A Highly‐Fluorinated Lithium Borate Main Salt Empowering Stable Lithium Metal Batteries

Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions....

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 136; no. 19
Main Authors Chen, Guansheng, Qiao, Lixin, Xu, Gaojie, Li, Longshan, Li, Jiedong, Li, Lin, Liu, Xiaochen, Cui, Zili, Zhang, Shenghang, Cheng, Shaokai, Han, Changxing, Wang, Shitao, Zhou, Xinhong, Cui, Guanglei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.05.2024
Subjects
Online AccessGet full text
ISSN0044-8249
1521-3757
DOI10.1002/ange.202400797

Cover

Abstract Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions. A highly‐fluorinated lithium borate main salt of lithium perfluoropinacolatoborate (LiFPB) is designed to enhance cycling performance of practical lithium metal batteries (LMBs). The superior stability of LiFPB and the as‐formed favorable CEI/SEI endow LMBs (50 μm of lithium anode) excellent cycling stability even under high temperature (100 °C) and voltage (4.5 V vs. Li/Li+) conditions without any generation of HF.
AbstractList Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions. A highly‐fluorinated lithium borate main salt of lithium perfluoropinacolatoborate (LiFPB) is designed to enhance cycling performance of practical lithium metal batteries (LMBs). The superior stability of LiFPB and the as‐formed favorable CEI/SEI endow LMBs (50 μm of lithium anode) excellent cycling stability even under high temperature (100 °C) and voltage (4.5 V vs. Li/Li+) conditions without any generation of HF.
Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO2 (LCO) surface. Simultaneously, the FPB− anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiBxOy based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm−2)/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.
Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF 6 , as the most commonly used lithium salt, still suffers from notorious moisture sensitivity and inferior thermal stability under those conditions. Here, we synthesize a lithium salt of lithium perfluoropinacolatoborate (LiFPB) comprising highly‐fluorinated and borate functional groups to address the above issues. It is demonstrated that the LiFPB shows superior thermal and electrochemical stability without any HF generation under high temperatures and voltages. In addition, the LiFPB can form a protective outer‐organic and inner‐inorganic rich cathode electrolyte interphase on LiCoO 2 (LCO) surface. Simultaneously, the FPB − anions tend to integrate into lithium ion solvation structure to form a favorable fast‐ion conductive LiB x O y based solid electrolyte interphase on lithium (Li) anode. All these fantastic features of LiFPB endow LCO (1.9 mAh cm −2 )/Li metal cells excellent cycling under both high voltages and temperatures (e.g., 80 % capacity retention after 260 cycles at 60 °C and 4.45 V), and even at an extremely elevated temperature of 100 °C. This work emphasizes the important role of salt anions in determining the electrochemical performance of LMBs at both high temperature and voltage conditions.
Author Li, Lin
Wang, Shitao
Liu, Xiaochen
Han, Changxing
Cui, Guanglei
Chen, Guansheng
Xu, Gaojie
Zhang, Shenghang
Li, Longshan
Cui, Zili
Zhou, Xinhong
Qiao, Lixin
Li, Jiedong
Cheng, Shaokai
Author_xml – sequence: 1
  givenname: Guansheng
  surname: Chen
  fullname: Chen, Guansheng
  organization: Qingdao University of Science and Technology
– sequence: 2
  givenname: Lixin
  surname: Qiao
  fullname: Qiao, Lixin
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 3
  givenname: Gaojie
  surname: Xu
  fullname: Xu, Gaojie
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 4
  givenname: Longshan
  surname: Li
  fullname: Li, Longshan
  organization: Qingdao University of Science and Technology
– sequence: 5
  givenname: Jiedong
  surname: Li
  fullname: Li, Jiedong
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 6
  givenname: Lin
  surname: Li
  fullname: Li, Lin
  organization: Qingdao University of Science and Technology
– sequence: 7
  givenname: Xiaochen
  surname: Liu
  fullname: Liu, Xiaochen
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 8
  givenname: Zili
  surname: Cui
  fullname: Cui, Zili
  email: cuizl@qibebt.ac.cn
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 9
  givenname: Shenghang
  surname: Zhang
  fullname: Zhang, Shenghang
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 10
  givenname: Shaokai
  surname: Cheng
  fullname: Cheng, Shaokai
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 11
  givenname: Changxing
  surname: Han
  fullname: Han, Changxing
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 12
  givenname: Shitao
  surname: Wang
  fullname: Wang, Shitao
  organization: Qingdao New Energy Shandong Laboratory
– sequence: 13
  givenname: Xinhong
  surname: Zhou
  fullname: Zhou, Xinhong
  email: zhouxinhong@qust.edu.cn
  organization: Qingdao University of Science and Technology
– sequence: 14
  givenname: Guanglei
  orcidid: 0000-0001-5987-7569
  surname: Cui
  fullname: Cui, Guanglei
  email: cuigl@qibebt.ac.cn
  organization: Qingdao New Energy Shandong Laboratory
BookMark eNqFkMtOAjEUhhujiYBuXTdxPdjrdGYJhIsJ6AJduGrqTAdKyhQ7JYSdj-Az-iSWYDAxMa5OmvN95_T8bXBeu1oDcINRFyNE7lS90F2CCENI5OIMtDAnOKGCi3PQQoixJCMsvwTtplkhhFIi8hZ46cGJWSzt_vP9Y2S3zptaBV3CqQlLs13DvvPxDWfK1HCubIDD9cbtdMQWcB7Uq9UndKaDsrCvQoht3VyBi0rZRl9_1w54Hg2fBpNk-ji-H_SmSYHjFxLOhEAl4RnBDKVVSjXmqchpScpC55jznOoUU0QzWlSCUqHSeIXmAhMiMl7RDrg9zt1497bVTZArt_V1XClpPDrLWMpJpNiRKrxrGq8rWZiggnF18MpYiZE8hCgPIcpTiFHr_tI23qyV3_8t5EdhZ6ze_0PL3sN4-ON-AZP6hZo
CitedBy_id crossref_primary_10_1002_anie_202500425
crossref_primary_10_1002_ange_202500425
crossref_primary_10_1002_adfm_202406770
crossref_primary_10_1002_smll_202411104
Cites_doi 10.1016/j.ensm.2018.09.024
10.1016/j.ensm.2018.11.003
10.1039/C6CS00491A
10.1016/j.ensm.2022.01.046
10.1002/aenm.202103033
10.1016/j.nanoen.2021.106353
10.1021/acsnano.0c06360
10.1016/j.joule.2019.02.004
10.1039/D1EE03292E
10.1021/acsaem.9b00458
10.1002/anie.202013993
10.1002/ange.202216189
10.1002/aenm.202000982
10.1021/acs.jpcb.8b09439
10.1016/j.jpowsour.2011.06.030
10.1021/cr500003w
10.1016/j.electacta.2005.02.137
10.1002/adfm.201907903
10.1021/acs.nanolett.9b04815
10.1021/acs.chemmater.8b03321
10.1038/s41586-022-05627-8
10.1016/j.jpowsour.2019.227366
10.1038/s41467-022-29199-3
10.1038/s41560-023-01282-z
10.1039/C8EE00372F
10.1039/D2TA09157G
10.1021/jacs.2c04176
10.1021/acsenergylett.2c01090
10.1002/adma.202102964
10.1016/j.ensm.2021.06.018
10.1016/j.ensm.2019.03.005
10.1149/1.1391150
10.1002/aenm.202003836
10.1021/acsaem.9b02372
10.1021/acsenergylett.2c00316
10.1002/anie.202115909
10.1007/BF02376543
10.1002/cssc.201601636
10.1021/jacs.2c02260
10.1021/acsenergylett.2c01081
10.1139/v68-607
10.1039/C8TA08761J
10.1021/acsenergylett.1c00707
10.1021/acs.jpcc.7b08433
10.1021/acs.nanolett.2c02829
10.1016/j.ensm.2019.06.014
10.1002/aenm.202000368
10.1016/j.ensm.2017.03.008
10.1039/D1EE00767J
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202400797
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202400797
ANGE202400797
Genre article
GrantInformation_xml – fundername: the Key R&D Program of Qingdao
  funderid: 2022000069
– fundername: National Natural Science Foundation of China
  funderid: Grants 22372184; 52072195; 22102206
– fundername: Taishan Scholar Foundation of Shandong Province
  funderid: ts201511063
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2021QB030; 2023HWYQ-104
– fundername: the Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: Grant XDA22010604
– fundername: Taishan Scholars Program and Qingdao Natural Science Foundation
  funderid: 232-1-22-zyyd-jch
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAMMB
AAYXX
ACUHS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
TUS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1627-54770d25821406f63e156793d2dce915593e6130383cf7337a6249e57122785f3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 11:50:03 EDT 2025
Wed Oct 01 01:28:50 EDT 2025
Thu Apr 24 22:54:44 EDT 2025
Wed Jan 22 17:21:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1627-54770d25821406f63e156793d2dce915593e6130383cf7337a6249e57122785f3
Notes These authors contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5987-7569
PQID 3044884652
PQPubID 866336
PageCount 9
ParticipantIDs proquest_journals_3044884652
crossref_citationtrail_10_1002_ange_202400797
crossref_primary_10_1002_ange_202400797
wiley_primary_10_1002_ange_202400797_ANGE202400797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 6, 2024
PublicationDateYYYYMMDD 2024-05-06
PublicationDate_xml – month: 05
  year: 2024
  text: May 6, 2024
  day: 06
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2021; 6
1968; 46
2019; 3
2021; 89
2023; 11
2006; 51
2020; 20
2019; 2
2000; 3
2023; 8
2017; 46
2019; 17
2020; 446
2022; 47
2020; 14
2022; 22
2020; 10
2011; 196
2014; 114
2022; 144
2021; 14
2018; 6
2020; 3
2021; 11
2021; 33
2020; 30
2022; 61
2022; 7
2023; 135
2019; 23
2017; 10
2003; 9
2022; 12
2022; 13
2022; 15
2018; 30
2020; 24
2023; 614
2017; 121
2021; 60
2018; 11
2021; 41
2018; 10
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_2
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_54_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_46_1
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_55_1
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_57_2
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1094
  year: 2019
  end-page: 1105
  publication-title: Joule
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 3369
  year: 2020
  end-page: 3377
  publication-title: ACS Appl. Energ. Mater.
– volume: 17
  start-page: 366
  year: 2019
  end-page: 373
  publication-title: Energy Storage Mater.
– volume: 46
  start-page: 3671
  year: 1968
  end-page: 3677
  publication-title: Can. J. Chem.
– volume: 10
  start-page: 804
  year: 2017
  end-page: 814
  publication-title: ChemSusChem
– volume: 144
  start-page: 14638
  year: 2022
  end-page: 14646
  publication-title: J. Am. Chem. Soc.
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 51
  start-page: 1636
  year: 2006
  end-page: 1640
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 366
  year: 2000
  publication-title: Electrochem. Solid-State Lett.
– volume: 10
  start-page: 199
  year: 2018
  end-page: 205
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 3749
  year: 2019
  end-page: 3761
  publication-title: ACS Appl. Energ. Mater.
– volume: 122
  start-page: 10736
  year: 2018
  end-page: 10745
  publication-title: J. Phys. Chem. B.
– volume: 15
  start-page: 1711
  year: 2022
  end-page: 1759
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2096
  year: 2021
  end-page: 2102
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 1552
  year: 2018
  end-page: 1562
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 6808
  year: 2022
  end-page: 6815
  publication-title: Nano Lett.
– volume: 13
  start-page: 2575
  year: 2022
  publication-title: Nat. Commun.
– volume: 8
  start-page: 934
  year: 2023
  end-page: 945
  publication-title: Nat. Energy
– volume: 614
  start-page: 694
  year: 2023
  end-page: 700
  publication-title: Nature
– volume: 6
  start-page: 19425
  year: 2018
  end-page: 19437
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1364
  year: 2022
  end-page: 1373
  publication-title: ACS Energy Lett.
– volume: 47
  start-page: 61
  year: 2022
  end-page: 69
  publication-title: Energy Storage Mater.
– volume: 24
  start-page: 618
  year: 2020
  end-page: 625
  publication-title: Energy Storage Mater.
– volume: 7
  start-page: 2165
  year: 2022
  end-page: 2172
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 13938
  year: 2020
  end-page: 13951
  publication-title: ACS Nano
– volume: 144
  start-page: 9806
  year: 2022
  end-page: 9816
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 135
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 121
  start-page: 22733
  year: 2017
  end-page: 22738
  publication-title: J. Phys. Chem. C.
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  publication-title: Chem. Soc. Rev.
– volume: 446
  year: 2020
  publication-title: J. Power Sources
– volume: 23
  start-page: 646
  year: 2019
  end-page: 652
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 8308
  year: 2023
  end-page: 8319
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 6600
  year: 2021
  end-page: 6608
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 88
  year: 2003
  end-page: 94
  publication-title: Ionics
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 1686
  year: 2020
  end-page: 1692
  publication-title: Nano Lett.
– volume: 14
  start-page: 5289
  year: 2021
  end-page: 5314
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 8190
  year: 2018
  end-page: 8200
  publication-title: Chem. Mater.
– volume: 17
  start-page: 284
  year: 2019
  end-page: 292
  publication-title: Energy Storage Mater.
– volume: 196
  start-page: 8696
  year: 2011
  end-page: 8700
  publication-title: J. Power Sources
– volume: 7
  start-page: 2282
  year: 2022
  end-page: 2288
  publication-title: ACS Energy Lett.
– volume: 41
  start-page: 495
  year: 2021
  end-page: 504
  publication-title: Energy Storage Mater.
– ident: e_1_2_7_56_2
  doi: 10.1016/j.ensm.2018.09.024
– ident: e_1_2_7_10_2
  doi: 10.1016/j.ensm.2018.11.003
– ident: e_1_2_7_32_2
  doi: 10.1039/C6CS00491A
– ident: e_1_2_7_53_2
  doi: 10.1016/j.ensm.2022.01.046
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.202103033
– ident: e_1_2_7_43_1
  doi: 10.1016/j.nanoen.2021.106353
– ident: e_1_2_7_17_2
  doi: 10.1021/acsnano.0c06360
– ident: e_1_2_7_1_1
  doi: 10.1016/j.joule.2019.02.004
– ident: e_1_2_7_8_2
  doi: 10.1039/D1EE03292E
– ident: e_1_2_7_30_1
  doi: 10.1021/acsaem.9b00458
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202013993
– ident: e_1_2_7_14_1
  doi: 10.1002/ange.202216189
– ident: e_1_2_7_3_2
  doi: 10.1002/aenm.202000982
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.jpcb.8b09439
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2011.06.030
– ident: e_1_2_7_13_1
  doi: 10.1021/cr500003w
– ident: e_1_2_7_21_1
  doi: 10.1016/j.electacta.2005.02.137
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.201907903
– ident: e_1_2_7_7_2
  doi: 10.1021/acs.nanolett.9b04815
– ident: e_1_2_7_52_1
– ident: e_1_2_7_16_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_23_2
  doi: 10.1021/acs.chemmater.8b03321
– ident: e_1_2_7_41_1
  doi: 10.1038/s41586-022-05627-8
– ident: e_1_2_7_38_1
– ident: e_1_2_7_60_1
  doi: 10.1016/j.jpowsour.2019.227366
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-022-29199-3
– ident: e_1_2_7_46_1
– ident: e_1_2_7_33_2
  doi: 10.1038/s41560-023-01282-z
– ident: e_1_2_7_44_1
  doi: 10.1039/C8EE00372F
– ident: e_1_2_7_54_2
  doi: 10.1039/D2TA09157G
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.2c04176
– ident: e_1_2_7_36_1
  doi: 10.1021/acsenergylett.2c01090
– ident: e_1_2_7_39_2
  doi: 10.1002/adma.202102964
– ident: e_1_2_7_35_1
  doi: 10.1016/j.ensm.2021.06.018
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ensm.2019.03.005
– ident: e_1_2_7_28_2
  doi: 10.1149/1.1391150
– ident: e_1_2_7_19_1
  doi: 10.1002/aenm.202003836
– ident: e_1_2_7_59_1
  doi: 10.1021/acsaem.9b02372
– ident: e_1_2_7_37_1
  doi: 10.1021/acsenergylett.2c00316
– ident: e_1_2_7_22_1
– ident: e_1_2_7_48_2
  doi: 10.1002/anie.202115909
– ident: e_1_2_7_24_2
  doi: 10.1007/BF02376543
– ident: e_1_2_7_34_1
  doi: 10.1002/cssc.201601636
– ident: e_1_2_7_29_1
  doi: 10.1021/jacs.2c02260
– ident: e_1_2_7_55_1
– ident: e_1_2_7_11_2
  doi: 10.1021/acsenergylett.2c01081
– ident: e_1_2_7_27_2
  doi: 10.1139/v68-607
– ident: e_1_2_7_51_1
  doi: 10.1039/C8TA08761J
– ident: e_1_2_7_5_2
  doi: 10.1021/acsenergylett.1c00707
– ident: e_1_2_7_45_1
  doi: 10.1021/acs.jpcc.7b08433
– ident: e_1_2_7_40_2
  doi: 10.1021/acs.nanolett.2c02829
– ident: e_1_2_7_57_2
  doi: 10.1016/j.ensm.2019.06.014
– ident: e_1_2_7_6_1
– ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_47_2
  doi: 10.1002/aenm.202000368
– ident: e_1_2_7_58_1
  doi: 10.1016/j.ensm.2017.03.008
– ident: e_1_2_7_31_1
– ident: e_1_2_7_49_2
  doi: 10.1039/D1EE00767J
SSID ssj0006279
Score 2.2573755
Snippet Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF6, as...
Traditional lithium salts are difficult to meet practical application demand of lithium metal batteries (LMBs) under high voltages and temperatures. LiPF 6 ,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anions
Cathodic protection
Electrochemical analysis
Electrochemistry
Electrode/Electrolyte Interphases
Electrolytes
Electrolytic cells
Fluorination
Functional groups
High temperature
High Temperature and Voltage Performance
High voltages
Interphase
Lithium
Lithium batteries
Lithium borates
Lithium ions
Lithium Metal Batteries
Lithium Salts
Salts
Solid electrolytes
Solvation
Thermal stability
Title A Highly‐Fluorinated Lithium Borate Main Salt Empowering Stable Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202400797
https://www.proquest.com/docview/3044884652
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1521-3757
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0006279
  issn: 0044-8249
  databaseCode: ABDBF
  dateStart: 20120604
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0044-8249
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006279
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELUQDLDwjSiUygMSk9skduJ0bEtLhWgHoFKZoji2RUVaKpoOMPET-I38Es5JkwISQoItkewoOd_F71l37xA6lXWhLUsz4mqmCNNUEqFCQXzJPUAbNpPSHA30-l53wC6H7vBTFX-mD1EcuJnISP_XJsBDMastRUNN7j3wO5MDyeumnNymXsqprpf6UZ6Tie1ZjBEfiEau2mg5ta_Tv-5KS6j5GbCmO05nC4X5u2aJJg_VeSKq0cs3Gcf_fMw22lzAUdzI_GcHrajJLlpv5V3g9tBdA5tUkPj5_fWtE89Nuh6gU4mvRsn9aD7GTeNCCvfC0QTfhHGC2-OpabwGOyIGICtiVQztKQD6OBP0BH6-jwad9m2rSxbtGEhkgyGJyzi3pGMqawEFaI8q4H4Q3tKRkUpl5qkybAQ4b6Q5pTz0wOTK5bYpt3U1PUCrk8eJOkTYllQD7-IqEowxpX2m_FBq7kZK-JL5JUTy5QiihVa5aZkRB5nKshMYgwWFwUrorBg_zVQ6fhxZzlc3WETrLKDgHz4AMdcpISddpl-eEjT6F-3i7ugvk47RhrlOcye9MlpNnubqBPBNIipordE8b3YqqS9_AHEq8qU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED2k6eAuST9RJ27CoUAn2rJEicroGnad1PbQ2kA7CaJIokZkxUjkIZnyE_Ib-0t6J1lyXKAo0I4SSEE63onvHY7vAN7rM2UdxwruW2G4sJ7mysSKh1oGiDa6QmtKDUymwWguLr75VTUhnYUp9SHqhBtFRvG_pgCnhHRnqxpKxfdI8KgIUp7JJ_BUBEhWCBd92SpIBW4pt-cIwUOkGpVuo-N2dufv7ktbsPkYshZ7zvAQVPW2ZanJZXudq3Zy95uQ4399znM42CBS1itd6AXsmewlNPpVI7hX8L3HqBokvf15_zBM11SxhwBVs_Ei_7FYL9lH8iLDJvEiY1_jNGeD5Yp6r-GmyBDLqtTUQycGsT4rNT2Ror-G-XAw64_4piMDT7poSe4LKR3t0uFaBAI28AzSP4xw7erEFErzniFCgrQ3sdLzZBygzY0vu3Ti1rfeG9jPrjLzFlhXexaplzSJEkIYGwoTxtpKPzEq1CJsAq_WI0o2cuXUNSONSqFlNyKDRbXBmvChHr8qhTr-OLJVLW-0CdibyEMHCRGL-W4T3GKd_vKUqDf9NKivjv5l0ik0RrPJOBqfTz8fwzO6X5RSBi3Yz6_X5h3CnVydFA79CxN89VQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTttAEB1RkFouBUqrpkC7ByROC4699jrHAElpSyLUFglOltc7q0Y1IQLn0J74BL6RL2HGjp2ChCq1R1u7lj07432zevMGYNt2jPM8p2ToFErlAisNpkbGVkeENtrKWj4aGAyjo1P1-Sys2YRcC1PpQzQHbhwZ5f-aAxwn1u3NVUOZfE8JHpMgdUc_gyUVdmJm9R1-nStIRX4lt-cpJWNKNWrdRs_fezj_4b40B5t_QtZyz-mvgKnftqKa_NydFmY3-_1IyPG_PmcVXs4QqehWLrQGCzh-BS8O6kZw63DeFcwGyX_d3dz28ykz9gigWnE8Kn6Mphdin70IxSAdjcW3NC9E72LCvddoUxSEZU2OzdABEtYXlaYnpeiv4bTf-35wJGcdGWTWJkvKUGntWZ-LawkIuChASv8owq1vMyyV5gPkhITS3szpINBpRDbHULe54jZ0wRtYHF-O8S2Itg0cpV4aM6OUQhcrjFPrdJihia2KWyDr9UiymVw5d83Ik0po2U_YYEljsBbsNOMnlVDHkyM36-VNZgF7nQTkIDFhsdBvgV-u01-eknSHH3vN1bt_mfQBnp8c9pPjT8MvG7DMt0smZbQJi8XVFLcI7RTmfenP98iH9Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Highly%E2%80%90Fluorinated+Lithium+Borate+Main+Salt+Empowering+Stable+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie&rft.au=Chen%2C+Guansheng&rft.au=Qiao%2C+Lixin&rft.au=Xu%2C+Gaojie&rft.au=Li%2C+Longshan&rft.date=2024-05-06&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=136&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fange.202400797&rft.externalDBID=10.1002%252Fange.202400797&rft.externalDocID=ANGE202400797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon