft.au=Pereira%2C+Wanderlei+Malaquias&rft.au=de+Campos%2C+Amanda+Isabela&rft.au=Esp%C3%ADndola%2C+Rog%C3%A9rio+Pinto&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=2&rft.spage=4&rft_id=info:doi/10.1007%2Fs43674-024-00072-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon