Novel SR-RNN Classifier for Accurate Emotion Detection in Facial Analysis

Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate...

Full description

Saved in:
Bibliographic Details
Published inStatistics, optimization & information computing Vol. 13; no. 4; pp. 1557 - 1577
Main Authors Bedre, Jyoti S., P. Lakshmi Prasanna
Format Journal Article
LanguageEnglish
Published 2025
Online AccessGet full text
ISSN2311-004X
2310-5070
2310-5070
DOI10.19139/soic-2310-5070-2142

Cover

Abstract Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate emotion classification. This paper addresses these challenges by proposing a novel SwikyRelu Recurrent Neural Network (SR-RNN) classifier. The aim is to enhance FER accuracy while reducing computational complexity. The methodology involves a multi-step process starting with image pre-processing using an Adaptive Mode Guided Filter (AMGF) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Key facial features are extracted using the Generative Additive Active Shape Model (GAASM) and clustered into subgraphs using Radial Basis K-Medoids Clustering (RBKMC). Feature selection is optimized through the Chaotic Ternary Remora Optimization (CTRO) algorithm, with the selected features fed into the SR-RNN classifier for emotion categorization. Results from extensive testing on the CK+, FER-2013, and RAF-DB dataset shows that the proposed SR-RNN classifier significantly outperforms conventional models, achieving 98.85\%, 91.79\%, and 89.28\% accuracy, respectively. The conclusion highlights the model's ability to enhance FER performance by effectively handling noise, illumination differences, and inter-subject variability.
AbstractList Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in deep learning (DL), existing FER methods often struggle with noise, lighting variations, and inter-subject variability, leading to inaccurate emotion classification. This paper addresses these challenges by proposing a novel SwikyRelu Recurrent Neural Network (SR-RNN) classifier. The aim is to enhance FER accuracy while reducing computational complexity. The methodology involves a multi-step process starting with image pre-processing using an Adaptive Mode Guided Filter (AMGF) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Key facial features are extracted using the Generative Additive Active Shape Model (GAASM) and clustered into subgraphs using Radial Basis K-Medoids Clustering (RBKMC). Feature selection is optimized through the Chaotic Ternary Remora Optimization (CTRO) algorithm, with the selected features fed into the SR-RNN classifier for emotion categorization. Results from extensive testing on the CK+, FER-2013, and RAF-DB dataset shows that the proposed SR-RNN classifier significantly outperforms conventional models, achieving 98.85\%, 91.79\%, and 89.28\% accuracy, respectively. The conclusion highlights the model's ability to enhance FER performance by effectively handling noise, illumination differences, and inter-subject variability.
Author P. Lakshmi Prasanna
Bedre, Jyoti S.
Author_xml – sequence: 1
  givenname: Jyoti S.
  surname: Bedre
  fullname: Bedre, Jyoti S.
– sequence: 2
  surname: P. Lakshmi Prasanna
  fullname: P. Lakshmi Prasanna
BookMark eNqNkMFKAzEURYNUsNb-gYv8QDTJJJlkWWqrhVKhKrgLb9IEIumkTKrSv7fTimtX7_LgXC7nGg3a3HqEbhm9Y4ZV5r7k6AivGCWS1pRwJvgFGv49BqfMCKXi_QqNS_mglLJaSkX5EC1W-csn_LIm69UKTxOUEkP0HQ65wxPnPjvYezzb5n3MLX7we-9OKbZ4Di5CwpMW0qHEcoMuA6Tix793hN7ms9fpE1k-Py6mkyVxTFWc1LUOyjAtBFCpK8V5aI4rDYAMlRLcS6drA6IBtWmMdo2XauOFDnTDjTaqGiF57v1sd3D4hpTsrotb6A6WUXtSYnsltjdgewO2V3LkxJlzXS6l8-F_2A9lU2Y6
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.19139/soic-2310-5070-2142
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2310-5070
EndPage 1577
ExternalDocumentID 10.19139/soic-2310-5070-2142
10_19139_soic_2310_5070_2142
GroupedDBID 5VS
8FE
8FG
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
BENPR
BGLVJ
BPHCQ
BVBZV
CITATION
HCIFZ
M1O
OK1
P62
PQQKQ
PROAC
ABUWG
ADTOC
CCPQU
CNYFK
DWQXO
IPNFZ
PHGZM
PHGZT
PQGLB
PRQQA
RIG
UNPAY
ID FETCH-LOGICAL-c1632-778f691844a0583622fb0709aa5f3642e5c879a4ba6db98cbe56de48f0d298963
IEDL.DBID UNPAY
ISSN 2311-004X
2310-5070
IngestDate Sun Oct 26 02:56:57 EDT 2025
Tue Jul 01 05:22:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1632-778f691844a0583622fb0709aa5f3642e5c879a4ba6db98cbe56de48f0d298963
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.19139/soic-2310-5070-2142
PageCount 21
ParticipantIDs unpaywall_primary_10_19139_soic_2310_5070_2142
crossref_primary_10_19139_soic_2310_5070_2142
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Statistics, optimization & information computing
PublicationYear 2025
SSID ssj0001755602
ssib044761686
ssib027513134
Score 2.2879546
Snippet Facial Expression Recognition (FER) is crucial for understanding human emotions in fields like human-computer interaction and psychology. Despite advances in...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 1557
Title Novel SR-RNN Classifier for Accurate Emotion Detection in Facial Analysis
URI https://doi.org/10.19139/soic-2310-5070-2142
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib027513134
  issn: 2311-004X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044761686
  issn: 2311-004X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001755602
  issn: 2310-5070
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB76OKgH32J9lD14dGtsk-32WLS1Cg1SLdRT2N3sQrGkxSaK_npnk7RUQai3HHbC8GXCfLO78w3ABTOYpTUGr8d1g7pKhlQ4xlAt8a9Urqo73PY7933WG7oPI29UgMtFL8zq-b1VrLyaT8eKWhJCkbk41CqEFaHMPGTeJSgP_cf2Szo_Ll-QPWOF7LijvFPur9f8yEQbSTQTnx9iMllJL90d6C8cy26VvNaSWNbU1y_NxnU934XtnGeSdhYYe1DQ0T5s9ZcirfMDuPen73pCngZ04PsknY45NpglCfJY0lYqsSoSpJPN-SG3Ok5vbUVkHJGusDvtZKFocgjDbuf5pkfzyQpUIf-ylJob1sLizhWOxzGH1Y1EH1tCeKaBFYn2FG-2hCsFC2WLK6k9FmqXGye0iu2scQSlaBrpYyBMCeOYa81kqJDcNblgSIGbaK9c43BRAbpAOZhlAhqBLTwsRIGFKLAQBRaiwEJUgdryU6xlcPJfg1PYrNshvuk-yhmU4rdEnyOziGUVirx7V83D6htbTsOt
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qe1APvsX6Yg8e3RrbZLs5Fm1RoUGqhXoKu5tdKJa02ETRX-9sHqUKQr3lsBOGLxPmm92dbwAumMEsrTF4Pa5b1FUyosIxhmqJf6VyVdPhtt-5H7C7ofsw8kYVuCx7YZbP761i5dV8OlbUkhCKzMWhViFsDWrMQ-ZdhdoweOy8ZPPjigX5M1bIjjsqOuX-es2PTLSexjPx-SEmk6X00tuGfulYfqvktZEmsqG-fmk2rur5DmwVPJN08sDYhYqO92CzvxBpne_DfTB91xPyNKCDICDZdMyxwSxJkMeSjlKpVZEg3XzOD7nVSXZrKybjmPSE3WknpaLJAQx73eebO1pMVqAK-Zel1NwwH4s7VzgexxzWNBJ99IXwTAsrEu0p3vaFKwWLpM-V1B6LtMuNE1nFdtY6hGo8jfUREKaEccy1ZjJSSO7aXDCkwG20V65xuKgDLVEOZ7mARmgLDwtRaCEKLUShhSi0ENWhsfgUKxkc_9fgBDaadohvto9yCtXkLdVnyCwSeV4E1DfLDsLH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+SR-RNN+Classifier+for+Accurate+Emotion+Detection+in+Facial+Analysis&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Bedre%2C+Jyoti+S.&rft.au=P.+Lakshmi+Prasanna&rft.date=2025&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=13&rft.issue=4&rft.spage=1557&rft.epage=1577&rft_id=info:doi/10.19139%2Fsoic-2310-5070-2142&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_2142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon