Multiview Spatiotemporal Dynamic Graph Convolution Network for Traffic Flow Prediction

Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rel...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 12; no. 18; pp. 37062 - 37076
Main Authors Zhong, Lihong, Wang, Bin, Tian, Zhao, Rodrigues, Tiago Koketsu, Liu, Wei, She, Wei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2025.3580788

Cover

Abstract Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rely on a single view, which makes it difficult to comprehensively capture multiple levels of spatial and temporal correlations, thus limiting the accuracy of predictions. Therefore, we propose the multiview spatiotemporal dynamic graph convolution framework MVSTDG for more comprehensively exploring and fusing the multiview spatiotemporal features. First, we design a dual-path time-patch convolution module (TPConv) module to separately model short-term fluctuations and long-term periodic trends, enabling effective extraction of dynamic features at multiple temporal scales. Second, we construct a data-driven traffic pattern library to generate dynamic adjacency matrices and integrate them with static topologies view. An adaptive diffusion graph convolutional network (ADGCN) is then employed to model both local and global spatial correlations. In addition, we design a cross-gated spatiotemporal fusion mechanism that adaptively adjusts the contribution of short-term and long-term information, enhances the interaction of spatiotemporal information, and improves the model's adaptive capability under different time scales. The experimental results show that MVSTDG outperforms the state-of-the-art baselines in several evaluation metrics and demonstrates higher prediction accuracy and stability on the four real datasets.
AbstractList Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rely on a single view, which makes it difficult to comprehensively capture multiple levels of spatial and temporal correlations, thus limiting the accuracy of predictions. Therefore, we propose the multiview spatiotemporal dynamic graph convolution framework MVSTDG for more comprehensively exploring and fusing the multiview spatiotemporal features. First, we design a dual-path time-patch convolution module (TPConv) module to separately model short-term fluctuations and long-term periodic trends, enabling effective extraction of dynamic features at multiple temporal scales. Second, we construct a data-driven traffic pattern library to generate dynamic adjacency matrices and integrate them with static topologies view. An adaptive diffusion graph convolutional network (ADGCN) is then employed to model both local and global spatial correlations. In addition, we design a cross-gated spatiotemporal fusion mechanism that adaptively adjusts the contribution of short-term and long-term information, enhances the interaction of spatiotemporal information, and improves the model's adaptive capability under different time scales. The experimental results show that MVSTDG outperforms the state-of-the-art baselines in several evaluation metrics and demonstrates higher prediction accuracy and stability on the four real datasets.
Author She, Wei
Zhong, Lihong
Rodrigues, Tiago Koketsu
Liu, Wei
Tian, Zhao
Wang, Bin
Author_xml – sequence: 1
  givenname: Lihong
  orcidid: 0000-0002-6022-5100
  surname: Zhong
  fullname: Zhong, Lihong
  email: ielihongzhong@gs.zzu.edu.cn
  organization: School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
– sequence: 2
  givenname: Bin
  orcidid: 0009-0009-6323-0501
  surname: Wang
  fullname: Wang, Bin
  email: binwang1005@gs.zzu.edu.cn
  organization: School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China
– sequence: 3
  givenname: Zhao
  orcidid: 0000-0002-1741-4803
  surname: Tian
  fullname: Tian, Zhao
  email: tianzhao@zzu.edu.cn
  organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China
– sequence: 4
  givenname: Tiago Koketsu
  orcidid: 0000-0003-0881-3818
  surname: Rodrigues
  fullname: Rodrigues, Tiago Koketsu
  email: koketsu.rodrigues.tiago.c4@tohoku.ac.jp
  organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-3579-2370
  surname: Liu
  fullname: Liu, Wei
  email: wliu@zzu.edu.cn
  organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0001-8876-3763
  surname: She
  fullname: She, Wei
  email: wshe@zzu.edu.cn
  organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China
BookMark eNpNkE1Lw0AURQepYK39AYKLAdep85GZJEuptlaqFaxuh5nkDaammThJWvrvTWhBV-8uzr0PziUalK4EhK4pmVBKkrvnxWo9YYSJCRcxieL4DA0ZZ1EQSskG__IFGtf1hhDS1QRN5BB9vrRFk-9y2OP3Sje5a2BbOa8L_HAo9TZP8dzr6gtPXblzRdsBJX6FZu_8N7bO47XX1nbUrHB7_OYhy9OeuULnVhc1jE93hD5mj-vpU7BczRfT-2WQUsmbIONMMAsJFRlwzaPUUGGNllRQA9xwqUXIdSgTIFxTyBJjmEkFzYhNtYklH6Hb427l3U8LdaM2rvVl91JxFsZRGBMZdhQ9Uql3de3BqsrnW-0PihLVG1S9QdUbVCeDXefm2MkB4I-nhCfdIv8FO5Nvrg
CODEN IITJAU
Cites_doi 10.1145/3583780.3615160
10.1016/j.trc.2019.09.008
10.1609/aaai.v35i5.16542
10.1016/j.ddtec.2020.11.009
10.1109/MITS.2020.2990165
10.1109/WACV51458.2022.00335
10.1109/TITS.2018.2854913
10.1109/TITS.2022.3157056
10.1109/TITS.2023.3279929
10.1109/JSAC.2024.3365880
10.1109/TVT.2023.3341442
10.1016/j.knosys.2025.112962
10.1109/TNNLS.2020.2978386
10.1109/TKDE.2020.2973981
10.1109/JSAC.2025.3560003
10.1016/j.future.2024.107683
10.1109/TKDE.2021.3072345
10.1016/j.patcog.2023.109670
10.1093/comjnl/bxac086
10.1109/TKDE.2020.3008732
10.1080/13658816.2022.2032081
10.1145/3385414
10.1109/TITS.2021.3054840
10.1109/TITS.2020.3009725
10.1016/j.neucom.2021.03.090
10.14778/3551793.3551827
10.1109/TKDE.2020.3001195
10.1109/TITS.2023.3311397
10.1609/aaai.v34i01.5477
10.24963/ijcai.2018/505
10.1145/3394486.3403118
10.1109/JIOT.2024.3448394
10.1609/aaai.v33i01.3301922
10.1016/j.inffus.2023.102146
10.1109/TITS.2020.2973279
10.1609/aaai.v34i01.5438
10.24963/ijcai.2020/326
10.1109/TITS.2019.2935152
10.1080/23249935.2019.1637966
10.1109/LWC.2025.3530481
10.1109/TCYB.2022.3223918
10.24963/ijcai.2019/264
10.1016/j.engappai.2023.106044
10.1109/TKDE.2020.3008774
10.1109/JIOT.2023.3338741
10.1109/JSAC.2024.3460063
10.1109/TITS.2023.3257759
10.1016/j.knosys.2024.112424
10.1155/2019/4145353
10.1109/JIOT.2025.3538887
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2025.3580788
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 37076
ExternalDocumentID 10_1109_JIOT_2025_3580788
11039643
Genre orig-research
GrantInformation_xml – fundername: Zhengzhou University Science and Technology Innovation Team Cultivation Project
  grantid: 32214110-23
  funderid: 10.13039/501100017700
– fundername: Scientific and Technological Research Project in Henan Province
  grantid: 252102210185
  funderid: 10.13039/501100011447
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c163t-d3252fe915de3a37cb15fba6151be3b36a543a469e03a1ed9bb2bc51d0fcab863
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Sun Oct 26 21:50:18 EDT 2025
Wed Oct 01 05:20:15 EDT 2025
Wed Sep 17 06:32:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 18
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c163t-d3252fe915de3a37cb15fba6151be3b36a543a469e03a1ed9bb2bc51d0fcab863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3579-2370
0000-0002-6022-5100
0000-0001-8876-3763
0000-0003-0881-3818
0009-0009-6323-0501
0000-0002-1741-4803
PQID 3248748064
PQPubID 2040421
PageCount 15
ParticipantIDs crossref_primary_10_1109_JIOT_2025_3580788
ieee_primary_11039643
proquest_journals_3248748064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Sept.15,-15
PublicationDateYYYYMMDD 2025-09-15
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.15,-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref30
ref32
ref2
ref1
ref39
ref38
Zhang (ref46) 2018
Bai (ref33); 33
Lan (ref53)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Li (ref31) 2017
References_xml – ident: ref47
  doi: 10.1145/3583780.3615160
– ident: ref6
  doi: 10.1016/j.trc.2019.09.008
– year: 2018
  ident: ref46
  article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs
  publication-title: arXiv:1803.07294
– ident: ref51
  doi: 10.1609/aaai.v35i5.16542
– ident: ref43
  doi: 10.1016/j.ddtec.2020.11.009
– ident: ref48
  doi: 10.1109/MITS.2020.2990165
– ident: ref40
  doi: 10.1109/WACV51458.2022.00335
– ident: ref25
  doi: 10.1109/TITS.2018.2854913
– ident: ref19
  doi: 10.1109/TITS.2022.3157056
– ident: ref44
  doi: 10.1109/TITS.2023.3279929
– start-page: 11906
  volume-title: Proc. 39th Int. Conf. Mach. Learn.
  ident: ref53
  article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting
– ident: ref4
  doi: 10.1109/JSAC.2024.3365880
– ident: ref3
  doi: 10.1109/TVT.2023.3341442
– ident: ref30
  doi: 10.1016/j.knosys.2025.112962
– ident: ref41
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref37
  doi: 10.1109/TKDE.2020.2973981
– ident: ref18
  doi: 10.1109/JSAC.2025.3560003
– ident: ref20
  doi: 10.1016/j.future.2024.107683
– ident: ref45
  doi: 10.1109/TKDE.2021.3072345
– ident: ref54
  doi: 10.1016/j.patcog.2023.109670
– ident: ref39
  doi: 10.1093/comjnl/bxac086
– ident: ref42
  doi: 10.1109/TKDE.2020.3008732
– ident: ref22
  doi: 10.1080/13658816.2022.2032081
– ident: ref12
  doi: 10.1145/3385414
– ident: ref1
  doi: 10.1109/TITS.2021.3054840
– ident: ref10
  doi: 10.1109/TITS.2020.3009725
– ident: ref36
  doi: 10.1016/j.neucom.2021.03.090
– ident: ref52
  doi: 10.14778/3551793.3551827
– ident: ref2
  doi: 10.1109/TKDE.2020.3001195
– ident: ref28
  doi: 10.1109/TITS.2023.3311397
– ident: ref34
  doi: 10.1609/aaai.v34i01.5477
– ident: ref15
  doi: 10.24963/ijcai.2018/505
– ident: ref50
  doi: 10.1145/3394486.3403118
– ident: ref9
  doi: 10.1109/JIOT.2024.3448394
– year: 2017
  ident: ref31
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
  publication-title: arXiv:1707.01926
– ident: ref16
  doi: 10.1609/aaai.v33i01.3301922
– volume: 33
  start-page: 17804
  volume-title: Proc. 34th Conf. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– ident: ref27
  doi: 10.1016/j.inffus.2023.102146
– ident: ref11
  doi: 10.1109/TITS.2020.2973279
– ident: ref17
  doi: 10.1609/aaai.v34i01.5438
– ident: ref35
  doi: 10.24963/ijcai.2020/326
– ident: ref49
  doi: 10.1109/TITS.2019.2935152
– ident: ref13
  doi: 10.1080/23249935.2019.1637966
– ident: ref8
  doi: 10.1109/LWC.2025.3530481
– ident: ref29
  doi: 10.1109/TCYB.2022.3223918
– ident: ref32
  doi: 10.24963/ijcai.2019/264
– ident: ref24
  doi: 10.1016/j.engappai.2023.106044
– ident: ref23
  doi: 10.1109/TKDE.2020.3008774
– ident: ref26
  doi: 10.1109/JIOT.2023.3338741
– ident: ref21
  doi: 10.1109/JSAC.2024.3460063
– ident: ref14
  doi: 10.1109/TITS.2023.3257759
– ident: ref38
  doi: 10.1016/j.knosys.2024.112424
– ident: ref7
  doi: 10.1155/2019/4145353
– ident: ref5
  doi: 10.1109/JIOT.2025.3538887
SSID ssj0001105196
Score 2.3538437
Snippet Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 37062
SubjectTerms Adaptation models
Artificial neural networks
Convolution
Correlation
Feature extraction
graph neural network (GNN)
Graph neural networks
intelligent transportation system (ITS)
Intelligent transportation systems
Modules
multiview learning (MVL)
Optimization
Predictive models
Roads
spatiotemporal dependence
Topology
Traffic congestion
Traffic flow
traffic flow prediction
Transportation
Transportation networks
Vehicle dynamics
Title Multiview Spatiotemporal Dynamic Graph Convolution Network for Traffic Flow Prediction
URI https://ieeexplore.ieee.org/document/11039643
https://www.proquest.com/docview/3248748064
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJy_Oj4nTKTl4Eto1TdM2R5nOOXAKbrJbaT52cbQyOwX_evPSlIEieOvhNYT3XvJ-L-8LocuccYM7oshjnBoHJUmpl1KpPE0VXJhRGCgocH6YxuN5NFmwhStWt7UwWmubfKZ9-LSxfFXKDTyVDQjELY0JbaFWksZ1sdb2QYUAGold5JIEfDC5f5wZDzBkPsT6EjtcZWt77DCVXzewNSujDpo2G6qzSV79TSV8-fWjV-O_d7yP9hzAxNe1RhygHV0cok4zvAG7s3yEXmzpLQQG8LPNqnZNqlb4ph5Sj--glzUelsWHU088rXPGsQG62Bg56D6BR6vyEz-tId4DNF00H93OhmPPDVnwpIFiladoyMKl5oQpTXOaSEHYUuQAdISmgsY5i2hunGgd0JxoxYUIhWREBUuZizSmx6hdlIU-QZilRBtqKSQ3bmOg85hL43yrWCcBNO3poauG_dlb3Usjsz5IwDOQVQayypyseqgL7NwSOk72UL-RWOaO23tmUGGaRKmBV6d__HaGdmF1yPQgrI_a1Xqjzw2cqMSFVaNvoL_IdA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHvQiPiM-e_BksrDdtvs4GhVBBU0Ew22zfXCRgEHQxF9vp1tCojHxtofZtJmZdr7pvADOC5FZ3MF5IDJmHZQkZUHKlA4M03hh8ijUWODc6catPr8biIEvVne1MMYYl3xm6vjpYvl6oub4VNagGLe0JnQV1gTnXJTlWssnFYp4JPaxSxpmjbv2Y8_6gJGoY7QvceNVltbHjVP5dQc7w9KsQnexpTKf5LU-n8m6-vrRrfHfe96CTQ8xyWWpE9uwYsY7UF2MbyD-NO_Ciyu-xdAAeXZ51b5N1Yhcl2PqyS12syZXk_GHV1DSLbPGiYW6xJo57D9BmqPJJ3maYsQHafag37zpXbUCP2YhUBaMzQLNIhENTUaFNqxgiZJUDGWBUEcaJllcCM4K60abkBXU6EzKSCpBdThUhUxjtg-V8WRsDoCIlBpLraTKrOMYmiLOlHW_dWySENv21OBiwf78reymkTsvJMxylFWOssq9rGqwh-xcEnpO1uB4IbHcH7j33OLCNOGpBViHf_x2BuutXuchf2h3749gA1fCvA8qjqEym87NiQUXM3nqVOobSADLwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiview+Spatiotemporal+Dynamic+Graph+Convolution+Network+for+Traffic+Flow+Prediction&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhong%2C+Lihong&rft.au=Wang%2C+Bin&rft.au=Zhao%2C+Tian&rft.au=Tiago+Koketsu+Rodrigues&rft.date=2025-09-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=21&rft.spage=37062&rft.epage=37076&rft_id=info:doi/10.1109%2FJIOT.2025.3580788&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon