A Method for Evaluating the T2∗-weighting Effect in MRI

Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentra...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Radiological Technology Vol. 78; no. 4; pp. 357 - 363
Main Authors Saito, Hiroaki, Ohkubo, Masaki, Yagi, Yuta, Kanazawa, Tsutomu
Format Journal Article
LanguageJapanese
Published Kyoto Japanese Society of Radiological Technology 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0369-4305
1881-4883
DOI10.6009/jjrt.2022-1189

Cover

Abstract Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentration and signal intensity was determined, and we simulated an iron concentration map representing a simplified model of a brain microbleed and converted the pixel values in the map to signal intensity based on the determined relationship, generating a simulated T2*-weighted image. An ‘S-value’ parameter was defined to evaluate the low-intensity regions in the simulated image. S-values were obtained using T2*-weighted sequences acquired with different echo time (TE) values on three MRI scanners (Philips 1.5 T, GE 3.0 T, and Siemens 3.0 T). Another parameter (A-value) defined by the American Society for Testing and Materials (ASTM-F2119) for assessing artifacts was applied to evaluate the weighting effect in the T2*-weighted image of a laboratory-made susceptibility-effect phantom. Results: With all three scanners, the S-values increased as the TE increased, indicating enhancement of the T2*-weighting effect. For every TE, the S-values obtained for the Philips scanner were the largest, followed by those for the GE and Siemens scanners. The results of this comparative evaluation were similar to those obtained using A-values. Conclusion: Comparisons with the established A-value parameter showed our proposed method for the quantitative evaluation of the T2*-weighting effect using S-values to be valid. The proposed method has the advantage that the S-values do not depend on a specific susceptibility-effect phantom.
AbstractList Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentration and signal intensity was determined, and we simulated an iron concentration map representing a simplified model of a brain microbleed and converted the pixel values in the map to signal intensity based on the determined relationship, generating a simulated T2*-weighted image. An ‘S-value’ parameter was defined to evaluate the low-intensity regions in the simulated image. S-values were obtained using T2*-weighted sequences acquired with different echo time (TE) values on three MRI scanners (Philips 1.5 T, GE 3.0 T, and Siemens 3.0 T). Another parameter (A-value) defined by the American Society for Testing and Materials (ASTM-F2119) for assessing artifacts was applied to evaluate the weighting effect in the T2*-weighted image of a laboratory-made susceptibility-effect phantom. Results: With all three scanners, the S-values increased as the TE increased, indicating enhancement of the T2*-weighting effect. For every TE, the S-values obtained for the Philips scanner were the largest, followed by those for the GE and Siemens scanners. The results of this comparative evaluation were similar to those obtained using A-values. Conclusion: Comparisons with the established A-value parameter showed our proposed method for the quantitative evaluation of the T2*-weighting effect using S-values to be valid. The proposed method has the advantage that the S-values do not depend on a specific susceptibility-effect phantom.
ArticleNumber 2022-1189
Author Saito, Hiroaki
Ohkubo, Masaki
Kanazawa, Tsutomu
Yagi, Yuta
Author_xml – sequence: 1
  fullname: Saito, Hiroaki
  organization: Division of Radiology, Niigata University Medical and Dental Hospital
– sequence: 1
  fullname: Ohkubo, Masaki
  organization: Graduate School of Health Sciences, Niigata University
– sequence: 1
  fullname: Yagi, Yuta
  organization: Division of Radiology, Niigata University Medical and Dental Hospital
– sequence: 1
  fullname: Kanazawa, Tsutomu
  organization: Division of Radiology, Niigata University Medical and Dental Hospital
BookMark eNo9kEFOwzAQRS1UJErplnUk1ike23HsZVUKVGqFhMracpNJk6gkxXFB3IAbcD9OQkJQNjPSn_9nRu-SjKq6QkKugc4kpfq2LJ2fMcpYCKD0GRmDUhAKpfiIjCmXOhScRhdk2jTFjraJVqJiTPQ82KDP6zTIahcs3-3hZH1R7QOfY7BlP1_f4QcW-_xPW2YZJj4oqmDzvLoi55k9NDj97xPycr_cLh7D9dPDajFfhwlIYGGaIMhYIpdWR0LDTqftl1xIKTHS2jJBrY2tBppBDDyDVksjRWmMO2ujmE_ITb_36Oq3EzbelPXJVe1Jw2SkOIuA0dY1612Jq5vGYWaOrni17tMANR0h0xEyHSHTEWoDd32gbLzd42C3zhfJAXt7rIzoyhAbxkluncGK_wJYonEu
Cites_doi 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
10.1148/rg.295095034
10.1161/01.STR.0000199847.96188.12
10.1016/j.actbio.2013.05.017
10.1016/B978-012092861-3/50021-2
10.6009/jjrt.63.1093
10.1253/circj.CJ-08-0764
10.1148/radiology.168.3.3406410
10.3995/jstroke.10390
10.1093/brain/awl387
10.1016/j.crad.2010.01.004
10.1016/S1474-4422(09)70013-4
10.1016/j.jstrokecerebrovasdis.2017.09.001
10.1007/s003300050789
10.3174/ajnr.A0908
10.1111/j.1552-6569.2006.00070.x
ContentType Journal Article
Copyright 2022 Japanese Society of Radiological Technology
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Japanese Society of Radiological Technology
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
DOI 10.6009/jjrt.2022-1189
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Biotechnology Research Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1881-4883
EndPage 363
ExternalDocumentID 10_6009_jjrt_2022_1189
article_jjrt_78_4_78_2022_1189_article_char_en
GroupedDBID .LE
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
KQ8
OK1
RJT
AAYXX
CITATION
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c1612-dce1676e36a95491b9d02234666e599a240aa7a910f1713f199ad58007ebaa573
ISSN 0369-4305
IngestDate Sat Sep 20 14:20:42 EDT 2025
Tue Jul 01 00:56:41 EDT 2025
Wed Sep 03 06:30:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1612-dce1676e36a95491b9d02234666e599a240aa7a910f1713f199ad58007ebaa573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjrt/78/4/78_2022-1189/_article/-char/en
PQID 2658325120
PQPubID 2048391
PageCount 7
ParticipantIDs proquest_journals_2658325120
crossref_primary_10_6009_jjrt_2022_1189
jstage_primary_article_jjrt_78_4_78_2022_1189_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Kyoto
PublicationPlace_xml – name: Kyoto
PublicationTitle Japanese Journal of Radiological Technology
PublicationTitleAlternate Jpn. J. Radiol. Technol.
PublicationYear 2022
Publisher Japanese Society of Radiological Technology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Radiological Technology
– name: Japan Science and Technology Agency
References 17) Tatsumi S, Ayaki T, Shinohara M, et al. Type of gradient recalled-echo sequence results in size and number change of cerebral microbleeds. AJNR Am J Neuroradiol 2008; 29(4): e13.
13) Werring DJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2007; 17(3): 193–203.
3) Stark DD, Bradley WG Jr. 5 Image Contrast and Noise. Magnetic Resonance Imaging, 2nd ed. Mosby Year Book, St. Louis, 1992: 129–35.
4) 巨瀬勝美.6.2高速勾配エコー法.NMRイメージング.共立出版,東京,2004: 123–31.
21) 綾部佑介,濱本耕平,池田欣正,他.体幹部MRAにおける金属塞栓物質の磁化率アーチファクトの影響の比較.日放技学誌2019; 75(5): 460–467.
5) Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol 1999; 9(6): 1032–1046.
16) Gregoire SM, Werring DJ, Chaudhary UJ, et al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010; 65(5): 391–394.
1) Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29(5): 1433–1449.
15) Offenbacher H, Fazekas F, Schmidt R, et al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996; 17(3): 573–578.
6) Atlas SW, Mark AS, Grossman RI, et al. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988; 168(3): 803–807.
10) Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 2009; 73(3): 530–533.
19) 川村拓,東直輝.磁化率強調画像における像拡大に関する検討とプロファイル評価.茨城医療大紀2017; 22: 57–63.
12) Saito T, Kawamura Y, Sato N, et al. Cerebral microbleeds remain for nine years: a prospective study with yearly magnetic resonance imaging. J Stroke Cerebrovasc Dis 2018; 27(2): 315–320.
9) Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke 2006; 37(2): 550–555.
7) Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999; 20(4): 637–642.
