Novel SR-RNN Classifier for Accurate Emotion Detection in Facial Analysis
Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate...
        Saved in:
      
    
          | Published in | Statistics, optimization & information computing Vol. 13; no. 4; pp. 1557 - 1577 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        2025
     | 
| Online Access | Get full text | 
| ISSN | 2311-004X 2310-5070 2310-5070  | 
| DOI | 10.19139/soic-2310-5070-2142 | 
Cover
| Abstract | Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate emotion classification. This paper addresses these challenges by proposing a novel SwikyRelu Recurrent Neural Network (SR-RNN) classifier. The aim is to enhance FER accuracy while reducing computational complexity. The methodology involves a multi-step process starting with image pre-processing using an Adaptive Mode Guided Filter (AMGF) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Key facial features are extracted using the Generative Additive Active Shape Model (GAASM) and clustered into subgraphs using Radial Basis K-Medoids Clustering (RBKMC). Feature selection is optimized through the Chaotic Ternary Remora Optimization (CTRO) algorithm, with the selected features fed into the SR-RNN classifier for emotion categorization. Results from extensive testing on the CK+, FER-2013, and RAF-DB dataset shows that the proposed SR-RNN classifier significantly outperforms conventional models, achieving 98.85\%, 91.79\%, and 89.28\% accuracy, respectively. The conclusion highlights the model's ability to enhance FER performance by effectively handling noise, illumination differences, and inter-subject variability. | 
    
|---|---|
| AbstractList | Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate emotion classification. This paper addresses these challenges by proposing a novel SwikyRelu Recurrent Neural Network (SR-RNN) classifier. The aim is to enhance FER accuracy while reducing computational complexity. The methodology involves a multi-step process starting with image pre-processing using an Adaptive Mode Guided Filter (AMGF) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Key facial features are extracted using the Generative Additive Active Shape Model (GAASM) and clustered into subgraphs using Radial Basis K-Medoids Clustering (RBKMC). Feature selection is optimized through the Chaotic Ternary Remora Optimization (CTRO) algorithm, with the selected features fed into the SR-RNN classifier for emotion categorization. Results from extensive testing on the CK+, FER-2013, and RAF-DB dataset shows that the proposed SR-RNN classifier significantly outperforms conventional models, achieving 98.85\%, 91.79\%, and 89.28\% accuracy, respectively. The conclusion highlights the model's ability to enhance FER performance by effectively handling noise, illumination differences, and inter-subject variability. | 
    
| Author | P. Lakshmi Prasanna Bedre, Jyoti S.  | 
    
| Author_xml | – sequence: 1 givenname: Jyoti S. surname: Bedre fullname: Bedre, Jyoti S. – sequence: 2 surname: P. Lakshmi Prasanna fullname: P. Lakshmi Prasanna  | 
    
| BookMark | eNqNkMFKAzEURYNUsNb-gYv8QDTJJJlkWWqrhVKhKrgLb9IEIumkTKrSv7fTimtX7_LgXC7nGg3a3HqEbhm9Y4ZV5r7k6AivGCWS1pRwJvgFGv49BqfMCKXi_QqNS_mglLJaSkX5EC1W-csn_LIm69UKTxOUEkP0HQ65wxPnPjvYezzb5n3MLX7we-9OKbZ4Di5CwpMW0qHEcoMuA6Tix793hN7ms9fpE1k-Py6mkyVxTFWc1LUOyjAtBFCpK8V5aI4rDYAMlRLcS6drA6IBtWmMdo2XauOFDnTDjTaqGiF57v1sd3D4hpTsrotb6A6WUXtSYnsltjdgewO2V3LkxJlzXS6l8-F_2A9lU2Y6 | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.19139/soic-2310-5070-2142 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2310-5070 | 
    
| EndPage | 1577 | 
    
| ExternalDocumentID | 10.19139/soic-2310-5070-2142 10_19139_soic_2310_5070_2142  | 
    
| GroupedDBID | 5VS 8FE 8FG AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARAPS BENPR BGLVJ BPHCQ BVBZV CITATION HCIFZ M1O OK1 P62 PQQKQ PROAC ABUWG ADTOC CCPQU CNYFK DWQXO IPNFZ PHGZM PHGZT PQGLB PRQQA RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c1632-778f691844a0583622fb0709aa5f3642e5c879a4ba6db98cbe56de48f0d298963 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2311-004X 2310-5070  | 
    
| IngestDate | Sun Oct 26 02:56:57 EDT 2025 Tue Jul 01 05:22:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1632-778f691844a0583622fb0709aa5f3642e5c879a4ba6db98cbe56de48f0d298963 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.19139/soic-2310-5070-2142 | 
    
| PageCount | 21 | 
    
| ParticipantIDs | unpaywall_primary_10_19139_soic_2310_5070_2142 crossref_primary_10_19139_soic_2310_5070_2142  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-00-00 | 
    
| PublicationDateYYYYMMDD | 2025-01-01 | 
    
| PublicationDate_xml | – year: 2025 text: 2025-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Statistics, optimization & information computing | 
    
| PublicationYear | 2025 | 
    
| SSID | ssj0001755602 ssib044761686 ssib027513134  | 
    
| Score | 2.2879546 | 
    
| Snippet | Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| StartPage | 1557 | 
    
| Title | Novel SR-RNN Classifier for Accurate Emotion Detection in Facial Analysis | 
    
| URI | https://doi.org/10.19139/soic-2310-5070-2142 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib027513134 issn: 2311-004X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044761686 issn: 2311-004X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2310-5070 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001755602 issn: 2310-5070 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB76OKgH32J9lD14dGtsk-32WLS1Cg1SLdRT2N3sQrGkxSaK_npnk7RUQai3HHbC8GXCfLO78w3ABTOYpTUGr8d1g7pKhlQ4xlAt8a9Urqo73PY7933WG7oPI29UgMtFL8zq-b1VrLyaT8eKWhJCkbk41CqEFaHMPGTeJSgP_cf2Szo_Ll-QPWOF7LijvFPur9f8yEQbSTQTnx9iMllJL90d6C8cy26VvNaSWNbU1y_NxnU934XtnGeSdhYYe1DQ0T5s9ZcirfMDuPen73pCngZ04PsknY45NpglCfJY0lYqsSoSpJPN-SG3Ok5vbUVkHJGusDvtZKFocgjDbuf5pkfzyQpUIf-ylJob1sLizhWOxzGH1Y1EH1tCeKaBFYn2FG-2hCsFC2WLK6k9FmqXGye0iu2scQSlaBrpYyBMCeOYa81kqJDcNblgSIGbaK9c43BRAbpAOZhlAhqBLTwsRIGFKLAQBRaiwEJUgdryU6xlcPJfg1PYrNshvuk-yhmU4rdEnyOziGUVirx7V83D6htbTsOt | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qe1APvsX6Yg8e3RrbZLs5Fm1RoUGqhXoKu5tdKJa02ETRX-9sHqUKQr3lsBOGLxPmm92dbwAumMEsrTF4Pa5b1FUyosIxhmqJf6VyVdPhtt-5H7C7ofsw8kYVuCx7YZbP761i5dV8OlbUkhCKzMWhViFsDWrMQ-ZdhdoweOy8ZPPjigX5M1bIjjsqOuX-es2PTLSexjPx-SEmk6X00tuGfulYfqvktZEmsqG-fmk2rur5DmwVPJN08sDYhYqO92CzvxBpne_DfTB91xPyNKCDICDZdMyxwSxJkMeSjlKpVZEg3XzOD7nVSXZrKybjmPSE3WknpaLJAQx73eebO1pMVqAK-Zel1NwwH4s7VzgexxzWNBJ99IXwTAsrEu0p3vaFKwWLpM-V1B6LtMuNE1nFdtY6hGo8jfUREKaEccy1ZjJSSO7aXDCkwG20V65xuKgDLVEOZ7mARmgLDwtRaCEKLUShhSi0ENWhsfgUKxkc_9fgBDaadohvto9yCtXkLdVnyCwSeV4E1DfLDsLH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+SR-RNN+Classifier+for+Accurate+Emotion+Detection+in+Facial+Analysis&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Bedre%2C+Jyoti+S.&rft.au=P.+Lakshmi+Prasanna&rft.date=2025&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=13&rft.issue=4&rft.spage=1557&rft.epage=1577&rft_id=info:doi/10.19139%2Fsoic-2310-5070-2142&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_2142 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon |