Stacked Ensemble Method: An Advanced Machine Learning Approach for Anomaly-based Intrusion Detection System

The subject of this article is IDS-Intrusion Detection Systems, which are strongly related to a comprehensive cyber attack prevention system. In the present day, an IDS for network infrastructure is a crucial topic. The advancement of SDN-Software Defined Networking has led to a rising need for soft...

Full description

Saved in:
Bibliographic Details
Published inStatistics, optimization & information computing Vol. 14; no. 1; pp. 434 - 453
Main Authors Rahman, Anichur, Islam Khan, Md. Saikat, Eidmum, MD. Zunead Abedin, Shaha, Pabon, Muiz, Bakhtiar, Hasan, Nahid, Debnath, Tanoy, Kundu, Dipanjali, Tamanna, Jarin Tasnim, Sayduzzaman, Mohammad, Rahman, Muaz
Format Journal Article
LanguageEnglish
Published 20.06.2025
Online AccessGet full text
ISSN2311-004X
2310-5070
2310-5070
DOI10.19139/soic-2310-5070-2352

Cover

Abstract The subject of this article is IDS-Intrusion Detection Systems, which are strongly related to a comprehensive cyber attack prevention system. In the present day, an IDS for network infrastructure is a crucial topic. The advancement of SDN-Software Defined Networking has led to a rising need for software-based IDS-Intrusion Detection Systems. Diverse methodologies, including machine learning algorithms and other statistical models, have been used to develop distinct kinds of IDS-Intrusion Detection Systems to enhance performance. But still, that needs to be improved. Several studies have focused on solving these problems for this reason, utilizing methods like conventional machine learning models. However, existing systems need to improve, including low detection rate and high false alarm rate. The aim is to improve performance, specifically in terms of increases in detection rate. This work introduces a new IDS-Intrusion Detection System named SIDS-Stacked Intrusion Detection System, which utilizes a stack-based approach to improve detection accuracy and resilience. The objective is to utilize various predictive algorithms most efficiently. An ensemble classifier method is used to enhance the precision of the final prediction by amalgamating the outputs of multiple models. This research implemented numerous ML-machine learning methodologies, including Stochastic Gradient Descent, Logistic Regression, Random Forest, and Deep Neural Networks, to construct a multilayered model that would optimize network intrusion detection accuracy. This challenging research project employs the NSL-KDD dataset. In previous studies, the stacked model (DNN1 + DNN2) has a maximum accuracy of 97.90% for intrusion detection. However, the suggested trained model outperforms existing models by 98.40%. Additionally, the offered stacked model attains F1-score 99.2%, a FPR-false positive rate 95.6%, and a FNR-false negative rate 1.42%. In conclusion, the findings indicate that a stacked ensemble method can enhance evaluation metrics and provide more consistent performance.
AbstractList The subject of this article is IDS-Intrusion Detection Systems, which are strongly related to a comprehensive cyber attack prevention system. In the present day, an IDS for network infrastructure is a crucial topic. The advancement of SDN-Software Defined Networking has led to a rising need for software-based IDS-Intrusion Detection Systems. Diverse methodologies, including machine learning algorithms and other statistical models, have been used to develop distinct kinds of IDS-Intrusion Detection Systems to enhance performance. But still, that needs to be improved. Several studies have focused on solving these problems for this reason, utilizing methods like conventional machine learning models. However, existing systems need to improve, including low detection rate and high false alarm rate. The aim is to improve performance, specifically in terms of increases in detection rate. This work introduces a new IDS-Intrusion Detection System named SIDS-Stacked Intrusion Detection System, which utilizes a stack-based approach to improve detection accuracy and resilience. The objective is to utilize various predictive algorithms most efficiently. An ensemble classifier method is used to enhance the precision of the final prediction by amalgamating the outputs of multiple models. This research implemented numerous ML-machine learning methodologies, including Stochastic Gradient Descent, Logistic Regression, Random Forest, and Deep Neural Networks, to construct a multilayered model that would optimize network intrusion detection accuracy. This challenging research project employs the NSL-KDD dataset. In previous studies, the stacked model (DNN1 + DNN2) has a maximum accuracy of 97.90% for intrusion detection. However, the suggested trained model outperforms existing models by 98.40%. Additionally, the offered stacked model attains F1-score 99.2%, a FPR-false positive rate 95.6%, and a FNR-false negative rate 1.42%. In conclusion, the findings indicate that a stacked ensemble method can enhance evaluation metrics and provide more consistent performance.
Author Muiz, Bakhtiar
Shaha, Pabon
Rahman, Muaz
Debnath, Tanoy
Hasan, Nahid
Tamanna, Jarin Tasnim
Rahman, Anichur
Kundu, Dipanjali
Islam Khan, Md. Saikat
Eidmum, MD. Zunead Abedin
Sayduzzaman, Mohammad
Author_xml – sequence: 1
  givenname: Anichur
  surname: Rahman
  fullname: Rahman, Anichur
– sequence: 2
  givenname: Md. Saikat
  surname: Islam Khan
  fullname: Islam Khan, Md. Saikat
– sequence: 3
  givenname: MD. Zunead Abedin
  surname: Eidmum
  fullname: Eidmum, MD. Zunead Abedin
– sequence: 4
  givenname: Pabon
  surname: Shaha
  fullname: Shaha, Pabon
– sequence: 5
  givenname: Bakhtiar
  surname: Muiz
  fullname: Muiz, Bakhtiar
– sequence: 6
  givenname: Nahid
  surname: Hasan
  fullname: Hasan, Nahid
– sequence: 7
  givenname: Tanoy
  surname: Debnath
  fullname: Debnath, Tanoy
– sequence: 8
  givenname: Dipanjali
  surname: Kundu
  fullname: Kundu, Dipanjali
– sequence: 9
  givenname: Jarin Tasnim
  surname: Tamanna
  fullname: Tamanna, Jarin Tasnim
– sequence: 10
  givenname: Mohammad
  surname: Sayduzzaman
  fullname: Sayduzzaman, Mohammad
– sequence: 11
  givenname: Muaz
  surname: Rahman
  fullname: Rahman, Muaz
BookMark eNqNkE1OwzAQhS1UJErpDVj4AoGxnTgNu6gUqNSKRUFiFznOhIYmdmSnoNyehCLWrObp_cziuyQTYw0Scs3ghiVMJLfeVjrggkEQQQyDivgZmf4Zkx_NAoDw7YLMvf8AABZHkQQ-JYddp_QBC7oyHpu8RrrFbm-LO5oamhafyugh3Cq9rwzSDSpnKvNO07Z1djBpad3QtI2q-yBXfuiuTeeOvrKG3mOHuhvVrvcdNlfkvFS1x_nvnZHXh9XL8inYPD-ul-km0EwKHkglpMa4gDKRSQyQaxWHKFTBgIeChVzHQsaYc5BSJEm5iArO5NCXZb4AlYgZiU5_j6ZV_Zeq66x1VaNcnzHIfqBlI7RsZJSNjLIR2rALTzvtrPcOy__NvgHILHLz
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.19139/soic-2310-5070-2352
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2310-5070
EndPage 453
ExternalDocumentID 10.19139/soic-2310-5070-2352
10_19139_soic_2310_5070_2352
GroupedDBID 5VS
8FE
8FG
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
BENPR
BGLVJ
BPHCQ
BVBZV
CITATION
HCIFZ
M1O
OK1
P62
PQQKQ
PROAC
ABUWG
ADTOC
CCPQU
CNYFK
DWQXO
IPNFZ
PHGZM
PHGZT
PQGLB
PRQQA
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c1632-6a36ce7d0f969700bca74e3ad10243142c7367eb2066399f85d2167d06fb80a93
IEDL.DBID UNPAY
ISSN 2311-004X
2310-5070
IngestDate Wed Oct 01 15:25:01 EDT 2025
Wed Oct 01 05:46:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1632-6a36ce7d0f969700bca74e3ad10243142c7367eb2066399f85d2167d06fb80a93
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.iapress.org/index.php/soic/article/download/2352/1344
PageCount 20
ParticipantIDs unpaywall_primary_10_19139_soic_2310_5070_2352
crossref_primary_10_19139_soic_2310_5070_2352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-20
PublicationDateYYYYMMDD 2025-06-20
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-20
  day: 20
PublicationDecade 2020
PublicationTitle Statistics, optimization & information computing
PublicationYear 2025
SSID ssj0001755602
ssib044761686
ssib027513134
Score 2.3052669
Snippet The subject of this article is IDS-Intrusion Detection Systems, which are strongly related to a comprehensive cyber attack prevention system. In the present...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 434
Title Stacked Ensemble Method: An Advanced Machine Learning Approach for Anomaly-based Intrusion Detection System
URI http://www.iapress.org/index.php/soic/article/download/2352/1344
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib027513134
  issn: 2311-004X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044761686
  issn: 2311-004X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2310-5070
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001755602
  issn: 2310-5070
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN-ItD6xunMSxG7YIKA-pFQOVyhQ5sYuqlhSpRQh-PWfHVJVYgC3DOVLuHN938nffAZwLHcaSKUU5T0vKdcvQYsAZxeQd6pRhAktsc3KnK257_L6f9H0Xv2dVDpWjgLprfCcZaHUigulkWAbem4G2QvITpYMI8UMQxpwvw4qwV0wNWOl1H7InN1MOjxiEO6x-xqqZ8b7vnrNimO6VdG5FI9d9tJCdVt-qV_XxrsbjhZTT3gT13bhTM01GzbdZ0Sw_f-o4_vtrtmDD41GS1UbbsGSqHVjvzMVcp7swQkCK_7om19XUvBRjQzpu7PQFySqSeQ4B6ThWpiFesPWZZF6tnCAsRsvJixp_UJs0NbmrbKsH7ghyZWaOC1aRWjp9D3rt68fLW-pnNNASkVxEhYpFaaRmg1SkkrGiVJKbWOnQSh2GPCplLCSW7xbapOmglegoFGgvBkWLqTTeh0Y1qcwBkCjkKiokRwCKZRuWRVrGMkX8VSSJNiw5BPodm_y1luLIbQljY5lbh-Y2lrmNZW49eQjNeQB_teDorwuOYS2y44CZwMPmBBroO3OKGGVWnMFyq31z5jfjF_zk4zI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4UDurB30b8lR68lnVb1zJvi0LQBOJBEjwt3VoMAQYJEIN_va9dISRe1NsOr0v2Xtf3vfR730Ponis_FFRKwlicE6YammQDRgkkb1_FFBJYZJqTO13e7rGXftR3XfyOVTmUlgJqr_GtZKDRifDm02HuOW96ygjJT6XyAsAPnh8ytouq3FwxVVC1131N3u1MOThiAO7Q8hmqZsr6rnvOiGHaV5KNFQls99FWdtpbFjO5-pTj8VbKaR0huW7cKZkmo_pykdXzr586jv_-mmN06PAoTkqjE7Sji1N00NmIuc7P0AgAKfzrCjeLuZ5kY407duz0A04KnDgOAe5YVqbGTrD1AydOrRwDLAbL6USOV8QkTYWfC9PqATsCP-mF5YIVuJROP0e9VvPtsU3cjAaSA5ILCJchz7VQdBDzWFCa5VIwHUrlG6lDnwW5CLmA8t1AmzgeNCIV-Bzs-SBrUBmHF6hSTAt9iXDgMxlkggEAhbINyiIlQhED_sqiSGka1RBZxyadlVIcqSlhTCxT49DUxDI1sUyNJ2uovgngrxZc_XXBNdoPzDhgyuGwuUEV8J2-BYyyyO7cNvwGr4biTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Ensemble+Method%3A+An+Advanced+Machine+Learning+Approach+for+Anomaly-based+Intrusion+Detection+System&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Rahman%2C+Anichur&rft.au=Islam+Khan%2C+Md.+Saikat&rft.au=Eidmum%2C+MD.+Zunead+Abedin&rft.au=Shaha%2C+Pabon&rft.date=2025-06-20&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=14&rft.issue=1&rft.spage=434&rft.epage=453&rft_id=info:doi/10.19139%2Fsoic-2310-5070-2352&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_2352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon