Brain Tumor Classification Using Back Propagation Neural Network

The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of image, graphics and signal processing Vol. 5; no. 2; pp. 45 - 50
Main Authors Sumitra, N., Saxena, Rakesh Kumar
Format Journal Article
LanguageEnglish
Published Hong Kong Modern Education and Computer Science Press 05.02.2013
Online AccessGet full text
ISSN2074-9074
2074-9082
2074-9082
DOI10.5815/ijigsp.2013.02.07

Cover

Abstract The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of the following stages namely, feature extraction, dimensionality reduction, and classification. The features extracted from the magnetic resonance images (MRI) have been reduced using principles component analysis (PCA) to the more essential features such as mean, median, variance, correlation, values of maximum and minimum intensity. In the classification stage, classifier based on Back-Propagation Neural Network has been developed. This classifier has been used to classify subjects as normal, benign and malignant brain tumor images. The results show that BPN classifier gives fast and accurate classification than the other neural networks and can be effectively used for classifying brain tumor with high level of accuracy.
AbstractList The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of the following stages namely, feature extraction, dimensionality reduction, and classification. The features extracted from the magnetic resonance images (MRI) have been reduced using principles component analysis (PCA) to the more essential features such as mean, median, variance, correlation, values of maximum and minimum intensity. In the classification stage, classifier based on Back-Propagation Neural Network has been developed. This classifier has been used to classify subjects as normal, benign and malignant brain tumor images. The results show that BPN classifier gives fast and accurate classification than the other neural networks and can be effectively used for classifying brain tumor with high level of accuracy.
Author Saxena, Rakesh Kumar
Sumitra, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Sumitra
  fullname: Sumitra, N.
– sequence: 2
  givenname: Rakesh Kumar
  surname: Saxena
  fullname: Saxena, Rakesh Kumar
BookMark eNqNkM1OwzAQhC1UJErpA3CLxLnBu3Hi-Aat-JMq4NCeLdd1KrdpHOxEVd-elCAOHBB7mdVqZrT6LsmgcpUh5BponOaQ3tqt3YQ6RgpJTDGm_IwMkXI2ETTHwc_O2QUZh7Cl3WQpJJwNyd3UK1tFi3bvfDQrVQi2sFo11lXRMthqE02V3kXv3tVq059fTetV2UlzcH53Rc4LVQYz_tYRWT4-LGbPk_nb08vsfj7RkAGfMK15ka8FFmlBkQPyROm1EYYyxByoyDSILBE5R671ilNASFHoFcsNMEySEcG-t61qdTyospS1t3vljxKoPGGQPQZ5wiApSsq70E0fqr37aE1o5Na1vur-lJAhZigYzToX9C7tXQjeFP9q5r8y2jZffJoOaPlH8hM-uIEo
CitedBy_id crossref_primary_10_1016_j_jrras_2022_05_014
crossref_primary_10_1016_j_heliyon_2024_e33471
crossref_primary_10_1007_s12204_023_2625_8
crossref_primary_10_1016_j_matpr_2020_12_199
crossref_primary_10_3233_JIFS_237653
crossref_primary_10_3389_fpubh_2022_959667
crossref_primary_10_1016_j_jrras_2024_101113
ContentType Journal Article
Copyright Copyright Modern Education and Computer Science Press Feb 2013
Copyright_xml – notice: Copyright Modern Education and Computer Science Press Feb 2013
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BVBZV
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.5815/ijigsp.2013.02.07
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
East & South Asia Database
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2074-9082
EndPage 50
ExternalDocumentID 10.5815/ijigsp.2013.02.07
3492234001
10_5815_ijigsp_2013_02_07
GroupedDBID .DC
5VS
8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
KQ8
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
V3M
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c1617-4cc7f8d92f5f0271273acde9e042281096c196398727ccb70121529cb48e14233
IEDL.DBID BENPR
ISSN 2074-9074
2074-9082
IngestDate Wed Oct 01 16:06:29 EDT 2025
Fri Jul 25 07:44:01 EDT 2025
Wed Oct 01 03:02:35 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1617-4cc7f8d92f5f0271273acde9e042281096c196398727ccb70121529cb48e14233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1622629406?pq-origsite=%requestingapplication%&accountid=15518
PQID 1622629406
PQPubID 2026669
PageCount 6
ParticipantIDs unpaywall_primary_10_5815_ijigsp_2013_02_07
proquest_journals_1622629406
crossref_primary_10_5815_ijigsp_2013_02_07
crossref_citationtrail_10_5815_ijigsp_2013_02_07
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-05
PublicationDateYYYYMMDD 2013-02-05
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-05
  day: 05
PublicationDecade 2010
PublicationPlace Hong Kong
PublicationPlace_xml – name: Hong Kong
PublicationTitle International journal of image, graphics and signal processing
PublicationYear 2013
Publisher Modern Education and Computer Science Press
Publisher_xml – name: Modern Education and Computer Science Press
SSID ssj0000651374
Score 1.8270475
Snippet The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 45
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAO7IhCQTlwArkkbpzlxiLKcqgqQRGcomTiVEAJVRcQfD1jx4UiJBCcEkX2SPHY8nvy8xuAHS4Cry79lHmSE0GRXsbCxM-Yk6j0CxtlpgWyTe-s7V7ciBtzi9-oKh8lDphWgeqT_Lv7u86gZx7sWbCc759fnJ9etti1YE3Ch7Vemk1D2ROExktQbjdbh7eqppySGiru9_ke8OJgUwSOMBGVuquubTv9r1vTJ96cGeW9-PUl7nYntp7GAsTjCzyF4uShNhomNXz77uf4779ahHmDS63DYiItwZTMl2Fuwq1wBQ6OVDkJ62r0-NS3dDFNJTPSmbW08sA6ivHBavWJh3eKz8r6g6I2C635KrQbJ1fHZ8wUYGCoaA9zEf0sSEOeiYzoq0NQJ8ZUhlIbhznEflAt4DAgEISY-MofTvAQEzeQDuG0-hqU8qdcroMVJMRzYimIkKLrYRqKABNBoeq-K1J0KmCPxz5C406uimR0I2IpKl1RMVSRSldk88j2K7D70aVXWHP81Lg6TmhkVukgcjwCnzwkTFOBvY8k_x5s40-tN2GW6xoanNmiCqVhfyS3CMkMk20zWd8BkmnwFA
  priority: 102
  providerName: Unpaywall
Title Brain Tumor Classification Using Back Propagation Neural Network
URI https://www.proquest.com/docview/1622629406
http://www.mecs-press.org/ijigsp/ijigsp-v5-n2/IJIGSP-V5-N2-7.pdf
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2074-9082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651374
  issn: 2074-9082
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: East & South Asia Database
  customDbUrl:
  eissn: 2074-9082
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651374
  issn: 2074-9082
  databaseCode: BVBZV
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2074-9082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651374
  issn: 2074-9082
  databaseCode: BENPR
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2074-9082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651374
  issn: 2074-9082
  databaseCode: 8FG
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ7wOKgH4zOiSHrwpGnoLmwfB6NgQOKhIUYMemna7daoCIgQ4793ZtuiXvC0SdPOYWZ3Z77d6fcBnHDh2g3lxKatOAIUZSemFzmJySIKv7CkSnSDrG_3Bs2boRgWwM__haG2ynxP1Bt1PJF0Rl5nNhYK3MP8czF9N0k1im5XcwmNMJNWiM81xVgRypyYsUpQbnf8_u3y1AUTLmtoamZOjYiEDNOrTuEyUX9-QatEYskamsjT-ZusfirQtcV4Gn59hqPRr2TU3YLNrIo0WmnYt6Ggxjuw8YtbcBcu2yT-YNwt3iYzQ0tfUlOQjoOh-wSMdihfjf4MUfNT-piIOtCqn3aG78Gg27m76pmZXIIpCaSYTSmdxI09nogEwSbDwiSUsfKUpvliiFUkLTfPxZJFysghNjfBPRk1XcWwqmrsQ2k8GasDMNwIUUmoBMJH2bRl7AlXRgJNoe9ELFkFrNwvgcy4xEnSYhQgpiBXBqkrA3JlYPHAcipwuvxkmhJprHq5mjs7yNbUR_AzAypwtgzA_8YOVxs7gnWuJS64aYkqlOazhTrGQmMe1aDodq9r2Ryi8b79eI_jwO-3Hr4BLDHT-Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzQEuoIjYibMcKqAsKluFUJG4mcRxEFDa0lIhfo5vY8ZJClzgxDVKRsrMxDPPGb8HsMlF6Ls6SG1fcwQo2s_sKAkymyUUfuEonZkB2YZfv_HObsXtCHyUZ2ForLJcE81CnXYU7ZHvMh8bBR5h_dnrvtikGkV_V0sJjbiQVkirhmKsONhxrt_fEML1q6dHGO8tzk-Om4d1u1AZsBX19ranVJCFacQzkSFGY1jPY5XqSBt2LIYtvqIsRWzOA6WSgEjQBI9U4oWaYTPiot1RGPdcL0LwN147blxdD3d5sMAz11BBcxp8JCSa_1oVIRO7D4_4FkSayVxDHBr8LI5fHe_EoN2N39_iVutb8TuZgemia7UO8jSbhRHdnoOpb1yG87BfI7EJqzl47vQsI7VJQ0gm7paZS7BqsXqyrnqI0u_zy0QMglYb-ST6Atz8i-MWYazdaeslsMIEUVCsBcJV5fkqjUSoEoGm0HciVawCTukXqQrucpLQaEnEMORKmbtSkiulw6UTVGB7-Eg3J-747ebV0tmy-Ib78ivjKrAzDMDfxpZ_N7YBE_Xm5YW8OG2cr8AkN_Ia3HbEKoy99gZ6DZuc12S9yCQL7v47eT8BOgAJyw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAO7IhCQTlwArkkbpzlxiLKcqgqQRGcomTiVEAJVRcQfD1jx4UiJBCcEkX2SPHY8nvy8xuAHS4Cry79lHmSE0GRXsbCxM-Yk6j0CxtlpgWyTe-s7V7ciBtzi9-oKh8lDphWgeqT_Lv7u86gZx7sWbCc759fnJ9etti1YE3Ch7Vemk1D2ROExktQbjdbh7eqppySGiru9_ke8OJgUwSOMBGVuquubTv9r1vTJ96cGeW9-PUl7nYntp7GAsTjCzyF4uShNhomNXz77uf4779ahHmDS63DYiItwZTMl2Fuwq1wBQ6OVDkJ62r0-NS3dDFNJTPSmbW08sA6ivHBavWJh3eKz8r6g6I2C635KrQbJ1fHZ8wUYGCoaA9zEf0sSEOeiYzoq0NQJ8ZUhlIbhznEflAt4DAgEISY-MofTvAQEzeQDuG0-hqU8qdcroMVJMRzYimIkKLrYRqKABNBoeq-K1J0KmCPxz5C406uimR0I2IpKl1RMVSRSldk88j2K7D70aVXWHP81Lg6TmhkVukgcjwCnzwkTFOBvY8k_x5s40-tN2GW6xoanNmiCqVhfyS3CMkMk20zWd8BkmnwFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Classification+Using+Back+Propagation+Neural+Network&rft.jtitle=International+journal+of+image%2C+graphics+and+signal+processing&rft.au=Sumitra%2C+N&rft.au=Saxena%2C+Rakesh+Kumar&rft.date=2013-02-05&rft.pub=Modern+Education+and+Computer+Science+Press&rft.issn=2074-9074&rft.eissn=2074-9082&rft.volume=5&rft.issue=2&rft.spage=45&rft_id=info:doi/10.5815%2Fijigsp.2013.02.07&rft.externalDocID=3492234001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2074-9074&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2074-9074&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2074-9074&client=summon