18) 太田絢子,内藤健一,大久保真樹,他.MR用簡易ファントムを用いた磁化率強調画像(Susceptibility-weighted Imaging: SWI)の基礎的検討.日放技学誌2007; 63(9): 1093–1098.
11) 仲博満.Cerebral microbleedsの成因と臨床.脳卒中2016; 38(5): 346–352.
20) Imai H, Tanaka Y, Nomura N, et al. Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images. Acta Biomater 2013; 9(9): 8433–8439.
22) Wansapura JP, Holland SK, Dunn RS, et al. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9(4): 531–538.
2) Bernstein MA, King KF, Zhou XJ. 14.1 Gradient Echo. Handbook of MRI Pulse Sequences. Elsevier Academic Press, Amsterdam, 2004: 579–82.
14) Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130(Pt 8): 1988–2003.
8) Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165–174.
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 12) Saito T, Kawamura Y, Sato N, et al. Cerebral microbleeds remain for nine years: a prospective study with yearly magnetic resonance imaging. J Stroke Cerebrovasc Dis 2018; 27(2): 315–320.
– reference: 7) Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999; 20(4): 637–642.
– reference: 22) Wansapura JP, Holland SK, Dunn RS, et al. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9(4): 531–538.
– reference: 9) Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke 2006; 37(2): 550–555.
– reference: 1) Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29(5): 1433–1449.
– reference: 21) 綾部佑介,濱本耕平,池田欣正,他.体幹部MRAにおける金属塞栓物質の磁化率アーチファクトの影響の比較.日放技学誌2019; 75(5): 460–467.
– reference: 19) 川村拓,東直輝.磁化率強調画像における像拡大に関する検討とプロファイル評価.茨城医療大紀2017; 22: 57–63.
– reference: 11) 仲博満.Cerebral microbleedsの成因と臨床.脳卒中2016; 38(5): 346–352.
– reference: 2) Bernstein MA, King KF, Zhou XJ. 14.1 Gradient Echo. Handbook of MRI Pulse Sequences. Elsevier Academic Press, Amsterdam, 2004: 579–82.
– reference: 10) Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 2009; 73(3): 530–533.
– reference: 16) Gregoire SM, Werring DJ, Chaudhary UJ, et al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010; 65(5): 391–394.
– reference: 17) Tatsumi S, Ayaki T, Shinohara M, et al. Type of gradient recalled-echo sequence results in size and number change of cerebral microbleeds. AJNR Am J Neuroradiol 2008; 29(4): e13.
– reference: 18) 太田絢子,内藤健一,大久保真樹,他.MR用簡易ファントムを用いた磁化率強調画像(Susceptibility-weighted Imaging: SWI)の基礎的検討.日放技学誌2007; 63(9): 1093–1098.
– reference: 13) Werring DJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2007; 17(3): 193–203.
– reference: 5) Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol 1999; 9(6): 1032–1046.
– reference: 8) Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165–174.
– reference: 20) Imai H, Tanaka Y, Nomura N, et al. Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images. Acta Biomater 2013; 9(9): 8433–8439.
– reference: 3) Stark DD, Bradley WG Jr. 5 Image Contrast and Noise. Magnetic Resonance Imaging, 2nd ed. Mosby Year Book, St. Louis, 1992: 129–35.
– reference: 15) Offenbacher H, Fazekas F, Schmidt R, et al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996; 17(3): 573–578.
– reference: 14) Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130(Pt 8): 1988–2003.
– reference: 4) 巨瀬勝美.6.2高速勾配エコー法.NMRイメージング.共立出版,東京,2004: 123–31.
– reference: 6) Atlas SW, Mark AS, Grossman RI, et al. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988; 168(3): 803–807.
– ident: 22
  doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
– ident: 1
  doi: 10.1148/rg.295095034
– ident: 3
– ident: 9
  doi: 10.1161/01.STR.0000199847.96188.12
– ident: 4
– ident: 20
  doi: 10.1016/j.actbio.2013.05.017
– ident: 2
  doi: 10.1016/B978-012092861-3/50021-2
– ident: 18
  doi: 10.6009/jjrt.63.1093
– ident: 10
  doi: 10.1253/circj.CJ-08-0764
– ident: 6
  doi: 10.1148/radiology.168.3.3406410
– ident: 11
  doi: 10.3995/jstroke.10390
– ident: 14
  doi: 10.1093/brain/awl387
– ident: 19
– ident: 16
  doi: 10.1016/j.crad.2010.01.004
– ident: 15
– ident: 8
  doi: 10.1016/S1474-4422(09)70013-4
– ident: 12
  doi: 10.1016/j.jstrokecerebrovasdis.2017.09.001
– ident: 5
  doi: 10.1007/s003300050789
– ident: 17
  doi: 10.3174/ajnr.A0908
– ident: 7
– ident: 21
– ident: 13
  doi: 10.1111/j.1552-6569.2006.00070.x
SSID ssib000936904
ssib002223925
ssj0055458
ssib005879721
ssib031740840
ssib000959831
ssib000753122
ssib008799587
ssib002484555
ssib023160873
Score 2.1993487
Snippet Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 357
SubjectTerms Contrast agents
Image acquisition
Image contrast
Iron oxides
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical imaging
Parameters
Scanners
Simulation
superparamagnetic iron oxide (SPIO)
susceptibility effect
T2-weighted image
Weighting
Title A Method for Evaluating the T2∗-weighting Effect in MRI
URI https://www.jstage.jst.go.jp/article/jjrt/78/4/78_2022-1189/_article/-char/en
https://www.proquest.com/docview/2658325120
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Radiological Technology, 2022, Vol.78(4), pp.357-363
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-4883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055458
  issn: 0369-4305
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKghAXxFMUFpQDiEMVaBLHjwOHCi0qrIrE0pV2T5FdJ0uLaFGbaKX9BfwDfgj_iF_CjJ2Hu4sEC5coch6yZsYz39jzIORpkUpWaEZDI0wRUlnIUMbGhENttCqMMXqIicKT92x8SN8dpUe93g8vaqkq9YvZ2W_zSv6FqzAGfMUs2Utwtv0pDMA98BeuwGG4_hWPR4OJbQBtYwX36rrddfrTNLZxDOKZ5OGp3f_EJ3Wx4vlyMDl4uwVMwWhiM8qBh1APlJm3uvHiHvxHNbc9mAbj-XoFQLTdr_30udIrlwi08caP1YkNHTiuytYW7KulOlOnFsFON1W5-lL5-xBxfG4fop1mE236h2k2OVsyxKJjzho5FSwEeLXCtbdpdDQXnixST-Emrrx1bbsTpyzPmwUAdVhVdbFYY_QsTB28KtkZwDYssWZkhi9mXGQUL_hBhh9kzWPMhwPxu0KuxpwxbJux_0H4GCyJ_JqI2DLRL4AjUym8o1cEaDLeqjFHUz9ZWHDp17ATWMKvw9SAzxmMtUoW8CAd2gI-Do6keDLqDuwdqV3lUiTJy22CbCGzawtwTk4uIhQLu6a3yM1aGoORI8pt0luoO-T6pI4IuUvkKHBrIIA1EHRrIIA1EEzjn9--d9IfOOkP5ssApP8eOXyzN309Dut2IOEM3JI4NLM8YpzlCVN4Nh1paWDqCQUHPE-lVIBNleIK8G8R8SgpIhgzKThEPNdKpTy5T3aWq2X-gASc0ahQWitbT1EDPxSbgeXKqSkKykSfPG9IkX11VV8y8JaRaE44WqHok1eOUu17lxOiPtltCJzVmmWTxeAWJOh4DB_-5-8fkRvdWt0lO-W6yh8Dii71Eyu1vwAcRbwV
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Evaluating+the+T2%E2%88%97-weighting+Effect+in+MRI&rft.jtitle=Japanese+Journal+of+Radiological+Technology&rft.au=Saito%2C+Hiroaki&rft.au=Ohkubo%2C+Masaki&rft.au=Yagi%2C+Yuta&rft.au=Kanazawa%2C+Tsutomu&rft.date=2022-01-01&rft.pub=Japanese+Society+of+Radiological+Technology&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=78&rft.issue=4&rft.spage=357&rft.epage=363&rft_id=info:doi/10.6009%2Fjjrt.2022-1189&rft.externalDocID=article_jjrt_78_4_78_2022_1189_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon