A Highly‐Fluorinated Lithium Borate Main Salt Empowering Stable Lithium Metal Batteries
Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions....
Saved in:
| Published in | Angewandte Chemie Vol. 136; no. 19 |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
Wiley Subscription Services, Inc
06.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0044-8249 1521-3757 |
| DOI | 10.1002/ange.202400797 |
Cover
| Abstract | Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.
A highly‐fluorinated lithium borate main salt of lithium perfluoropinacolatoborate (LiFPB) is designed to enhance cycling performance of practical lithium metal batteries (LMBs). The superior stability of LiFPB and the as‐formed favorable CEI/SEI endow LMBs (50 μm of lithium anode) excellent cycling stability even under high temperature (100 °C) and voltage (4.5 V vs. Li/Li+) conditions without any generation of HF. |
|---|---|
| AbstractList | Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.
A highly‐fluorinated lithium borate main salt of lithium perfluoropinacolatoborate (LiFPB) is designed to enhance cycling performance of practical lithium metal batteries (LMBs). The superior stability of LiFPB and the as‐formed favorable CEI/SEI endow LMBs (50 μm of lithium anode) excellent cycling stability even under high temperature (100 °C) and voltage (4.5 V vs. Li/Li+) conditions without any generation of HF. Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions. Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF 6 , as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO 2 (LCO) surface. Simultaneously, the FPB − anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiB x O y based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm −2 )/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions. |
| Author | Li, Lin Wang, Shitao Liu, Xiaochen Han, Changxing Cui, Guanglei Chen, Guansheng Xu, Gaojie Zhang, Shenghang Li, Longshan Cui, Zili Zhou, Xinhong Qiao, Lixin Li, Jiedong Cheng, Shaokai |
| Author_xml | – sequence: 1 givenname: Guansheng surname: Chen fullname: Chen, Guansheng organization: Qingdao University of Science and Technology – sequence: 2 givenname: Lixin surname: Qiao fullname: Qiao, Lixin organization: Qingdao New Energy Shandong Laboratory – sequence: 3 givenname: Gaojie surname: Xu fullname: Xu, Gaojie organization: Qingdao New Energy Shandong Laboratory – sequence: 4 givenname: Longshan surname: Li fullname: Li, Longshan organization: Qingdao University of Science and Technology – sequence: 5 givenname: Jiedong surname: Li fullname: Li, Jiedong organization: Qingdao New Energy Shandong Laboratory – sequence: 6 givenname: Lin surname: Li fullname: Li, Lin organization: Qingdao University of Science and Technology – sequence: 7 givenname: Xiaochen surname: Liu fullname: Liu, Xiaochen organization: Qingdao New Energy Shandong Laboratory – sequence: 8 givenname: Zili surname: Cui fullname: Cui, Zili email: cuizl@qibebt.ac.cn organization: Qingdao New Energy Shandong Laboratory – sequence: 9 givenname: Shenghang surname: Zhang fullname: Zhang, Shenghang organization: Qingdao New Energy Shandong Laboratory – sequence: 10 givenname: Shaokai surname: Cheng fullname: Cheng, Shaokai organization: Qingdao New Energy Shandong Laboratory – sequence: 11 givenname: Changxing surname: Han fullname: Han, Changxing organization: Qingdao New Energy Shandong Laboratory – sequence: 12 givenname: Shitao surname: Wang fullname: Wang, Shitao organization: Qingdao New Energy Shandong Laboratory – sequence: 13 givenname: Xinhong surname: Zhou fullname: Zhou, Xinhong email: zhouxinhong@qust.edu.cn organization: Qingdao University of Science and Technology – sequence: 14 givenname: Guanglei orcidid: 0000-0001-5987-7569 surname: Cui fullname: Cui, Guanglei email: cuigl@qibebt.ac.cn organization: Qingdao New Energy Shandong Laboratory |
| BookMark | eNqFkMtOAjEUhhujiYBuXTdxPdjrdGYJhIsJ6AJduGrqTAdKyhQ7JYSdj-Az-iSWYDAxMa5OmvN95_T8bXBeu1oDcINRFyNE7lS90F2CCENI5OIMtDAnOKGCi3PQQoixJCMsvwTtplkhhFIi8hZ46cGJWSzt_vP9Y2S3zptaBV3CqQlLs13DvvPxDWfK1HCubIDD9cbtdMQWcB7Uq9UndKaDsrCvQoht3VyBi0rZRl9_1w54Hg2fBpNk-ji-H_SmSYHjFxLOhEAl4RnBDKVVSjXmqchpScpC55jznOoUU0QzWlSCUqHSeIXmAhMiMl7RDrg9zt1497bVTZArt_V1XClpPDrLWMpJpNiRKrxrGq8rWZiggnF18MpYiZE8hCgPIcpTiFHr_tI23qyV3_8t5EdhZ6ze_0PL3sN4-ON-AZP6hZo |
| CitedBy_id | crossref_primary_10_1002_anie_202500425 crossref_primary_10_1002_ange_202500425 crossref_primary_10_1002_adfm_202406770 crossref_primary_10_1002_smll_202411104 |
| Cites_doi | 10.1016/j.ensm.2018.09.024 10.1016/j.ensm.2018.11.003 10.1039/C6CS00491A 10.1016/j.ensm.2022.01.046 10.1002/aenm.202103033 10.1016/j.nanoen.2021.106353 10.1021/acsnano.0c06360 10.1016/j.joule.2019.02.004 10.1039/D1EE03292E 10.1021/acsaem.9b00458 10.1002/anie.202013993 10.1002/ange.202216189 10.1002/aenm.202000982 10.1021/acs.jpcb.8b09439 10.1016/j.jpowsour.2011.06.030 10.1021/cr500003w 10.1016/j.electacta.2005.02.137 10.1002/adfm.201907903 10.1021/acs.nanolett.9b04815 10.1021/acs.chemmater.8b03321 10.1038/s41586-022-05627-8 10.1016/j.jpowsour.2019.227366 10.1038/s41467-022-29199-3 10.1038/s41560-023-01282-z 10.1039/C8EE00372F 10.1039/D2TA09157G 10.1021/jacs.2c04176 10.1021/acsenergylett.2c01090 10.1002/adma.202102964 10.1016/j.ensm.2021.06.018 10.1016/j.ensm.2019.03.005 10.1149/1.1391150 10.1002/aenm.202003836 10.1021/acsaem.9b02372 10.1021/acsenergylett.2c00316 10.1002/anie.202115909 10.1007/BF02376543 10.1002/cssc.201601636 10.1021/jacs.2c02260 10.1021/acsenergylett.2c01081 10.1139/v68-607 10.1039/C8TA08761J 10.1021/acsenergylett.1c00707 10.1021/acs.jpcc.7b08433 10.1021/acs.nanolett.2c02829 10.1016/j.ensm.2019.06.014 10.1002/aenm.202000368 10.1016/j.ensm.2017.03.008 10.1039/D1EE00767J |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/ange.202400797 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3757 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ange_202400797 ANGE202400797 |
| Genre | article |
| GrantInformation_xml | – fundername: the Key R&D Program of Qingdao funderid: 2022000069 – fundername: National Natural Science Foundation of China funderid: Grants 22372184; 52072195; 22102206 – fundername: Taishan Scholar Foundation of Shandong Province funderid: ts201511063 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2021QB030; 2023HWYQ-104 – fundername: the Strategic Priority Research Program of Chinese Academy of Sciences funderid: Grant XDA22010604 – fundername: Taishan Scholars Program and Qingdao Natural Science Foundation funderid: 232-1-22-zyyd-jch |
| GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAMMB AAYXX ACUHS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION TUS 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c1627-54770d25821406f63e156793d2dce915593e6130383cf7337a6249e57122785f3 |
| IEDL.DBID | DR2 |
| ISSN | 0044-8249 |
| IngestDate | Fri Jul 25 11:50:03 EDT 2025 Wed Oct 01 01:28:50 EDT 2025 Thu Apr 24 22:54:44 EDT 2025 Wed Jan 22 17:21:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1627-54770d25821406f63e156793d2dce915593e6130383cf7337a6249e57122785f3 |
| Notes | These authors contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5987-7569 |
| PQID | 3044884652 |
| PQPubID | 866336 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3044884652 crossref_citationtrail_10_1002_ange_202400797 crossref_primary_10_1002_ange_202400797 wiley_primary_10_1002_ange_202400797_ANGE202400797 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 6, 2024 |
| PublicationDateYYYYMMDD | 2024-05-06 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 6, 2024 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Angewandte Chemie |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 122 2021; 6 1968; 46 2019; 3 2021; 89 2023; 11 2006; 51 2020; 20 2019; 2 2000; 3 2023; 8 2017; 46 2019; 17 2020; 446 2022; 47 2020; 14 2022; 22 2020; 10 2011; 196 2014; 114 2022; 144 2021; 14 2018; 6 2020; 3 2021; 11 2021; 33 2020; 30 2022; 61 2022; 7 2023; 135 2019; 23 2017; 10 2003; 9 2022; 12 2022; 13 2022; 15 2018; 30 2020; 24 2023; 614 2017; 121 2021; 60 2018; 11 2021; 41 2018; 10 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_2 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_54_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_2 e_1_2_7_46_1 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_57_2 e_1_2_7_38_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1094 year: 2019 end-page: 1105 publication-title: Joule – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 3369 year: 2020 end-page: 3377 publication-title: ACS Appl. Energ. Mater. – volume: 17 start-page: 366 year: 2019 end-page: 373 publication-title: Energy Storage Mater. – volume: 46 start-page: 3671 year: 1968 end-page: 3677 publication-title: Can. J. Chem. – volume: 10 start-page: 804 year: 2017 end-page: 814 publication-title: ChemSusChem – volume: 144 start-page: 14638 year: 2022 end-page: 14646 publication-title: J. Am. Chem. Soc. – volume: 89 year: 2021 publication-title: Nano Energy – volume: 51 start-page: 1636 year: 2006 end-page: 1640 publication-title: Electrochim. Acta – volume: 3 start-page: 366 year: 2000 publication-title: Electrochem. Solid-State Lett. – volume: 10 start-page: 199 year: 2018 end-page: 205 publication-title: Energy Storage Mater. – volume: 2 start-page: 3749 year: 2019 end-page: 3761 publication-title: ACS Appl. Energ. Mater. – volume: 122 start-page: 10736 year: 2018 end-page: 10745 publication-title: J. Phys. Chem. B. – volume: 15 start-page: 1711 year: 2022 end-page: 1759 publication-title: Energy Environ. Sci. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 6 start-page: 2096 year: 2021 end-page: 2102 publication-title: ACS Energy Lett. – volume: 11 start-page: 1552 year: 2018 end-page: 1562 publication-title: Energy Environ. Sci. – volume: 22 start-page: 6808 year: 2022 end-page: 6815 publication-title: Nano Lett. – volume: 13 start-page: 2575 year: 2022 publication-title: Nat. Commun. – volume: 8 start-page: 934 year: 2023 end-page: 945 publication-title: Nat. Energy – volume: 614 start-page: 694 year: 2023 end-page: 700 publication-title: Nature – volume: 6 start-page: 19425 year: 2018 end-page: 19437 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1364 year: 2022 end-page: 1373 publication-title: ACS Energy Lett. – volume: 47 start-page: 61 year: 2022 end-page: 69 publication-title: Energy Storage Mater. – volume: 24 start-page: 618 year: 2020 end-page: 625 publication-title: Energy Storage Mater. – volume: 7 start-page: 2165 year: 2022 end-page: 2172 publication-title: ACS Energy Lett. – volume: 14 start-page: 13938 year: 2020 end-page: 13951 publication-title: ACS Nano – volume: 144 start-page: 9806 year: 2022 end-page: 9816 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 135 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 121 start-page: 22733 year: 2017 end-page: 22738 publication-title: J. Phys. Chem. C. – volume: 46 start-page: 797 year: 2017 end-page: 815 publication-title: Chem. Soc. Rev. – volume: 446 year: 2020 publication-title: J. Power Sources – volume: 23 start-page: 646 year: 2019 end-page: 652 publication-title: Energy Storage Mater. – volume: 11 start-page: 8308 year: 2023 end-page: 8319 publication-title: J. Mater. Chem. A – volume: 60 start-page: 6600 year: 2021 end-page: 6608 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 88 year: 2003 end-page: 94 publication-title: Ionics – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 20 start-page: 1686 year: 2020 end-page: 1692 publication-title: Nano Lett. – volume: 14 start-page: 5289 year: 2021 end-page: 5314 publication-title: Energy Environ. Sci. – volume: 30 start-page: 8190 year: 2018 end-page: 8200 publication-title: Chem. Mater. – volume: 17 start-page: 284 year: 2019 end-page: 292 publication-title: Energy Storage Mater. – volume: 196 start-page: 8696 year: 2011 end-page: 8700 publication-title: J. Power Sources – volume: 7 start-page: 2282 year: 2022 end-page: 2288 publication-title: ACS Energy Lett. – volume: 41 start-page: 495 year: 2021 end-page: 504 publication-title: Energy Storage Mater. – ident: e_1_2_7_56_2 doi: 10.1016/j.ensm.2018.09.024 – ident: e_1_2_7_10_2 doi: 10.1016/j.ensm.2018.11.003 – ident: e_1_2_7_32_2 doi: 10.1039/C6CS00491A – ident: e_1_2_7_53_2 doi: 10.1016/j.ensm.2022.01.046 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.202103033 – ident: e_1_2_7_43_1 doi: 10.1016/j.nanoen.2021.106353 – ident: e_1_2_7_17_2 doi: 10.1021/acsnano.0c06360 – ident: e_1_2_7_1_1 doi: 10.1016/j.joule.2019.02.004 – ident: e_1_2_7_8_2 doi: 10.1039/D1EE03292E – ident: e_1_2_7_30_1 doi: 10.1021/acsaem.9b00458 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202013993 – ident: e_1_2_7_14_1 doi: 10.1002/ange.202216189 – ident: e_1_2_7_3_2 doi: 10.1002/aenm.202000982 – ident: e_1_2_7_12_1 doi: 10.1021/acs.jpcb.8b09439 – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2011.06.030 – ident: e_1_2_7_13_1 doi: 10.1021/cr500003w – ident: e_1_2_7_21_1 doi: 10.1016/j.electacta.2005.02.137 – ident: e_1_2_7_4_2 doi: 10.1002/adfm.201907903 – ident: e_1_2_7_7_2 doi: 10.1021/acs.nanolett.9b04815 – ident: e_1_2_7_52_1 – ident: e_1_2_7_16_1 – ident: e_1_2_7_2_1 – ident: e_1_2_7_23_2 doi: 10.1021/acs.chemmater.8b03321 – ident: e_1_2_7_41_1 doi: 10.1038/s41586-022-05627-8 – ident: e_1_2_7_38_1 – ident: e_1_2_7_60_1 doi: 10.1016/j.jpowsour.2019.227366 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-022-29199-3 – ident: e_1_2_7_46_1 – ident: e_1_2_7_33_2 doi: 10.1038/s41560-023-01282-z – ident: e_1_2_7_44_1 doi: 10.1039/C8EE00372F – ident: e_1_2_7_54_2 doi: 10.1039/D2TA09157G – ident: e_1_2_7_18_2 doi: 10.1021/jacs.2c04176 – ident: e_1_2_7_36_1 doi: 10.1021/acsenergylett.2c01090 – ident: e_1_2_7_39_2 doi: 10.1002/adma.202102964 – ident: e_1_2_7_35_1 doi: 10.1016/j.ensm.2021.06.018 – ident: e_1_2_7_20_1 doi: 10.1016/j.ensm.2019.03.005 – ident: e_1_2_7_28_2 doi: 10.1149/1.1391150 – ident: e_1_2_7_19_1 doi: 10.1002/aenm.202003836 – ident: e_1_2_7_59_1 doi: 10.1021/acsaem.9b02372 – ident: e_1_2_7_37_1 doi: 10.1021/acsenergylett.2c00316 – ident: e_1_2_7_22_1 – ident: e_1_2_7_48_2 doi: 10.1002/anie.202115909 – ident: e_1_2_7_24_2 doi: 10.1007/BF02376543 – ident: e_1_2_7_34_1 doi: 10.1002/cssc.201601636 – ident: e_1_2_7_29_1 doi: 10.1021/jacs.2c02260 – ident: e_1_2_7_55_1 – ident: e_1_2_7_11_2 doi: 10.1021/acsenergylett.2c01081 – ident: e_1_2_7_27_2 doi: 10.1139/v68-607 – ident: e_1_2_7_51_1 doi: 10.1039/C8TA08761J – ident: e_1_2_7_5_2 doi: 10.1021/acsenergylett.1c00707 – ident: e_1_2_7_45_1 doi: 10.1021/acs.jpcc.7b08433 – ident: e_1_2_7_40_2 doi: 10.1021/acs.nanolett.2c02829 – ident: e_1_2_7_57_2 doi: 10.1016/j.ensm.2019.06.014 – ident: e_1_2_7_6_1 – ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_47_2 doi: 10.1002/aenm.202000368 – ident: e_1_2_7_58_1 doi: 10.1016/j.ensm.2017.03.008 – ident: e_1_2_7_31_1 – ident: e_1_2_7_49_2 doi: 10.1039/D1EE00767J |
| SSID | ssj0006279 |
| Score | 2.2573755 |
| Snippet | Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as... Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF 6 ,... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Anions Cathodic protection Electrochemical analysis Electrochemistry Electrode/Electrolyte Interphases Electrolytes Electrolytic cells Fluorination Functional groups High temperature High Temperature and Voltage Performance High voltages Interphase Lithium Lithium batteries Lithium borates Lithium ions Lithium Metal Batteries Lithium Salts Salts Solid electrolytes Solvation Thermal stability |
| Title | A Highly‐Fluorinated Lithium Borate Main Salt Empowering Stable Lithium Metal Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202400797 https://www.proquest.com/docview/3044884652 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3757 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0006279 issn: 0044-8249 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0044-8249 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006279 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQDLDwjSiUygMSk9skduJ0bEtLhWgHoFKZoji2RUVaKpoOMPET-I38Es5JkwISQoItkewoOd_F71l37xA6lXWhLUsz4mqmCNNUEqFCQXzJPUAbNpPSHA30-l53wC6H7vBTFX-mD1EcuJnISP_XJsBDMastRUNN7j3wO5MDyeumnNymXsqprpf6UZ6Tie1ZjBEfiEau2mg5ta_Tv-5KS6j5GbCmO05nC4X5u2aJJg_VeSKq0cs3Gcf_fMw22lzAUdzI_GcHrajJLlpv5V3g9tBdA5tUkPj5_fWtE89Nuh6gU4mvRsn9aD7GTeNCCvfC0QTfhHGC2-OpabwGOyIGICtiVQztKQD6OBP0BH6-jwad9m2rSxbtGEhkgyGJyzi3pGMqawEFaI8q4H4Q3tKRkUpl5qkybAQ4b6Q5pTz0wOTK5bYpt3U1PUCrk8eJOkTYllQD7-IqEowxpX2m_FBq7kZK-JL5JUTy5QiihVa5aZkRB5nKshMYgwWFwUrorBg_zVQ6fhxZzlc3WETrLKDgHz4AMdcpISddpl-eEjT6F-3i7ugvk47RhrlOcye9MlpNnubqBPBNIipordE8b3YqqS9_AHEq8qU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2k6eAuST9RJ27CoUAn2rJEicroGnad1PbQ2kA7CaJIokZkxUjkIZnyE_Ib-0t6J1lyXKAo0I4SSEE63onvHY7vAN7rM2UdxwruW2G4sJ7mysSKh1oGiDa6QmtKDUymwWguLr75VTUhnYUp9SHqhBtFRvG_pgCnhHRnqxpKxfdI8KgIUp7JJ_BUBEhWCBd92SpIBW4pt-cIwUOkGpVuo-N2dufv7ktbsPkYshZ7zvAQVPW2ZanJZXudq3Zy95uQ4399znM42CBS1itd6AXsmewlNPpVI7hX8L3HqBokvf15_zBM11SxhwBVs_Ei_7FYL9lH8iLDJvEiY1_jNGeD5Yp6r-GmyBDLqtTUQycGsT4rNT2Ror-G-XAw64_4piMDT7poSe4LKR3t0uFaBAI28AzSP4xw7erEFErzniFCgrQ3sdLzZBygzY0vu3Ti1rfeG9jPrjLzFlhXexaplzSJEkIYGwoTxtpKPzEq1CJsAq_WI0o2cuXUNSONSqFlNyKDRbXBmvChHr8qhTr-OLJVLW-0CdibyEMHCRGL-W4T3GKd_vKUqDf9NKivjv5l0ik0RrPJOBqfTz8fwzO6X5RSBi3Yz6_X5h3CnVydFA79CxN89VQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTttAEB1RkFouBUqrpkC7ByROC4699jrHAElpSyLUFglOltc7q0Y1IQLn0J74BL6RL2HGjp2ChCq1R1u7lj07432zevMGYNt2jPM8p2ToFErlAisNpkbGVkeENtrKWj4aGAyjo1P1-Sys2YRcC1PpQzQHbhwZ5f-aAxwn1u3NVUOZfE8JHpMgdUc_gyUVdmJm9R1-nStIRX4lt-cpJWNKNWrdRs_fezj_4b40B5t_QtZyz-mvgKnftqKa_NydFmY3-_1IyPG_PmcVXs4QqehWLrQGCzh-BS8O6kZw63DeFcwGyX_d3dz28ykz9gigWnE8Kn6Mphdin70IxSAdjcW3NC9E72LCvddoUxSEZU2OzdABEtYXlaYnpeiv4bTf-35wJGcdGWTWJkvKUGntWZ-LawkIuChASv8owq1vMyyV5gPkhITS3szpINBpRDbHULe54jZ0wRtYHF-O8S2Itg0cpV4aM6OUQhcrjFPrdJihia2KWyDr9UiymVw5d83Ik0po2U_YYEljsBbsNOMnlVDHkyM36-VNZgF7nQTkIDFhsdBvgV-u01-eknSHH3vN1bt_mfQBnp8c9pPjT8MvG7DMt0smZbQJi8XVFLcI7RTmfenP98iH9Ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly%E2%80%90Fluorinated+Lithium+Borate+Main+Salt+Empowering+Stable+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie&rft.au=Chen%2C+Guansheng&rft.au=Qiao%2C+Lixin&rft.au=Xu%2C+Gaojie&rft.au=Li%2C+Longshan&rft.date=2024-05-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=136&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202400797&rft.externalDBID=10.1002%252Fange.202400797&rft.externalDocID=ANGE202400797 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |