Brain Tumor Classification Using Back Propagation Neural Network
The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classi...
Saved in:
| Published in | International journal of image, graphics and signal processing Vol. 5; no. 2; pp. 45 - 50 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hong Kong
Modern Education and Computer Science Press
05.02.2013
|
| Online Access | Get full text |
| ISSN | 2074-9074 2074-9082 2074-9082 |
| DOI | 10.5815/ijigsp.2013.02.07 |
Cover
| Abstract | The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of the following stages namely, feature extraction, dimensionality reduction, and classification. The features extracted from the magnetic resonance images (MRI) have been reduced using principles component analysis (PCA) to the more essential features such as mean, median, variance, correlation, values of maximum and minimum intensity. In the classification stage, classifier based on Back-Propagation Neural Network has been developed. This classifier has been used to classify subjects as normal, benign and malignant brain tumor images. The results show that BPN classifier gives fast and accurate classification than the other neural networks and can be effectively used for classifying brain tumor with high level of accuracy. |
|---|---|
| AbstractList | The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods are impractical for large amounts of data and are also non-reproducible. Hence, this paper presents Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of the following stages namely, feature extraction, dimensionality reduction, and classification. The features extracted from the magnetic resonance images (MRI) have been reduced using principles component analysis (PCA) to the more essential features such as mean, median, variance, correlation, values of maximum and minimum intensity. In the classification stage, classifier based on Back-Propagation Neural Network has been developed. This classifier has been used to classify subjects as normal, benign and malignant brain tumor images. The results show that BPN classifier gives fast and accurate classification than the other neural networks and can be effectively used for classifying brain tumor with high level of accuracy. |
| Author | Saxena, Rakesh Kumar Sumitra, N. |
| Author_xml | – sequence: 1 givenname: N. surname: Sumitra fullname: Sumitra, N. – sequence: 2 givenname: Rakesh Kumar surname: Saxena fullname: Saxena, Rakesh Kumar |
| BookMark | eNqNkM1OwzAQhC1UJErpA3CLxLnBu3Hi-Aat-JMq4NCeLdd1KrdpHOxEVd-elCAOHBB7mdVqZrT6LsmgcpUh5BponOaQ3tqt3YQ6RgpJTDGm_IwMkXI2ETTHwc_O2QUZh7Cl3WQpJJwNyd3UK1tFi3bvfDQrVQi2sFo11lXRMthqE02V3kXv3tVq059fTetV2UlzcH53Rc4LVQYz_tYRWT4-LGbPk_nb08vsfj7RkAGfMK15ka8FFmlBkQPyROm1EYYyxByoyDSILBE5R671ilNASFHoFcsNMEySEcG-t61qdTyospS1t3vljxKoPGGQPQZ5wiApSsq70E0fqr37aE1o5Na1vur-lJAhZigYzToX9C7tXQjeFP9q5r8y2jZffJoOaPlH8hM-uIEo |
| CitedBy_id | crossref_primary_10_1016_j_jrras_2022_05_014 crossref_primary_10_1016_j_heliyon_2024_e33471 crossref_primary_10_1007_s12204_023_2625_8 crossref_primary_10_1016_j_matpr_2020_12_199 crossref_primary_10_3233_JIFS_237653 crossref_primary_10_3389_fpubh_2022_959667 crossref_primary_10_1016_j_jrras_2024_101113 |
| ContentType | Journal Article |
| Copyright | Copyright Modern Education and Computer Science Press Feb 2013 |
| Copyright_xml | – notice: Copyright Modern Education and Computer Science Press Feb 2013 |
| DBID | AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.5815/ijigsp.2013.02.07 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2074-9082 |
| EndPage | 50 |
| ExternalDocumentID | 10.5815/ijigsp.2013.02.07 3492234001 10_5815_ijigsp_2013_02_07 |
| GroupedDBID | .DC 5VS 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION DWQXO GNUQQ HCIFZ K6V K7- KQ8 OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO V3M 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1617-4cc7f8d92f5f0271273acde9e042281096c196398727ccb70121529cb48e14233 |
| IEDL.DBID | BENPR |
| ISSN | 2074-9074 2074-9082 |
| IngestDate | Wed Oct 01 16:06:29 EDT 2025 Fri Jul 25 07:44:01 EDT 2025 Wed Oct 01 03:02:35 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1617-4cc7f8d92f5f0271273acde9e042281096c196398727ccb70121529cb48e14233 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/1622629406?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 1622629406 |
| PQPubID | 2026669 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_5815_ijigsp_2013_02_07 proquest_journals_1622629406 crossref_primary_10_5815_ijigsp_2013_02_07 crossref_citationtrail_10_5815_ijigsp_2013_02_07 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-05 |
| PublicationDateYYYYMMDD | 2013-02-05 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hong Kong |
| PublicationPlace_xml | – name: Hong Kong |
| PublicationTitle | International journal of image, graphics and signal processing |
| PublicationYear | 2013 |
| Publisher | Modern Education and Computer Science Press |
| Publisher_xml | – name: Modern Education and Computer Science Press |
| SSID | ssj0000651374 |
| Score | 1.8270475 |
| Snippet | The conventional method for medical resonance brain images classification and tumors detection is by human inspection. Operator-assisted classification methods... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 45 |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAO7IhCQTlwArkkbpzlxiLKcqgqQRGcomTiVEAJVRcQfD1jx4UiJBCcEkX2SPHY8nvy8xuAHS4Cry79lHmSE0GRXsbCxM-Yk6j0CxtlpgWyTe-s7V7ciBtzi9-oKh8lDphWgeqT_Lv7u86gZx7sWbCc759fnJ9etti1YE3Ch7Vemk1D2ROExktQbjdbh7eqppySGiru9_ke8OJgUwSOMBGVuquubTv9r1vTJ96cGeW9-PUl7nYntp7GAsTjCzyF4uShNhomNXz77uf4779ahHmDS63DYiItwZTMl2Fuwq1wBQ6OVDkJ62r0-NS3dDFNJTPSmbW08sA6ivHBavWJh3eKz8r6g6I2C635KrQbJ1fHZ8wUYGCoaA9zEf0sSEOeiYzoq0NQJ8ZUhlIbhznEflAt4DAgEISY-MofTvAQEzeQDuG0-hqU8qdcroMVJMRzYimIkKLrYRqKABNBoeq-K1J0KmCPxz5C406uimR0I2IpKl1RMVSRSldk88j2K7D70aVXWHP81Lg6TmhkVukgcjwCnzwkTFOBvY8k_x5s40-tN2GW6xoanNmiCqVhfyS3CMkMk20zWd8BkmnwFA priority: 102 providerName: Unpaywall |
| Title | Brain Tumor Classification Using Back Propagation Neural Network |
| URI | https://www.proquest.com/docview/1622629406 http://www.mecs-press.org/ijigsp/ijigsp-v5-n2/IJIGSP-V5-N2-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2074-9082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651374 issn: 2074-9082 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: East & South Asia Database customDbUrl: eissn: 2074-9082 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651374 issn: 2074-9082 databaseCode: BVBZV dateStart: 20091001 isFulltext: true titleUrlDefault: https://search.proquest.com/eastsouthasia providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2074-9082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651374 issn: 2074-9082 databaseCode: BENPR dateStart: 20091001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2074-9082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000651374 issn: 2074-9082 databaseCode: 8FG dateStart: 20091001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEJ7wOKgH4zOiSHrwpGnoLmwfB6NgQOKhIUYMemna7daoCIgQ4793ZtuiXvC0SdPOYWZ3Z77d6fcBnHDh2g3lxKatOAIUZSemFzmJySIKv7CkSnSDrG_3Bs2boRgWwM__haG2ynxP1Bt1PJF0Rl5nNhYK3MP8czF9N0k1im5XcwmNMJNWiM81xVgRypyYsUpQbnf8_u3y1AUTLmtoamZOjYiEDNOrTuEyUX9-QatEYskamsjT-ZusfirQtcV4Gn59hqPRr2TU3YLNrIo0WmnYt6Ggxjuw8YtbcBcu2yT-YNwt3iYzQ0tfUlOQjoOh-wSMdihfjf4MUfNT-piIOtCqn3aG78Gg27m76pmZXIIpCaSYTSmdxI09nogEwSbDwiSUsfKUpvliiFUkLTfPxZJFysghNjfBPRk1XcWwqmrsQ2k8GasDMNwIUUmoBMJH2bRl7AlXRgJNoe9ELFkFrNwvgcy4xEnSYhQgpiBXBqkrA3JlYPHAcipwuvxkmhJprHq5mjs7yNbUR_AzAypwtgzA_8YOVxs7gnWuJS64aYkqlOazhTrGQmMe1aDodq9r2Ryi8b79eI_jwO-3Hr4BLDHT-Q |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhVlzQEuoIjYibMcKqAsKluFUJG4mcRxEFDa0lIhfo5vY8ZJClzgxDVKRsrMxDPPGb8HsMlF6Ls6SG1fcwQo2s_sKAkymyUUfuEonZkB2YZfv_HObsXtCHyUZ2ForLJcE81CnXYU7ZHvMh8bBR5h_dnrvtikGkV_V0sJjbiQVkirhmKsONhxrt_fEML1q6dHGO8tzk-Om4d1u1AZsBX19ranVJCFacQzkSFGY1jPY5XqSBt2LIYtvqIsRWzOA6WSgEjQBI9U4oWaYTPiot1RGPdcL0LwN147blxdD3d5sMAz11BBcxp8JCSa_1oVIRO7D4_4FkSayVxDHBr8LI5fHe_EoN2N39_iVutb8TuZgemia7UO8jSbhRHdnoOpb1yG87BfI7EJqzl47vQsI7VJQ0gm7paZS7BqsXqyrnqI0u_zy0QMglYb-ST6Atz8i-MWYazdaeslsMIEUVCsBcJV5fkqjUSoEoGm0HciVawCTukXqQrucpLQaEnEMORKmbtSkiulw6UTVGB7-Eg3J-747ebV0tmy-Ib78ivjKrAzDMDfxpZ_N7YBE_Xm5YW8OG2cr8AkN_Ia3HbEKoy99gZ6DZuc12S9yCQL7v47eT8BOgAJyw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAO7IhCQTlwArkkbpzlxiLKcqgqQRGcomTiVEAJVRcQfD1jx4UiJBCcEkX2SPHY8nvy8xuAHS4Cry79lHmSE0GRXsbCxM-Yk6j0CxtlpgWyTe-s7V7ciBtzi9-oKh8lDphWgeqT_Lv7u86gZx7sWbCc759fnJ9etti1YE3Ch7Vemk1D2ROExktQbjdbh7eqppySGiru9_ke8OJgUwSOMBGVuquubTv9r1vTJ96cGeW9-PUl7nYntp7GAsTjCzyF4uShNhomNXz77uf4779ahHmDS63DYiItwZTMl2Fuwq1wBQ6OVDkJ62r0-NS3dDFNJTPSmbW08sA6ivHBavWJh3eKz8r6g6I2C635KrQbJ1fHZ8wUYGCoaA9zEf0sSEOeiYzoq0NQJ8ZUhlIbhznEflAt4DAgEISY-MofTvAQEzeQDuG0-hqU8qdcroMVJMRzYimIkKLrYRqKABNBoeq-K1J0KmCPxz5C406uimR0I2IpKl1RMVSRSldk88j2K7D70aVXWHP81Lg6TmhkVukgcjwCnzwkTFOBvY8k_x5s40-tN2GW6xoanNmiCqVhfyS3CMkMk20zWd8BkmnwFA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Tumor+Classification+Using+Back+Propagation+Neural+Network&rft.jtitle=International+journal+of+image%2C+graphics+and+signal+processing&rft.au=Sumitra%2C+N&rft.au=Saxena%2C+Rakesh+Kumar&rft.date=2013-02-05&rft.pub=Modern+Education+and+Computer+Science+Press&rft.issn=2074-9074&rft.eissn=2074-9082&rft.volume=5&rft.issue=2&rft.spage=45&rft_id=info:doi/10.5815%2Fijigsp.2013.02.07&rft.externalDocID=3492234001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2074-9074&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2074-9074&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2074-9074&client=summon |