A robust machine learning approach for multiclass Alzheimer’s disease detection using 3D brain magnetic resonance images
Alzheimer’s disease (AD), a progressive dementia is the neurodegenerative disorder that worsens memory and mental capabilities mostly in aged people. Currently, clinical and psychometric assessments are being used to diagnose the disease in patients. In clinical procedures, 3D Magnetic Resonance Ima...
        Saved in:
      
    
          | Published in | Maǧallaẗ al-abḥath al-handasiyyaẗ Vol. 10; no. 2 A; pp. 82 - 94 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kuwait
          Kuwait University, Academic Publication Council
    
        01.06.2022
     | 
| Online Access | Get full text | 
| ISSN | 2307-1877 2307-1885 2307-1885  | 
| DOI | 10.36909/jer.10511 | 
Cover
| Abstract | Alzheimer’s disease (AD), a progressive dementia is the neurodegenerative disorder that worsens memory and mental capabilities mostly in aged people. Currently, clinical and psychometric assessments are being used to diagnose the disease in patients. In clinical procedures, 3D Magnetic Resonance Image qualitative parameters are analyzed to identify the abnormality in brain shape, volume, texture, and cortical thickness. This paper presents a robust approach for categorizing 3D MR images into multiple stages of AD using hybrid features viz., Gray Level Co-occurrence Matrix (GLCM), 3D Scale and rotation Invariant Feature Transform (3D SIFT), HOG-TOP and CLBPSM-TOP. The proposed algorithm is validated using Open Access Series of Imaging Studies (OASIS) datasets to classify the subjects into AD, Mild Cognitive Impairment (MCI) and Cognitive Normal (CN) categories using various classifiers. Moreover, this approach is also evaluated and compared with the state of the art techniques. 86.49% diagnosis accuracy is achieved with Ensemble classifier using hybrid features to diagnose the severity of AD. This approach also outperforms majority of these techniques in key parameters viz., accuracy, precision, recall and F1-score. | 
    
|---|---|
| AbstractList | Alzheimer’s disease (AD), a progressive dementia is the neurodegenerative disorder that worsens memory and mental capabilities mostly in aged people. Currently, clinical and psychometric assessments are being used to diagnose the disease in patients. In clinical procedures, 3D Magnetic Resonance Image qualitative parameters are analyzed to identify the abnormality in brain shape, volume, texture, and cortical thickness. This paper presents a robust approach for categorizing 3D MR images into multiple stages of AD using hybrid features viz., Gray Level Co-occurrence Matrix (GLCM), 3D Scale and rotation Invariant Feature Transform (3D SIFT), HOG-TOP and CLBPSM-TOP. The proposed algorithm is validated using Open Access Series of Imaging Studies (OASIS) datasets to classify the subjects into AD, Mild Cognitive Impairment (MCI) and Cognitive Normal (CN) categories using various classifiers. Moreover, this approach is also evaluated and compared with the state of the art techniques. 86.49% diagnosis accuracy is achieved with Ensemble classifier using hybrid features to diagnose the severity of AD. This approach also outperforms majority of these techniques in key parameters viz., accuracy, precision, recall and F1-score. | 
    
| Author | Nagireddy, K. Nagarjuna Reddy, G.  | 
    
| Author_xml | – sequence: 1 fullname: Nagarjuna Reddy, G. organization: Research Scholar, Department of ECE, JNTUA, Ananthapuramu, India – sequence: 2 fullname: Nagireddy, K. organization: Professor, Department of ECE, NBKR1ST, Vidyanagar, India  | 
    
| BookMark | eNp9kE1OwzAQhS1UJErphgMgr0EpnsRO0mVVfiUkNrCObGfcukqdyE6F2hXX4HqcBNMi2LGa0eh7T_PeKRm41iEh58AmWT5l0-sV-gkwAXBEhmnGigTKUgx-96I4IeMQVowxYBkXmRiS3Yz6Vm1CT9dSL61D2qD0zroFlV3n23ikpvV0vWl6qxsZAp01uyXaNfrP949AaxtQBqQ19qh72zq6Cd_q7IYqL62LvguHUUs9htZJp5HaeMNwRo6NbAKOf-aIvN7dvswfkqfn-8f57CnRkHNIhDYCmIoBS5WKUtcpUymAMEaVmmvgZWEwVzWChtoUQjOQiss0FVzXdUw5IlcH343r5PZNNk3V-fiC31bAqn1zVWyu2jcX6csDrX0bgkfzP3xxgDESaOQfy6c8jyV_AZUDfjw | 
    
| Cites_doi | 10.1016/0031-3203(95)00067-4 10.1023/B:VISI.0000029664.99615.94 10.1162/jocn.2007.19.9.1498 10.1109/IJCNN.2016.7727336 10.1109/TSMC.1973.4309314 10.1155/2015/572567 10.1016/j.patrec.2016.10.010 10.1111/1467-9868.00196  | 
    
| ContentType | Journal Article | 
    
| DBID | ADJCN AHFXO AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.36909/jer.10511 | 
    
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2307-1885 | 
    
| EndPage | 94 | 
    
| ExternalDocumentID | 10.36909/jer.10511 10_36909_jer_10511 1494610  | 
    
| GroupedDBID | 0R~ 4.4 AAKKN AALRI AAXUO AAYWO ABDBF ABEEZ ABJIA ACACY ACVFH ADCNI ADJCN ADVLN AENEX AEUPX AFGXO AFKAO AFPUW AFWDF AHFXO AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ C24 C6C EBS EJD EOJEC FDB GROUPED_DOAJ OBODZ OK1 RNS SES TUS AAYXX CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1641-5cf510b6908b258cd20b2115ffb8c4c1487fe6bde1c1df75c01ab4a2254cdd453 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2307-1877 2307-1885  | 
    
| IngestDate | Wed Oct 01 15:46:04 EDT 2025 Thu Oct 02 04:21:46 EDT 2025 Thu Sep 25 15:19:22 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 A | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1641-5cf510b6908b258cd20b2115ffb8c4c1487fe6bde1c1df75c01ab4a2254cdd453 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://kuwaitjournals.org/jer/index.php/JER/article/download/10511/2331 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_36909_jer_10511 crossref_primary_10_36909_jer_10511 emarefa_primary_1494610  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-06-01 | 
    
| PublicationDateYYYYMMDD | 2022-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Kuwait | 
    
| PublicationPlace_xml | – name: Kuwait | 
    
| PublicationTitle | Maǧallaẗ al-abḥath al-handasiyyaẗ | 
    
| PublicationYear | 2022 | 
    
| Publisher | Kuwait University, Academic Publication Council | 
    
| Publisher_xml | – name: Kuwait University, Academic Publication Council | 
    
| References | Nanni (10.36909/jer.10511_bb0075) 2016; 84 Kadhim (10.36909/jer.10511_bb0015) 2017; 26 Marcus (10.36909/jer.10511_bb0055) 2007; 19 10.36909/jer.10511_bb0080 Gayathri (10.36909/jer.10511_bb0095) 2018; 10 mohammad reza (10.36909/jer.10511_bb0020) 2011 Oppedal (10.36909/jer.10511_bb0040) 2015; 2015 Lowe (10.36909/jer.10511_bb0065) 2004; 60 World Alzheimer’s Report (10.36909/jer.10511_bb0005) 2018; 2018 Haralick (10.36909/jer.10511_bb0060) 1973; 3 Sarwinda (10.36909/jer.10511_bb0030) 2018 Mathew (10.36909/jer.10511_bb0050) 2016 Tipping (10.36909/jer.10511_bb0085) 1999; 61 Vapnik (10.36909/jer.10511_bb0090) 1995 10.36909/jer.10511_bb0045 Gad (10.36909/jer.10511_bb0010) 2017 Dietterich (10.36909/jer.10511_bb0100) 2000 Ojala (10.36909/jer.10511_bb0035) 1996; 29 Mondal (10.36909/jer.10511_bb0025) 2014 Nisha (10.36909/jer.10511_bb0070) 2017  | 
    
| References_xml | – volume: 29 start-page: 51 issue: l year: 1996 ident: 10.36909/jer.10511_bb0035 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00067-4 – year: 1995 ident: 10.36909/jer.10511_bb0090 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 10.36909/jer.10511_bb0065 article-title: Distinctive Image Features from Scale-Invariant Keypoints publication-title: International Journal of Computer Vision doi: 10.1023/B:VISI.0000029664.99615.94 – year: 2017 ident: 10.36909/jer.10511_bb0070 article-title: A Study on Sift and Hog Descriptors for Alzheimer's Disease Detection publication-title: International Journal for Scientific Research and Development – ident: 10.36909/jer.10511_bb0045 – volume: 19 start-page: 1498 issue: 9 year: 2007 ident: 10.36909/jer.10511_bb0055 article-title: Open Access Series of Imaging Studies (OASIS): Cross sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.2007.19.9.1498 – ident: 10.36909/jer.10511_bb0080 doi: 10.1109/IJCNN.2016.7727336 – start-page: 1 year: 2016 ident: 10.36909/jer.10511_bb0050 article-title: Robust algorithm for early detection of Alzheimer's disease using multiple feature extractions – volume: 10 start-page: 874 year: 2018 ident: 10.36909/jer.10511_bb0095 article-title: Classification of alzheimer’s disease using k-nearest neighbor and fuzzy k-nearest neighbor publication-title: Journal of Advanced Research in Dynamical and Control Systems. – start-page: 1 year: 2000 ident: 10.36909/jer.10511_bb0100 article-title: Ensemble methods in machine learning – start-page: 50 year: 2017 ident: 10.36909/jer.10511_bb0010 – year: 2011 ident: 10.36909/jer.10511_bb0020 article-title: Automated Diagnosis of Alzheimer Disease using the Scale-Invariant Feature Transforms in Magnetic Resonance Images publication-title: Journal of medical systems. – start-page: 457 year: 2018 ident: 10.36909/jer.10511_bb0030 – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 10.36909/jer.10511_bb0060 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 26 start-page: 57 year: 2017 ident: 10.36909/jer.10511_bb0015 article-title: Alzheimer Disease Diagnosis using the K-means, GLCM and K_NN publication-title: Journal of University of Babylon – volume: 2015 year: 2015 ident: 10.36909/jer.10511_bb0040 article-title: Classifying dementia using local binary patterns from different regions in magnetic resonance images publication-title: Int J Biomed Imaging. doi: 10.1155/2015/572567 – volume: 84 start-page: 259 year: 2016 ident: 10.36909/jer.10511_bb0075 article-title: Combining multiple approaches for the early diagnosis of alzheimer’s disease publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.10.010 – volume: 2018 year: 2018 ident: 10.36909/jer.10511_bb0005 article-title: Alzheimers publication-title: Disease International – start-page: 342 year: 2014 ident: 10.36909/jer.10511_bb0025 article-title: 3D-SIFT feature-based brain atlas generation: An application to early diagnosis of Alzheimer's disease – volume: 61 start-page: 611 issue: 3 year: 1999 ident: 10.36909/jer.10511_bb0085 article-title: Probabilistic principal component analysis publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00196  | 
    
| SSID | ssj0001034535 | 
    
| Score | 2.2038028 | 
    
| Snippet | Alzheimer’s disease (AD), a progressive dementia is the neurodegenerative disorder that worsens memory and mental capabilities mostly in aged people.... | 
    
| SourceID | unpaywall crossref emarefa  | 
    
| SourceType | Open Access Repository Index Database Publisher  | 
    
| StartPage | 82 | 
    
| Title | A robust machine learning approach for multiclass Alzheimer’s disease detection using 3D brain magnetic resonance images | 
    
| URI | https://search.emarefa.net/detail/BIM-1494610 https://kuwaitjournals.org/jer/index.php/JER/article/download/10511/2331  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: ABDBF dateStart: 20130901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 2307-1885 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001034535 issn: 2307-1885 databaseCode: C24 dateStart: 20140601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5FQRVwgJZnoEUrlavj2F479jHioQipEUKNRE_RPkNI4iDHFiIn_gZ_r7-ks5tNoT1UHHpbWau1PbO7883uzDcApwxBPFoO7SUZV57ZJT0WZG2Pa1R2GvJWKM055Lde0u3Tq9v4tgbdVS7MuHpko9LJcW6v8u9V4VvqQMMX4V9d3PhOqL40fPIzJnHpI27ww8gkVK8lMaLyOqz1e9edH7a2nOFBTG0RRtdO4yVTaYS-YWZe0LQj_GGbPqgpwwYarPUqf2BPj2wyeWN6LrdhtProZcTJuFmVvCkWf_E5_o-_-ghbDp-SzrLXJ6ipfAc237AW7sKiQ4oZr-YlmdpITEVc6YkhWTGUE4TCxMYqCoPOSWeyuFOjqSp-Pr_MibsUIlKVNhAsJyb6fkiic8JNxQocd5ib5EpSKOMp4LwkI3ym5nvQv7z4ftb1XAkHT6AfFnix0LjoOYo55WGcChm2OLqcsdY8FVSgL9bWKuFSBSKQuh2LVsA4ZbjJUCEljaN9qOezXB0CMSm1Kk00AlpGg1BxTQMqW4xHGWtzphvwdaW8wcOSqWOAHo5V8QClPbDibMCB0-trJ5oZ0vkGnP7W8z8GOHpft2PYCE2ihD2v-Qz1sqjUF4QvJT-xbv-Jm5-_AGxD89E | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB6hIrTLgcfuAuWxsgTXNE3ipMmx4qEKCbRCVGJPlZ-l0KYoTYToib_B3-OXMHZdXge0h71ZkeUkM7bnG3vmG4ADhiAeLYf2kowrz-ySHguylsc1KjsNeTOU5hzy7DzpdOnpVXy1AJ15Lsxtdc8GpZPjxF7l36jCt9SBhi_CPz2-8J1QfWn45MdM4tJH3OCHkUmoXkxiROU1WOye_2n_tbXlDA9iaoswunYaz5hKI_QNM_OChh3hg21aUiOGDTRY36r8jj3cs-Hwnek5WYXB_KNnESe3jarkDTH9xOf4P_5qDVYcPiXtWa91WFD5D1h-x1r4E6ZtUox5NSnJyEZiKuJKT_TJnKGcIBQmNlZRGHRO2sPptRqMVPH8-DQh7lKISFXaQLCcmOj7PomOCDcVK3Dcfm6SK0mhjKeA85IM8Jma_ILuyfHlYcdzJRw8gX5Y4MVC46LnKOaUh3EqZNjk6HLGWvNUUIG-WEurhEsViEDqViyaAeOU4SZDhZQ0jjaglo9ztQXEpNSqNNEIaBkNQsU1DahsMh5lrMWZrsP-XHm9uxlTRw89HKviHkq7Z8VZh02n17dONDOk83U4eNXzFwNs_1u3HfgemkQJe16zC7WyqNQewpeS_3Yz8wW6zvLc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+machine+learning+approach+for+multiclass+Alzheimer%E2%80%99s+disease+detection+using+3D+brain+magnetic+resonance+images&rft.jtitle=Ma%C7%A7alla%E1%BA%97+al-ab%E1%B8%A5ath+al-handasiyya%E1%BA%97&rft.au=Nagarjuna+Reddy%2C+G.&rft.au=Nagireddy%2C+K.&rft.date=2022-06-01&rft.issn=2307-1877&rft.volume=10&rft.issue=2&rft.spage=82&rft.epage=94&rft_id=info:doi/10.36909%2Fjer.10511&rft.externalDBID=n%2Fa&rft.externalDocID=10_36909_jer_10511 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2307-1877&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2307-1877&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2307-1877&client=summon |