Reconfigurable Sensors With Shape-Shifting Robots
The integration of multiple sensors plays a crucial role in various applications such as autonomous navigation, object detection, and perception. Achieving accurate and meaningful results necessitates a robust calibration approach, particularly focusing on the intrinsic and extrinsic calibration of...
Saved in:
| Published in | IEEE sensors journal Vol. 25; no. 20; pp. 38754 - 38768 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
15.10.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2025.3605064 |
Cover
| Abstract | The integration of multiple sensors plays a crucial role in various applications such as autonomous navigation, object detection, and perception. Achieving accurate and meaningful results necessitates a robust calibration approach, particularly focusing on the intrinsic and extrinsic calibration of sensors, assuming their fixed positioning relative to each other. However, the emergence of reconfigurable robots capable of altering their morphology presents a unique challenge in sensor calibration. Unlike conventional setups where sensors remain stationary postcalibration, the dynamic nature of reconfigurable robots results in the constant change of sensor positions. This necessitates continuous adjustments in calibration to accommodate these positional variations, ensuring the system's operational integrity and accuracy. Failure to address this can result in issues like the hallucination effect, impairing the robot's operational efficacy. This article proposes an adaptive transformation approach to address this challenge effectively, enabling real-time tracking of changes in the relative pose of sensors. In this article, we validate the efficacy of the proposed scheme through simulation and real-life experiment results that showcase the reduction of sensor hallucination while ensuring the robustness of the robot's perception capabilities. This article presents and discusses results demonstrating the effectiveness of the adaptive transformation approach in two distinct cases. Importantly, the proposed framework is designed to be generic, making it applicable to a wide range of multisensory calibration scenarios where each sensor is subject to changes in relative pose. Our proposed algorithm outperforms the state-of-the-art method by a factor of 31, achieving a root mean square error (RMSE) of just 2 ms. |
|---|---|
| AbstractList | The integration of multiple sensors plays a crucial role in various applications such as autonomous navigation, object detection, and perception. Achieving accurate and meaningful results necessitates a robust calibration approach, particularly focusing on the intrinsic and extrinsic calibration of sensors, assuming their fixed positioning relative to each other. However, the emergence of reconfigurable robots capable of altering their morphology presents a unique challenge in sensor calibration. Unlike conventional setups where sensors remain stationary postcalibration, the dynamic nature of reconfigurable robots results in the constant change of sensor positions. This necessitates continuous adjustments in calibration to accommodate these positional variations, ensuring the system's operational integrity and accuracy. Failure to address this can result in issues like the hallucination effect, impairing the robot's operational efficacy. This article proposes an adaptive transformation approach to address this challenge effectively, enabling real-time tracking of changes in the relative pose of sensors. In this article, we validate the efficacy of the proposed scheme through simulation and real-life experiment results that showcase the reduction of sensor hallucination while ensuring the robustness of the robot's perception capabilities. This article presents and discusses results demonstrating the effectiveness of the adaptive transformation approach in two distinct cases. Importantly, the proposed framework is designed to be generic, making it applicable to a wide range of multisensory calibration scenarios where each sensor is subject to changes in relative pose. Our proposed algorithm outperforms the state-of-the-art method by a factor of 31, achieving a root mean square error (RMSE) of just 2 ms. |
| Author | Mohan, Rajesh Elara Hayat, Abdullah Aamir Maathavan, Manimaran Sang, Ash Wan Yaw Huang, Jeremy Chia Hwe |
| Author_xml | – sequence: 1 givenname: Jeremy Chia Hwe orcidid: 0009-0001-2341-0219 surname: Huang fullname: Huang, Jeremy Chia Hwe organization: ROAR Laboratory, Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore – sequence: 2 givenname: Manimaran orcidid: 0009-0003-8936-6390 surname: Maathavan fullname: Maathavan, Manimaran organization: ROAR Laboratory, Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore – sequence: 3 givenname: Abdullah Aamir orcidid: 0000-0001-6141-4600 surname: Hayat fullname: Hayat, Abdullah Aamir organization: Department of Mechanical and Aerospace Engineering, United Arab Emirates University, Al Ain, United Arab Emirates – sequence: 4 givenname: Ash Wan Yaw orcidid: 0000-0002-1471-5221 surname: Sang fullname: Sang, Ash Wan Yaw email: ash_wan@mymail.sutd.edu.com organization: ROAR Laboratory, Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore – sequence: 5 givenname: Rajesh Elara orcidid: 0000-0001-6504-1530 surname: Mohan fullname: Mohan, Rajesh Elara organization: ROAR Laboratory, Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore |
| BookMark | eNpFkF1LwzAUhoNMcJv-AMGLgtedOT1Jk17KmF8MhXWgdyFJ061jNjPpLvz3tmzg1Xkvnvc98EzIqPWtI-QW6AyAFg9v5eJ9ltGMzzCnnObsgoyBc5mCYHI0ZKQpQ_F1RSYx7iiFQnAxJrBy1rd1szkGbfYuKV0bfYjJZ9Ntk3KrDy4tt03dNe0mWXnju3hNLmu9j-7mfKdk_bRYz1_S5cfz6_xxmVrIsUszU1Bk3DqwRWWdrritQaCROUc0tdaYUW2E0AwLLmReUVPxzMrC9KDkOCX3p9lD8D9HFzu188fQ9h8VZjmwDEXBegpOlA0-xuBqdQjNtw6_CqgaxKhBjBrEqLOYvnN36jTOuX8egDMpEf8Af6lgLQ |
| CODEN | ISJEAZ |
| Cites_doi | 10.1109/IROS.2018.8593660 10.1109/ICARA.2011.6144918 10.1007/978-3-031-21062-4_25 10.1109/ITNG.2015.145 10.1109/TIV.2023.3307157 10.1109/IV55152.2023.10186647 10.1109/TELFOR.2018.8612054 10.1109/ICRA.2013.6631095 10.1109/LRA.2022.3151572 10.1109/DAC18072.2020.9218557 10.1115/1.4053631 10.1002/rob.21791 10.33414/rtyc.37.101-111.2020 10.1016/j.cviu.2009.11.002 10.1109/ICRA.2017.7989725 10.1016/j.cviu.2011.10.006 10.1063/1.5066547 10.1155/2018/8190802 10.1016/j.autcon.2021.103800 10.1109/IROS.2018.8594399 10.1109/ICSENS.2017.8234357 10.1016/j.jnca.2017.08.011 10.15607/RSS.2013.IX.027 10.1109/ROBIO.2014.7090741 10.1109/ICRA.2012.6224570 10.3390/en12214112 10.1007/978-3-319-10602-1_51 10.1109/IROS.2004.1389752 10.1109/TPAMI.2014.2363827 10.1109/ICRA48506.2021.9561175 10.1109/TITS.2022.3155228 10.1109/ROBOT.1990.126184 10.1109/ICSENS.2016.7808523 10.1016/j.jnca.2015.11.014 10.3390/s20020445 10.26599/TST.2023.9010010 10.1016/j.ifacol.2019.08.060 10.1109/ICRA.2019.8794268 10.3390/rs14122835 10.1109/LRA.2020.2970679 10.1109/ICRA48891.2023.10161327 10.1109/ACCESS.2020.2975215 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSEN.2025.3605064 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 38768 |
| ExternalDocumentID | 10_1109_JSEN_2025_3605064 11154883 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Robotics Programme under its National Robotics Programme (NRP) BAU, Ermine III: Deployable Reconfigurable Robots grantid: M22NBK0054 – fundername: A*STAR under its RIE2025 IAF-PP programme, Modular Reconfigurable Mobile Robots (MR) grantid: M24N2a0039 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M M43 |
| ID | FETCH-LOGICAL-c163t-2b90345ce1c9dcead5cf173b86533bfaa320ab77a4395786d0bd52c89b5cf853 |
| IEDL.DBID | RIE |
| ISSN | 1530-437X |
| IngestDate | Sat Oct 25 08:48:01 EDT 2025 Sat Oct 25 05:07:01 EDT 2025 Sat Oct 25 03:08:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c163t-2b90345ce1c9dcead5cf173b86533bfaa320ab77a4395786d0bd52c89b5cf853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-2341-0219 0000-0002-1471-5221 0009-0003-8936-6390 0000-0001-6504-1530 0000-0001-6141-4600 |
| PQID | 3261423794 |
| PQPubID | 75733 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_JSEN_2025_3605064 proquest_journals_3261423794 ieee_primary_11154883 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Oct.15,-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-Oct.15,-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 Zhu (ref36) 2024 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Hayat (ref4) 2021 ref1 ref39 ref16 ref38 ref19 Le (ref44) 2020; 20 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref3 Panicker (ref35) 2023 ref6 ref5 ref40 Elmenreich (ref17) 2002; 502 |
| References_xml | – ident: ref30 doi: 10.1109/IROS.2018.8593660 – ident: ref42 doi: 10.1109/ICARA.2011.6144918 – ident: ref41 doi: 10.1007/978-3-031-21062-4_25 – year: 2023 ident: ref35 article-title: Sensor fusion between IMU and 2D LiDAR odometry based on NDT-ICP algorithm for real-time indoor 3D mapping – ident: ref18 doi: 10.1109/ITNG.2015.145 – ident: ref38 doi: 10.1109/TIV.2023.3307157 – ident: ref39 doi: 10.1109/IV55152.2023.10186647 – ident: ref1 doi: 10.1109/TELFOR.2018.8612054 – ident: ref8 doi: 10.1109/ICRA.2013.6631095 – ident: ref10 doi: 10.1109/LRA.2022.3151572 – ident: ref21 doi: 10.1109/DAC18072.2020.9218557 – ident: ref15 doi: 10.1115/1.4053631 – volume: 502 start-page: 1 year: 2002 ident: ref17 article-title: An introduction to sensor fusion publication-title: Vienna Univ. Technol., Austria – ident: ref3 doi: 10.1002/rob.21791 – ident: ref34 doi: 10.33414/rtyc.37.101-111.2020 – ident: ref23 doi: 10.1016/j.cviu.2009.11.002 – ident: ref43 doi: 10.1109/ICRA.2017.7989725 – ident: ref2 doi: 10.1016/j.cviu.2011.10.006 – ident: ref5 doi: 10.1063/1.5066547 – ident: ref9 doi: 10.1155/2018/8190802 – ident: ref45 doi: 10.1016/j.autcon.2021.103800 – ident: ref11 doi: 10.1109/IROS.2018.8594399 – ident: ref25 doi: 10.1109/ICSENS.2017.8234357 – ident: ref19 doi: 10.1016/j.jnca.2017.08.011 – ident: ref26 doi: 10.15607/RSS.2013.IX.027 – ident: ref31 doi: 10.1109/ROBIO.2014.7090741 – ident: ref22 doi: 10.1109/ICRA.2012.6224570 – ident: ref16 doi: 10.3390/en12214112 – ident: ref7 doi: 10.1007/978-3-319-10602-1_51 – ident: ref27 doi: 10.1109/IROS.2004.1389752 – ident: ref24 doi: 10.1109/TPAMI.2014.2363827 – ident: ref28 doi: 10.1109/ICRA48506.2021.9561175 – ident: ref32 doi: 10.1109/TITS.2022.3155228 – volume-title: Vision Based Identification and Force Control of Industrial Robots year: 2021 ident: ref4 – ident: ref6 doi: 10.1109/ROBOT.1990.126184 – ident: ref37 doi: 10.1109/ICSENS.2016.7808523 – ident: ref20 doi: 10.1016/j.jnca.2015.11.014 – volume: 20 start-page: 445 issue: 2 year: 2020 ident: ref44 article-title: Evolutionary algorithm-based complete coverage path planning for tetriamond tiling robots publication-title: Sensors doi: 10.3390/s20020445 – volume-title: Camera, LiDAR, and IMU Based Multi-Sensor Fusion SLAM: A Survey year: 2024 ident: ref36 doi: 10.26599/TST.2023.9010010 – ident: ref40 doi: 10.1016/j.ifacol.2019.08.060 – ident: ref14 doi: 10.1109/ICRA.2019.8794268 – ident: ref33 doi: 10.3390/rs14122835 – ident: ref13 doi: 10.1109/LRA.2020.2970679 – ident: ref12 doi: 10.1109/ICRA48891.2023.10161327 – ident: ref29 doi: 10.1109/ACCESS.2020.2975215 |
| SSID | ssj0019757 |
| Score | 2.4436677 |
| Snippet | The integration of multiple sensors plays a crucial role in various applications such as autonomous navigation, object detection, and perception. Achieving... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 38754 |
| SubjectTerms | Autonomous navigation Autonomous robots Calibration Capacitive sensors Effectiveness Hallucinations Laser radar Perception Real time Reconfigurable robots reconfigurable sensors Reconfiguration Redundancy Robot sensing systems Robots Robustness Root-mean-square errors Sensor systems Sensors |
| Title | Reconfigurable Sensors With Shape-Shifting Robots |
| URI | https://ieeexplore.ieee.org/document/11154883 https://www.proquest.com/docview/3261423794 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7RLsDAoxRRKCgDE1LSOHYSe0SoVVWJDqSIblHsOLRCSqo2GeDXYzspTyGxZXAsy3eX-y539x3AdYAzxLiHbYaVuREqqZ1IJm0pPRX7UD-ghq7pfhqMH8lk7s-bZnXTCyOlNMVn0tGPJpefFqLSv8oGSHPHUIpb0AppUDdrfaQMWGhoPZUFuzbB4bxJYSKXDSbRcKpCQc93sELvbkC-OSEzVeXXp9j4l9EhTLcnq8tKXpyq5I54-0Ha-O-jH8FBgzSt21o1jmFH5h3Y_8I_2IHdZgT64vUEkA5E82z5XK11N5UVqfi2WG-sp2W5sKJFspJ2tFhmukraeih4UW66MBsNZ3dju5mnYAuFukrb48zFxBcSCZYKpUK-yFCIOQ0U5uNZkmDPTXgYJkQn72iQujz1PUEZVwuVWz-Fdl7k8gwsyjw39bWxM803lzGuZ5Yk1EslQYInPbjZ3m-8qlkzYhNtuCzWwoi1MOJGGD3o6vv6XNhcVQ_6W5HEjWFtYoU2ka7kYeT8j9cuYE_vrv0L8vvQLteVvFTAoeRXRmHeAWaOvNg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGQoDj1JEeWZgQkobx3Zijwi1KqXtQIvoFsWOQyukpmrTAX49tpvyFBJbBke2fHe573J33wFcBThFXPjY5VibG2GKubHiylXK17EPowGzdE29ftB-JJ0RHRXN6rYXRilli89U3TzaXH6SyaX5VdZAhjuGMbwJW5QQQlftWh9JAx5aYk9tw55LcDgqkpjI443OoNnXwaBP61jjdy8g39yQnavy62NsPUxrD_rrs60KS17qy1zU5dsP2sZ_H34fdgus6dyslOMANtS0AjtfGAgrUC6GoI9fDwGZUHSaTp6Xc9NP5Qx0hJvNF87TJB87g3E8U-5gPElNnbTzkIksX1Rh2GoOb9tuMVHBlRp35a4vuIcJlQpJnkitRFSmKMSCBRr1iTSOse_FIgxjYtJ3LEg8kVBfMi70Qu3Yj6A0zabqGBzGfS-hxty5YZxLuTBTS2LmJ4ogKeIaXK_vN5qteDMiG294PDLCiIwwokIYNaia-_pcWFxVDc7WIokK01pEGm8iU8vDyckfr11CuT3sdaPuXf_-FLbNTsbbIHoGpXy-VOcaRuTiwirPO3q2wCU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+Sensors+With+Shape-Shifting+Robots&rft.jtitle=IEEE+sensors+journal&rft.au=Huang%2C+Jeremy+Chia+Hwe&rft.au=Maathavan%2C+Manimaran&rft.au=Hayat%2C+Abdullah+Aamir&rft.au=Sang%2C+Ash+Wan+Yaw&rft.date=2025-10-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=25&rft.issue=20&rft.spage=38754&rft.epage=38768&rft_id=info:doi/10.1109%2FJSEN.2025.3605064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2025_3605064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |