Multiview Spatiotemporal Dynamic Graph Convolution Network for Traffic Flow Prediction
Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rel...
Saved in:
| Published in | IEEE internet of things journal Vol. 12; no. 18; pp. 37062 - 37076 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
15.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2025.3580788 |
Cover
| Abstract | Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rely on a single view, which makes it difficult to comprehensively capture multiple levels of spatial and temporal correlations, thus limiting the accuracy of predictions. Therefore, we propose the multiview spatiotemporal dynamic graph convolution framework MVSTDG for more comprehensively exploring and fusing the multiview spatiotemporal features. First, we design a dual-path time-patch convolution module (TPConv) module to separately model short-term fluctuations and long-term periodic trends, enabling effective extraction of dynamic features at multiple temporal scales. Second, we construct a data-driven traffic pattern library to generate dynamic adjacency matrices and integrate them with static topologies view. An adaptive diffusion graph convolutional network (ADGCN) is then employed to model both local and global spatial correlations. In addition, we design a cross-gated spatiotemporal fusion mechanism that adaptively adjusts the contribution of short-term and long-term information, enhances the interaction of spatiotemporal information, and improves the model's adaptive capability under different time scales. The experimental results show that MVSTDG outperforms the state-of-the-art baselines in several evaluation metrics and demonstrates higher prediction accuracy and stability on the four real datasets. |
|---|---|
| AbstractList | Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is subject to uncertainties and exhibits complex spatial and temporal dependence and dynamic change characteristics. Moreover, many efforts rely on a single view, which makes it difficult to comprehensively capture multiple levels of spatial and temporal correlations, thus limiting the accuracy of predictions. Therefore, we propose the multiview spatiotemporal dynamic graph convolution framework MVSTDG for more comprehensively exploring and fusing the multiview spatiotemporal features. First, we design a dual-path time-patch convolution module (TPConv) module to separately model short-term fluctuations and long-term periodic trends, enabling effective extraction of dynamic features at multiple temporal scales. Second, we construct a data-driven traffic pattern library to generate dynamic adjacency matrices and integrate them with static topologies view. An adaptive diffusion graph convolutional network (ADGCN) is then employed to model both local and global spatial correlations. In addition, we design a cross-gated spatiotemporal fusion mechanism that adaptively adjusts the contribution of short-term and long-term information, enhances the interaction of spatiotemporal information, and improves the model's adaptive capability under different time scales. The experimental results show that MVSTDG outperforms the state-of-the-art baselines in several evaluation metrics and demonstrates higher prediction accuracy and stability on the four real datasets. |
| Author | She, Wei Zhong, Lihong Rodrigues, Tiago Koketsu Liu, Wei Tian, Zhao Wang, Bin |
| Author_xml | – sequence: 1 givenname: Lihong orcidid: 0000-0002-6022-5100 surname: Zhong fullname: Zhong, Lihong email: ielihongzhong@gs.zzu.edu.cn organization: School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China – sequence: 2 givenname: Bin orcidid: 0009-0009-6323-0501 surname: Wang fullname: Wang, Bin email: binwang1005@gs.zzu.edu.cn organization: School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou, China – sequence: 3 givenname: Zhao orcidid: 0000-0002-1741-4803 surname: Tian fullname: Tian, Zhao email: tianzhao@zzu.edu.cn organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China – sequence: 4 givenname: Tiago Koketsu orcidid: 0000-0003-0881-3818 surname: Rodrigues fullname: Rodrigues, Tiago Koketsu email: koketsu.rodrigues.tiago.c4@tohoku.ac.jp organization: Graduate School of Information Sciences, Tohoku University, Sendai, Japan – sequence: 5 givenname: Wei orcidid: 0000-0003-3579-2370 surname: Liu fullname: Liu, Wei email: wliu@zzu.edu.cn organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China – sequence: 6 givenname: Wei orcidid: 0000-0001-8876-3763 surname: She fullname: She, Wei email: wshe@zzu.edu.cn organization: School of Cyber Science and Engineering, and the Zhengzhou Key Laboratory of Blockchain and Data Intelligence, Zhengzhou University, Zhengzhou, China |
| BookMark | eNpNkE1Lw0AURQepYK39AYKLAdep85GZJEuptlaqFaxuh5nkDaammThJWvrvTWhBV-8uzr0PziUalK4EhK4pmVBKkrvnxWo9YYSJCRcxieL4DA0ZZ1EQSskG__IFGtf1hhDS1QRN5BB9vrRFk-9y2OP3Sje5a2BbOa8L_HAo9TZP8dzr6gtPXblzRdsBJX6FZu_8N7bO47XX1nbUrHB7_OYhy9OeuULnVhc1jE93hD5mj-vpU7BczRfT-2WQUsmbIONMMAsJFRlwzaPUUGGNllRQA9xwqUXIdSgTIFxTyBJjmEkFzYhNtYklH6Hb427l3U8LdaM2rvVl91JxFsZRGBMZdhQ9Uql3de3BqsrnW-0PihLVG1S9QdUbVCeDXefm2MkB4I-nhCfdIv8FO5Nvrg |
| CODEN | IITJAU |
| Cites_doi | 10.1145/3583780.3615160 10.1016/j.trc.2019.09.008 10.1609/aaai.v35i5.16542 10.1016/j.ddtec.2020.11.009 10.1109/MITS.2020.2990165 10.1109/WACV51458.2022.00335 10.1109/TITS.2018.2854913 10.1109/TITS.2022.3157056 10.1109/TITS.2023.3279929 10.1109/JSAC.2024.3365880 10.1109/TVT.2023.3341442 10.1016/j.knosys.2025.112962 10.1109/TNNLS.2020.2978386 10.1109/TKDE.2020.2973981 10.1109/JSAC.2025.3560003 10.1016/j.future.2024.107683 10.1109/TKDE.2021.3072345 10.1016/j.patcog.2023.109670 10.1093/comjnl/bxac086 10.1109/TKDE.2020.3008732 10.1080/13658816.2022.2032081 10.1145/3385414 10.1109/TITS.2021.3054840 10.1109/TITS.2020.3009725 10.1016/j.neucom.2021.03.090 10.14778/3551793.3551827 10.1109/TKDE.2020.3001195 10.1109/TITS.2023.3311397 10.1609/aaai.v34i01.5477 10.24963/ijcai.2018/505 10.1145/3394486.3403118 10.1109/JIOT.2024.3448394 10.1609/aaai.v33i01.3301922 10.1016/j.inffus.2023.102146 10.1109/TITS.2020.2973279 10.1609/aaai.v34i01.5438 10.24963/ijcai.2020/326 10.1109/TITS.2019.2935152 10.1080/23249935.2019.1637966 10.1109/LWC.2025.3530481 10.1109/TCYB.2022.3223918 10.24963/ijcai.2019/264 10.1016/j.engappai.2023.106044 10.1109/TKDE.2020.3008774 10.1109/JIOT.2023.3338741 10.1109/JSAC.2024.3460063 10.1109/TITS.2023.3257759 10.1016/j.knosys.2024.112424 10.1155/2019/4145353 10.1109/JIOT.2025.3538887 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2025.3580788 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 37076 |
| ExternalDocumentID | 10_1109_JIOT_2025_3580788 11039643 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Zhengzhou University Science and Technology Innovation Team Cultivation Project grantid: 32214110-23 funderid: 10.13039/501100017700 – fundername: Scientific and Technological Research Project in Henan Province grantid: 252102210185 funderid: 10.13039/501100011447 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c163t-d3252fe915de3a37cb15fba6151be3b36a543a469e03a1ed9bb2bc51d0fcab863 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Sun Oct 26 21:50:18 EDT 2025 Wed Oct 01 05:20:15 EDT 2025 Wed Sep 17 06:32:48 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-d3252fe915de3a37cb15fba6151be3b36a543a469e03a1ed9bb2bc51d0fcab863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3579-2370 0000-0002-6022-5100 0000-0001-8876-3763 0000-0003-0881-3818 0009-0009-6323-0501 0000-0002-1741-4803 |
| PQID | 3248748064 |
| PQPubID | 2040421 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2025_3580788 ieee_primary_11039643 proquest_journals_3248748064 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Sept.15,-15 |
| PublicationDateYYYYMMDD | 2025-09-15 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-Sept.15,-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref32 ref2 ref1 ref39 ref38 Zhang (ref46) 2018 Bai (ref33); 33 Lan (ref53) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Li (ref31) 2017 |
| References_xml | – ident: ref47 doi: 10.1145/3583780.3615160 – ident: ref6 doi: 10.1016/j.trc.2019.09.008 – year: 2018 ident: ref46 article-title: GaAN: Gated attention networks for learning on large and spatiotemporal graphs publication-title: arXiv:1803.07294 – ident: ref51 doi: 10.1609/aaai.v35i5.16542 – ident: ref43 doi: 10.1016/j.ddtec.2020.11.009 – ident: ref48 doi: 10.1109/MITS.2020.2990165 – ident: ref40 doi: 10.1109/WACV51458.2022.00335 – ident: ref25 doi: 10.1109/TITS.2018.2854913 – ident: ref19 doi: 10.1109/TITS.2022.3157056 – ident: ref44 doi: 10.1109/TITS.2023.3279929 – start-page: 11906 volume-title: Proc. 39th Int. Conf. Mach. Learn. ident: ref53 article-title: DSTAGNN: Dynamic spatial-temporal aware graph neural network for traffic flow forecasting – ident: ref4 doi: 10.1109/JSAC.2024.3365880 – ident: ref3 doi: 10.1109/TVT.2023.3341442 – ident: ref30 doi: 10.1016/j.knosys.2025.112962 – ident: ref41 doi: 10.1109/TNNLS.2020.2978386 – ident: ref37 doi: 10.1109/TKDE.2020.2973981 – ident: ref18 doi: 10.1109/JSAC.2025.3560003 – ident: ref20 doi: 10.1016/j.future.2024.107683 – ident: ref45 doi: 10.1109/TKDE.2021.3072345 – ident: ref54 doi: 10.1016/j.patcog.2023.109670 – ident: ref39 doi: 10.1093/comjnl/bxac086 – ident: ref42 doi: 10.1109/TKDE.2020.3008732 – ident: ref22 doi: 10.1080/13658816.2022.2032081 – ident: ref12 doi: 10.1145/3385414 – ident: ref1 doi: 10.1109/TITS.2021.3054840 – ident: ref10 doi: 10.1109/TITS.2020.3009725 – ident: ref36 doi: 10.1016/j.neucom.2021.03.090 – ident: ref52 doi: 10.14778/3551793.3551827 – ident: ref2 doi: 10.1109/TKDE.2020.3001195 – ident: ref28 doi: 10.1109/TITS.2023.3311397 – ident: ref34 doi: 10.1609/aaai.v34i01.5477 – ident: ref15 doi: 10.24963/ijcai.2018/505 – ident: ref50 doi: 10.1145/3394486.3403118 – ident: ref9 doi: 10.1109/JIOT.2024.3448394 – year: 2017 ident: ref31 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting publication-title: arXiv:1707.01926 – ident: ref16 doi: 10.1609/aaai.v33i01.3301922 – volume: 33 start-page: 17804 volume-title: Proc. 34th Conf. Neural Inf. Process. Syst. ident: ref33 article-title: Adaptive graph convolutional recurrent network for traffic forecasting – ident: ref27 doi: 10.1016/j.inffus.2023.102146 – ident: ref11 doi: 10.1109/TITS.2020.2973279 – ident: ref17 doi: 10.1609/aaai.v34i01.5438 – ident: ref35 doi: 10.24963/ijcai.2020/326 – ident: ref49 doi: 10.1109/TITS.2019.2935152 – ident: ref13 doi: 10.1080/23249935.2019.1637966 – ident: ref8 doi: 10.1109/LWC.2025.3530481 – ident: ref29 doi: 10.1109/TCYB.2022.3223918 – ident: ref32 doi: 10.24963/ijcai.2019/264 – ident: ref24 doi: 10.1016/j.engappai.2023.106044 – ident: ref23 doi: 10.1109/TKDE.2020.3008774 – ident: ref26 doi: 10.1109/JIOT.2023.3338741 – ident: ref21 doi: 10.1109/JSAC.2024.3460063 – ident: ref14 doi: 10.1109/TITS.2023.3257759 – ident: ref38 doi: 10.1016/j.knosys.2024.112424 – ident: ref7 doi: 10.1155/2019/4145353 – ident: ref5 doi: 10.1109/JIOT.2025.3538887 |
| SSID | ssj0001105196 |
| Score | 2.3538437 |
| Snippet | Accurate traffic flow prediction is crucial for alleviating traffic congestion and optimizing intelligent transportation system (ITS). However, traffic flow is... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 37062 |
| SubjectTerms | Adaptation models Artificial neural networks Convolution Correlation Feature extraction graph neural network (GNN) Graph neural networks intelligent transportation system (ITS) Intelligent transportation systems Modules multiview learning (MVL) Optimization Predictive models Roads spatiotemporal dependence Topology Traffic congestion Traffic flow traffic flow prediction Transportation Transportation networks Vehicle dynamics |
| Title | Multiview Spatiotemporal Dynamic Graph Convolution Network for Traffic Flow Prediction |
| URI | https://ieeexplore.ieee.org/document/11039643 https://www.proquest.com/docview/3248748064 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uJy_Oj4nTKTl4Eto1TdM2R5nOOXAKbrJbaT52cbQyOwX_evPSlIEieOvhNYT3XvJ-L-8LocuccYM7oshjnBoHJUmpl1KpPE0VXJhRGCgocH6YxuN5NFmwhStWt7UwWmubfKZ9-LSxfFXKDTyVDQjELY0JbaFWksZ1sdb2QYUAGold5JIEfDC5f5wZDzBkPsT6EjtcZWt77DCVXzewNSujDpo2G6qzSV79TSV8-fWjV-O_d7yP9hzAxNe1RhygHV0cok4zvAG7s3yEXmzpLQQG8LPNqnZNqlb4ph5Sj--glzUelsWHU088rXPGsQG62Bg56D6BR6vyEz-tId4DNF00H93OhmPPDVnwpIFiladoyMKl5oQpTXOaSEHYUuQAdISmgsY5i2hunGgd0JxoxYUIhWREBUuZizSmx6hdlIU-QZilRBtqKSQ3bmOg85hL43yrWCcBNO3poauG_dlb3Usjsz5IwDOQVQayypyseqgL7NwSOk72UL-RWOaO23tmUGGaRKmBV6d__HaGdmF1yPQgrI_a1Xqjzw2cqMSFVaNvoL_IdA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oHvQiPiM-e_BksrDdtvs4GhVBBU0Ew22zfXCRgEHQxF9vp1tCojHxtofZtJmZdr7pvADOC5FZ3MF5IDJmHZQkZUHKlA4M03hh8ijUWODc6catPr8biIEvVne1MMYYl3xm6vjpYvl6oub4VNagGLe0JnQV1gTnXJTlWssnFYp4JPaxSxpmjbv2Y8_6gJGoY7QvceNVltbHjVP5dQc7w9KsQnexpTKf5LU-n8m6-vrRrfHfe96CTQ8xyWWpE9uwYsY7UF2MbyD-NO_Ciyu-xdAAeXZ51b5N1Yhcl2PqyS12syZXk_GHV1DSLbPGiYW6xJo57D9BmqPJJ3maYsQHafag37zpXbUCP2YhUBaMzQLNIhENTUaFNqxgiZJUDGWBUEcaJllcCM4K60abkBXU6EzKSCpBdThUhUxjtg-V8WRsDoCIlBpLraTKrOMYmiLOlHW_dWySENv21OBiwf78reymkTsvJMxylFWOssq9rGqwh-xcEnpO1uB4IbHcH7j33OLCNOGpBViHf_x2BuutXuchf2h3749gA1fCvA8qjqEym87NiQUXM3nqVOobSADLwQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiview+Spatiotemporal+Dynamic+Graph+Convolution+Network+for+Traffic+Flow+Prediction&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhong%2C+Lihong&rft.au=Wang%2C+Bin&rft.au=Zhao%2C+Tian&rft.au=Tiago+Koketsu+Rodrigues&rft.date=2025-09-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=12&rft.issue=21&rft.spage=37062&rft.epage=37076&rft_id=info:doi/10.1109%2FJIOT.2025.3580788&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |