RETRACTED ARTICLE: Intelligent traffic monitoring and traffic diagnosis analysis based on neural network algorithm
Traffic sign recognition and lane detection play an important role in traffic flow planning, avoiding traffic accidents, and alleviating traffic chaos. At present, the traffic intelligent recognition rate still needs to be improved. In view of this, based on the neural network algorithm, this study...
Saved in:
| Published in | Neural computing & applications Vol. 33; no. 14; pp. 8107 - 8117 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-020-04899-3 |
Cover
| Abstract | Traffic sign recognition and lane detection play an important role in traffic flow planning, avoiding traffic accidents, and alleviating traffic chaos. At present, the traffic intelligent recognition rate still needs to be improved. In view of this, based on the neural network algorithm, this study constructs an intelligent transportation system based on neural network algorithm, and combines machine vision technology to carry out intelligent monitoring and intelligent diagnosis of traffic system. In addition, this study discusses in detail the core of the monitoring system: multi-target tracking algorithm, and introduces the complete implementation process and details of the system, and highlights the implementation and tracking effect of the multi-target tracker. Finally, this study uses case identification to analyze the effectiveness of the algorithm proposed by this paper. The research results show that the proposed method has certain practical effects and can be used as a reference for subsequent system construction. |
|---|---|
| AbstractList | Traffic sign recognition and lane detection play an important role in traffic flow planning, avoiding traffic accidents, and alleviating traffic chaos. At present, the traffic intelligent recognition rate still needs to be improved. In view of this, based on the neural network algorithm, this study constructs an intelligent transportation system based on neural network algorithm, and combines machine vision technology to carry out intelligent monitoring and intelligent diagnosis of traffic system. In addition, this study discusses in detail the core of the monitoring system: multi-target tracking algorithm, and introduces the complete implementation process and details of the system, and highlights the implementation and tracking effect of the multi-target tracker. Finally, this study uses case identification to analyze the effectiveness of the algorithm proposed by this paper. The research results show that the proposed method has certain practical effects and can be used as a reference for subsequent system construction. |
| Author | Wang, Yantao Suo, Daxiang Wang, Tiezheng Wang, Quan |
| Author_xml | – sequence: 1 givenname: Yantao surname: Wang fullname: Wang, Yantao email: wangyantao@neepu.edu.cn organization: School of Economics and Management, Northeast Electric Power University – sequence: 2 givenname: Quan surname: Wang fullname: Wang, Quan organization: School of Economics and Management, Northeast Electric Power University – sequence: 3 givenname: Daxiang surname: Suo fullname: Suo, Daxiang organization: State Grid Tianjin Electric Power Company – sequence: 4 givenname: Tiezheng surname: Wang fullname: Wang, Tiezheng organization: State Grid Beijing Electric Power Company |
| BookMark | eNp9kMFKAzEQhoNUsK2-gKcFz6uzmex211upqxYKQqnnkG6yNXWb1CRF-vamVhQ89DRhZr7wzzcgPWONIuQ6g9sMYHTnAXKapUAhBVZWVYpnpJ8xxBQhL3ukDxWL44LhBRl4vwYAVpR5n7h5vZiPJ4v6IRnPF9PJrL5PpiaortMrZUISnGhb3SQba3SwTptVIoz8bUstVsZ67WNXdPvDYym8kok1iVE7J7pYwqd174noVpEPb5tLct6Kzqurnzokr4_1YvKczl6eppPxLG2ymDNtgApELFVWgkIFbAlSFWXFKOJIMiGZbCQtGFWsklUrM9bk8XJRqDhGWuCQ3Bz_3Tr7sVM-8LXduRjTc5ozLKscC4hb5XGrcdZ7p1re6CCCtibeqDueAT8Y5kfDPBrm34Y5RpT-Q7dOb4Tbn4bwCPntwaZyf6lOUF81tY-f |
| CitedBy_id | crossref_primary_10_1007_s00521_022_06914_1 crossref_primary_10_1021_acsmaterialslett_2c00911 crossref_primary_10_1007_s00521_022_07338_7 crossref_primary_10_1007_s00521_021_06186_1 crossref_primary_10_1016_j_matcom_2024_08_014 crossref_primary_10_1007_s00521_022_07335_w crossref_primary_10_1016_j_treng_2021_100095 crossref_primary_10_1007_s00521_020_05478_2 crossref_primary_10_1016_j_aej_2023_07_019 crossref_primary_10_1109_TSC_2024_3357707 |
| Cites_doi | 10.2174/2212797611666180309162545 10.1049/iet-pel.2016.0777 10.2514/1.A33587 10.1007/978-3-319-74421-6_33 10.1109/ACCESS.2019.2893481 10.1016/j.trc.2018.01.021 10.1109/TIP.2019.2901407 10.1007/s11432-018-9639-7 10.1109/TMM.2018.2796240 10.1016/j.ymssp.2017.07.025 10.1016/j.ast.2018.04.014 10.2514/1.G001470 10.1039/C7JA00196G 10.1002/stc.1889 10.1016/j.cie.2018.04.037 10.1109/TMM.2017.2751966 10.1109/TITS.2017.2690679 10.1109/TITS.2019.2906038 10.1109/OCEANSE.2005.1511680 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-020-04899-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 8117 |
| ExternalDocumentID | 10_1007_s00521_020_04899_3 |
| Genre | Correction/Retraction |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c1643-c02a3338e180e3e04b0de68942337d4ad4dcd2642e49d9fd14c5899a6e37d3263 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 09:53:30 EDT 2025 Wed Oct 01 02:25:59 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Fri Feb 21 02:43:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Intelligent transportation Neural network algorithm Intelligent detection Abnormal recognition Intelligent diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1643-c02a3338e180e3e04b0de68942337d4ad4dcd2642e49d9fd14c5899a6e37d3263 |
| Notes | ObjectType-Correction/Retraction-1 SourceType-Scholarly Journals-1 content type line 14 |
| PQID | 2543895360 |
| PQPubID | 2043988 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2543895360 crossref_citationtrail_10_1007_s00521_020_04899_3 crossref_primary_10_1007_s00521_020_04899_3 springer_journals_10_1007_s00521_020_04899_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210700 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 7 year: 2021 text: 20210700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2021 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Ya-Qin, Hong-Li, Sheng-Ao (CR6) 2018; 158 Liu, MacDonald, Di Maio, Pakzad (CR23) 2019 Qian, Yimin, Youdong (CR22) 2018; 38 Coutinho, Battarra, Fliege (CR18) 2018; 120 van Wyk, Wang, Khojandi (CR15) 2019; 21 Kan, Cen, He (CR17) 2019; 28 Bao, Shi, Beck (CR10) 2017; 24 Gentili, Mirchandani (CR5) 2018; 90 Huang, Qiu, Li (CR24) 2018; 11 Fotouhi, Auger, Propp (CR4) 2017; 10 CR11 Huang, Beauchemin (CR2) 2017; 32 Li, Zhongbin, Xinyun (CR19) 2018; 35 Liu, Jilai (CR3) 2017; 6 Cheng, Yu, Lin (CR16) 2019; 7 Liu, Liu, Mei (CR13) 2017; 20 Allen, Ghoreyshi (CR7) 2018; 77 Bai, Lou, Gao (CR12) 2018; 20 Albisser, Dobre, Berner (CR1) 2017; 54 Yuan, Tang, Han (CR14) 2018; 52 Armanini, De Visser, De Croon (CR8) 2016; 38 Zhu, Zeng, Jin (CR21) 2019; 62 Farroni, Lamberti, Mancinelli (CR9) 2018; 102 Wang, Bialkowski, Pretorius (CR20) 2017; 19 P Liu (4899_CR3) 2017; 6 4899_CR11 D Li (4899_CR19) 2018; 35 Y Bai (4899_CR12) 2018; 20 Z Huang (4899_CR24) 2018; 11 M Albisser (4899_CR1) 2017; 54 J Allen (4899_CR7) 2018; 77 L Huang (4899_CR2) 2017; 32 G Ya-Qin (4899_CR6) 2018; 158 W Qian (4899_CR22) 2018; 38 J Zhu (4899_CR21) 2019; 62 X Liu (4899_CR13) 2017; 20 SF Armanini (4899_CR8) 2016; 38 WP Coutinho (4899_CR18) 2018; 120 F van Wyk (4899_CR15) 2019; 21 Y Bao (4899_CR10) 2017; 24 S Kan (4899_CR17) 2019; 28 Y Wang (4899_CR20) 2017; 19 M Gentili (4899_CR5) 2018; 90 Y Liu (4899_CR23) 2019 F Farroni (4899_CR9) 2018; 102 HY Cheng (4899_CR16) 2019; 7 A Fotouhi (4899_CR4) 2017; 10 GP Yuan (4899_CR14) 2018; 52 |
| References_xml | – volume: 6 start-page: 1 issue: 3 year: 2017 end-page: 15 ident: CR3 article-title: Identification of charging behavior characteristic for large-scale heterogeneous electric vehicle fleet publication-title: J Mod Power Syst Clean Energy – volume: 11 start-page: 127 year: 2018 end-page: 134 ident: CR24 article-title: Road traffic sign identification in weak illumination for intelligent vehicle based on machine vision publication-title: Recent Pat Mech Eng doi: 10.2174/2212797611666180309162545 – volume: 10 start-page: 1289 issue: 11 year: 2017 end-page: 1297 ident: CR4 article-title: Electric vehicle battery parameter identification and SOC observability analysis: NiMH and Li-S case studies publication-title: IET Power Electron doi: 10.1049/iet-pel.2016.0777 – volume: 54 start-page: 1 issue: 2 year: 2017 end-page: 10 ident: CR1 article-title: Aerodynamic coefficient identification of a space vehicle from multiple free-flight tests publication-title: J Spacecr Rockets doi: 10.2514/1.A33587 – volume: 158 start-page: 66 year: 2018 end-page: 78 ident: CR6 article-title: Chemical characterization, spatialdistribution, and source identification of organic matter in PM_(2.5) in summertime Shanghai publication-title: China Environ Sci – start-page: 247 year: 2019 end-page: 249 ident: CR23 article-title: Modal parameter identification from measurements of vehicle-bridge interaction publication-title: Dynamics of civil structures doi: 10.1007/978-3-319-74421-6_33 – volume: 7 start-page: 14378 year: 2019 end-page: 14386 ident: CR16 article-title: Ego-lane position identification with event warning applications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893481 – volume: 38 start-page: 1299 issue: 05 year: 2018 end-page: 1303 ident: CR22 article-title: Vehicle re-identification algorithm based on bag of visual words in complicated environments publication-title: J Comput Appl – volume: 90 start-page: 74 year: 2018 end-page: 96 ident: CR5 article-title: Review of optimal sensor location models for travel time estimation publication-title: Transp Res C Emerg Technol doi: 10.1016/j.trc.2018.01.021 – volume: 21 start-page: 1264 issue: 3 year: 2019 end-page: 1276 ident: CR15 article-title: Real-time sensor anomaly detection and identification in automated vehicles publication-title: IEEE Trans Intell Transp Syst – volume: 28 start-page: 5809 issue: 12 year: 2019 end-page: 5823 ident: CR17 article-title: Supervised deep feature embedding with hand crafted feature publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2901407 – volume: 62 start-page: 199101 issue: 9 year: 2019 ident: CR21 article-title: Joint horizontal and vertical deep learning feature for vehicle re-identification publication-title: Sci China Inf Sci doi: 10.1007/s11432-018-9639-7 – ident: CR11 – volume: 20 start-page: 2385 year: 2018 end-page: 2399 ident: CR12 article-title: Group sensitive triplet embedding for vehicle re-identification publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2796240 – volume: 102 start-page: 1 year: 2018 end-page: 22 ident: CR9 article-title: TRIP-ID: a tool for a smart and interactive identification of magic formula tyre model parameters from experimental data acquired on track or test rig publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.07.025 – volume: 35 start-page: 148 issue: 02 year: 2018 end-page: 152 ident: CR19 article-title: Application of convolution neural network in vehicle identification system publication-title: J Anhui Univ Technol (Nat Sci) – volume: 77 start-page: 742 year: 2018 end-page: 754 ident: CR7 article-title: Forced motions design for aerodynamic identification and modeling of a generic missile configuration publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.04.014 – volume: 38 start-page: 526 issue: 12 year: 2016 end-page: 541 ident: CR8 article-title: Time-varying model identification of flapping-wing vehicle dynamics using flight data publication-title: J Guid Control Dyn doi: 10.2514/1.G001470 – volume: 32 start-page: 1601 year: 2017 end-page: 1607 ident: CR2 article-title: Forensic analysis of automotive paint chips for the identification of the vehicle manufacturer, colour and year of production using electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry publication-title: J Anal At Spectrom doi: 10.1039/C7JA00196G – volume: 24 start-page: e1889 issue: 3 year: 2017 ident: CR10 article-title: Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations publication-title: Struct Control Health Monit doi: 10.1002/stc.1889 – volume: 120 start-page: 116 year: 2018 end-page: 128 ident: CR18 article-title: The unmanned aerial vehicle routing and trajectory optimisation problem publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.04.037 – volume: 20 start-page: 645 year: 2017 end-page: 658 ident: CR13 article-title: PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2751966 – volume: 52 start-page: 694 year: 2018 end-page: 702 ident: CR14 article-title: Vehicle category recognition based on deep convolutional neural network publication-title: J Zhejiang Univ (Eng Sci) – volume: 19 start-page: 123 year: 2017 end-page: 128 ident: CR20 article-title: In-road microwave sensor for electronic vehicle identification and tracking: link budget analysis and antenna prototype publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2017.2690679 – volume: 90 start-page: 74 year: 2018 ident: 4899_CR5 publication-title: Transp Res C Emerg Technol doi: 10.1016/j.trc.2018.01.021 – start-page: 247 volume-title: Dynamics of civil structures year: 2019 ident: 4899_CR23 doi: 10.1007/978-3-319-74421-6_33 – volume: 52 start-page: 694 year: 2018 ident: 4899_CR14 publication-title: J Zhejiang Univ (Eng Sci) – volume: 19 start-page: 123 year: 2017 ident: 4899_CR20 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2017.2690679 – volume: 38 start-page: 1299 issue: 05 year: 2018 ident: 4899_CR22 publication-title: J Comput Appl – volume: 38 start-page: 526 issue: 12 year: 2016 ident: 4899_CR8 publication-title: J Guid Control Dyn doi: 10.2514/1.G001470 – volume: 28 start-page: 5809 issue: 12 year: 2019 ident: 4899_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2901407 – volume: 62 start-page: 199101 issue: 9 year: 2019 ident: 4899_CR21 publication-title: Sci China Inf Sci doi: 10.1007/s11432-018-9639-7 – volume: 10 start-page: 1289 issue: 11 year: 2017 ident: 4899_CR4 publication-title: IET Power Electron doi: 10.1049/iet-pel.2016.0777 – volume: 77 start-page: 742 year: 2018 ident: 4899_CR7 publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2018.04.014 – volume: 24 start-page: e1889 issue: 3 year: 2017 ident: 4899_CR10 publication-title: Struct Control Health Monit doi: 10.1002/stc.1889 – volume: 11 start-page: 127 year: 2018 ident: 4899_CR24 publication-title: Recent Pat Mech Eng doi: 10.2174/2212797611666180309162545 – volume: 6 start-page: 1 issue: 3 year: 2017 ident: 4899_CR3 publication-title: J Mod Power Syst Clean Energy – volume: 35 start-page: 148 issue: 02 year: 2018 ident: 4899_CR19 publication-title: J Anhui Univ Technol (Nat Sci) – volume: 20 start-page: 2385 year: 2018 ident: 4899_CR12 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2796240 – volume: 102 start-page: 1 year: 2018 ident: 4899_CR9 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.07.025 – volume: 54 start-page: 1 issue: 2 year: 2017 ident: 4899_CR1 publication-title: J Spacecr Rockets doi: 10.2514/1.A33587 – volume: 120 start-page: 116 year: 2018 ident: 4899_CR18 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.04.037 – volume: 158 start-page: 66 year: 2018 ident: 4899_CR6 publication-title: China Environ Sci – volume: 20 start-page: 645 year: 2017 ident: 4899_CR13 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2751966 – volume: 7 start-page: 14378 year: 2019 ident: 4899_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893481 – volume: 32 start-page: 1601 year: 2017 ident: 4899_CR2 publication-title: J Anal At Spectrom doi: 10.1039/C7JA00196G – volume: 21 start-page: 1264 issue: 3 year: 2019 ident: 4899_CR15 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2906038 – ident: 4899_CR11 doi: 10.1109/OCEANSE.2005.1511680 |
| SSID | ssj0004685 |
| Score | 2.2501338 |
| Snippet | Traffic sign recognition and lane detection play an important role in traffic flow planning, avoiding traffic accidents, and alleviating traffic chaos. At... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8107 |
| SubjectTerms | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Probability and Statistics in Computer Science S. I : Intelligent Computing Methodologies in Machine learning for IoT Applications Special Issue on Intelligent Computing Methodologies in Machine learning for IoT Applications |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oXLyIz4ii6cGbLlm25VFvhIBvDwYSPG36Qo2wGFgu_nqn3YdK1ITbptt2-56Z7TffAJyKEeWqWTeeQNnuMSq4J0Wg8IkxJmp8pJzX-_1D42rAbob1YeoUNs_Q7tmVpDupc2c3-wcTTd_AwhHRSvDoOhQd31YBiu3Lp9vuN39IF4oTLReL6mE0dZb5vZafAulLy1y6GHXypleCQdbSBGbyVl3Esqo-lkgcV-3KFmymCihpJytmG9ZMtAOlLLgDSff6Lsweu_3HdgcPNoI673XnrntBrnP-zpjEM2HZJ8jEHQr280REOk_WCYTvdY6pCe0JsQJTk2lELIcmNiFKEOhEjJ-xfPwy2YNBr9vvXHlpgAZPoZVFPeUHgqKNa2ot31DjM-lr02hxVNFoUzOhmVYaNa7AMK75SNeYqmN3RcPga9Qb6T4UomlkDoCMtC9lg-sWrhYW-JRLyS1AVdGgWZdUlqGWzVKoUvZyG0RjHOa8y25QQxzU0A1qSMtwlpd5T7g7_s1dySY_TPfxPLRUAS17w-2X4Tyby6_Xf9d2uFr2I9gILFjG4YArUIhnC3OM2k4sT9LF_Ql8-fOB priority: 102 providerName: Springer Nature |
| Title | RETRACTED ARTICLE: Intelligent traffic monitoring and traffic diagnosis analysis based on neural network algorithm |
| URI | https://link.springer.com/article/10.1007/s00521-020-04899-3 https://www.proquest.com/docview/2543895360 |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9B-7KXAfvQCl3lh71t0VLbbWMkhLqSAhtUU0cl9hT5q2wSpFDC_8-dk7TbpPUpkR0nkc_23dm_-x3ABz0Xyg56PtKo2yMptIqM5hbvpJS6q-Y2RL1fTvpnM_n1une9BZM6FoZglfWaGBZqt7C0R_6ZgrYTOmuMj-8fIsoaRaerdQoNXaVWcEeBYmwbmpyYsRrQ_JJOvk__iJQMSTrRpyG8jxRVGE0IpqMdUizlBHdELyQSf6uqtf35z5Fp0ETjXXhZmZBsWMp8D7Z8_gp26vQMrJqtr2E5Ta-mwxEuTQyt1vPRRXrIzlcMnAUrlpr4I9hdmNb0LaZztyp2JQjv9yOWlsQljFSeY4ucEQsm_kJeYsiZvr3B9sWvuzcwG6dXo7OoSrEQWfSTRGRjrgV6qb6bxF74WJrY-X6i0MgSAye1k846tJm4l8qpuetK28O-0X2P1Wj5ibfQyBe5fwds7mJj-solKG_JY6GMUQQxtYIPekaYFnTr3sxsxT9OaTBusxVzcpBAhhLIggQy0YKPqzb3JfvGxqfbtZCyaiY-Zutx04JPteDW1f9_2_7mtx3AC07wloDcbUOjWD7592ifFKYD28n4tAPN4cnlxQ-6nv78lnaqoYi1Mz58BgUu5R4 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcGAvvHZXW54-wGk32tR2H0ZCCEpRC6VaVUXilvWrCxKk0AYh_hy_jbHjtIAEN26RHU8Sz2Q8Y898A7AtB0zoWsVGEtf2iDMpIiWpxivOuSyLgfZZ72fdauucn1xULmbgqciFcWGVhU70itoMtdsj_-OStuvurDHev72LXNUod7palNCQobSC2fMQYyGx49Q-PqALN95rHyG_dyg9bvYbrShUGYg0ugos0jGVDB01W67HltmYq9jYal2gncFqhkvDjTZoNlDLhREDU-a6gk6KrFrsRuOHId0vMIcfJ9D5mztsdv_2XmRm-qKg6EO5-CLOQtqOT95zO7LYSl14JRKM2OulcWrvvjmi9Svf8RIsBJOVHOQytgwzNl2BxaIcBAna4RuMes1-76CBqpCgldxudJq7pD1B_MxINpIOr4LceDXinkVkaibNJg_6uxpjaw6UQtwSa8gwJQ51E18hzWPWibz-j-Ozy5vvcP4pk_0DZtNhan8CGZhYqaowdZQvTmMmlBIupFUzWqsopkpQLmYz0QHv3JXduE4mSM2eAwlyIPEcSFgJfk3G3OZoHx_evV4wKQl__jiZymkJfheMm3a_T231Y2pbMN_qn3WSTrt7ugZfqQut8VHD6zCbje7tBtpGmdoMAkjg32fL_DNXahu6 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UE-OLdyOK2gffdGGsHay-EYSIIjEEEt6W3qYmMAjM_-9pdwGNmvi29Lalp905p_3OdxC65hFhsuFrh4NudyjhzBHck_BEKeU1Fkkb9f7crz-M6OPYH69F8Vu0e34lmcY0GJamOKnOVVQtAt_MaSa4wZ6BJoLH4JBNtEUNUQKs6JHXXIuMtEk5wYcx-B5KsrCZn8f4qppW9ua3K1KreTr7aDczGXEzlfEB2tDxIdrL0zHgbHceocWgPRw0W_ArwmCldlu99h3uFoybCU4W3PBF4KndxuZdmMeqKFYp6O59CaUpUQk2Kk7hWYwN6yV8QpxixjGfvEL_5G16jEad9rD14GQpFRwJfhFxpOtxAl6prgWuJtqlwlW6HjAwqkhDUa6okgpsJE9TplikalT6MDe8rqEaLD1ygkrxLNanCEfKFaLOVADypZ5LmBDMQEol8Rq-IKKMavlshjLjGzdpLyZhwZRsJRCCBEIrgZCU0U3RZ56ybfzZupILKcx23jI0wf2BuZN2y-g2F9yq-vfRzv7X_Aptv9x3wl63_3SOdjyDdLEg3goqJYsPfQGmSiIu7Wr8BN233ak |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RETRACTED+ARTICLE%3A+Intelligent+traffic+monitoring+and+traffic+diagnosis+analysis+based+on+neural+network+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Wang%2C+Yantao&rft.au=Wang%2C+Quan&rft.au=Suo%2C+Daxiang&rft.au=Wang%2C+Tiezheng&rft.date=2021-07-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=14&rft.spage=8107&rft.epage=8117&rft_id=info:doi/10.1007%2Fs00521-020-04899-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_020_04899_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |