A Method for Evaluating the T2∗-weighting Effect in MRI
Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentra...
Saved in:
Published in | Japanese Journal of Radiological Technology Vol. 78; no. 4; pp. 357 - 363 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
Kyoto
Japanese Society of Radiological Technology
01.01.2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0369-4305 1881-4883 |
DOI | 10.6009/jjrt.2022-1189 |
Cover
Abstract | Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentration and signal intensity was determined, and we simulated an iron concentration map representing a simplified model of a brain microbleed and converted the pixel values in the map to signal intensity based on the determined relationship, generating a simulated T2*-weighted image. An ‘S-value’ parameter was defined to evaluate the low-intensity regions in the simulated image. S-values were obtained using T2*-weighted sequences acquired with different echo time (TE) values on three MRI scanners (Philips 1.5 T, GE 3.0 T, and Siemens 3.0 T). Another parameter (A-value) defined by the American Society for Testing and Materials (ASTM-F2119) for assessing artifacts was applied to evaluate the weighting effect in the T2*-weighted image of a laboratory-made susceptibility-effect phantom. Results: With all three scanners, the S-values increased as the TE increased, indicating enhancement of the T2*-weighting effect. For every TE, the S-values obtained for the Philips scanner were the largest, followed by those for the GE and Siemens scanners. The results of this comparative evaluation were similar to those obtained using A-values. Conclusion: Comparisons with the established A-value parameter showed our proposed method for the quantitative evaluation of the T2*-weighting effect using S-values to be valid. The proposed method has the advantage that the S-values do not depend on a specific susceptibility-effect phantom. |
---|---|
AbstractList | Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic iron oxide contrast agent were made and their signal intensities on T2*-weighted images were measured. The relationship between iron concentration and signal intensity was determined, and we simulated an iron concentration map representing a simplified model of a brain microbleed and converted the pixel values in the map to signal intensity based on the determined relationship, generating a simulated T2*-weighted image. An ‘S-value’ parameter was defined to evaluate the low-intensity regions in the simulated image. S-values were obtained using T2*-weighted sequences acquired with different echo time (TE) values on three MRI scanners (Philips 1.5 T, GE 3.0 T, and Siemens 3.0 T). Another parameter (A-value) defined by the American Society for Testing and Materials (ASTM-F2119) for assessing artifacts was applied to evaluate the weighting effect in the T2*-weighted image of a laboratory-made susceptibility-effect phantom. Results: With all three scanners, the S-values increased as the TE increased, indicating enhancement of the T2*-weighting effect. For every TE, the S-values obtained for the Philips scanner were the largest, followed by those for the GE and Siemens scanners. The results of this comparative evaluation were similar to those obtained using A-values. Conclusion: Comparisons with the established A-value parameter showed our proposed method for the quantitative evaluation of the T2*-weighting effect using S-values to be valid. The proposed method has the advantage that the S-values do not depend on a specific susceptibility-effect phantom. |
ArticleNumber | 2022-1189 |
Author | Saito, Hiroaki Ohkubo, Masaki Kanazawa, Tsutomu Yagi, Yuta |
Author_xml | – sequence: 1 fullname: Saito, Hiroaki organization: Division of Radiology, Niigata University Medical and Dental Hospital – sequence: 1 fullname: Ohkubo, Masaki organization: Graduate School of Health Sciences, Niigata University – sequence: 1 fullname: Yagi, Yuta organization: Division of Radiology, Niigata University Medical and Dental Hospital – sequence: 1 fullname: Kanazawa, Tsutomu organization: Division of Radiology, Niigata University Medical and Dental Hospital |
BookMark | eNo9kEFOwzAQRS1UJErplnUk1ike23HsZVUKVGqFhMracpNJk6gkxXFB3IAbcD9OQkJQNjPSn_9nRu-SjKq6QkKugc4kpfq2LJ2fMcpYCKD0GRmDUhAKpfiIjCmXOhScRhdk2jTFjraJVqJiTPQ82KDP6zTIahcs3-3hZH1R7QOfY7BlP1_f4QcW-_xPW2YZJj4oqmDzvLoi55k9NDj97xPycr_cLh7D9dPDajFfhwlIYGGaIMhYIpdWR0LDTqftl1xIKTHS2jJBrY2tBppBDDyDVksjRWmMO2ujmE_ITb_36Oq3EzbelPXJVe1Jw2SkOIuA0dY1612Jq5vGYWaOrni17tMANR0h0xEyHSHTEWoDd32gbLzd42C3zhfJAXt7rIzoyhAbxkluncGK_wJYonEu |
Cites_doi | 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L 10.1148/rg.295095034 10.1161/01.STR.0000199847.96188.12 10.1016/j.actbio.2013.05.017 10.1016/B978-012092861-3/50021-2 10.6009/jjrt.63.1093 10.1253/circj.CJ-08-0764 10.1148/radiology.168.3.3406410 10.3995/jstroke.10390 10.1093/brain/awl387 10.1016/j.crad.2010.01.004 10.1016/S1474-4422(09)70013-4 10.1016/j.jstrokecerebrovasdis.2017.09.001 10.1007/s003300050789 10.3174/ajnr.A0908 10.1111/j.1552-6569.2006.00070.x |
ContentType | Journal Article |
Copyright | 2022 Japanese Society of Radiological Technology Copyright Japan Science and Technology Agency 2022 |
Copyright_xml | – notice: 2022 Japanese Society of Radiological Technology – notice: Copyright Japan Science and Technology Agency 2022 |
DBID | AAYXX CITATION 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
DOI | 10.6009/jjrt.2022-1189 |
DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1881-4883 |
EndPage | 363 |
ExternalDocumentID | 10_6009_jjrt_2022_1189 article_jjrt_78_4_78_2022_1189_article_char_en |
GroupedDBID | .LE 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS KQ8 OK1 RJT AAYXX CITATION 7QO 7SC 7U5 8FD FR3 JQ2 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c1612-dce1676e36a95491b9d02234666e599a240aa7a910f1713f199ad58007ebaa573 |
ISSN | 0369-4305 |
IngestDate | Sat Sep 20 14:20:42 EDT 2025 Tue Jul 01 00:56:41 EDT 2025 Wed Sep 03 06:30:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1612-dce1676e36a95491b9d02234666e599a240aa7a910f1713f199ad58007ebaa573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjrt/78/4/78_2022-1189/_article/-char/en |
PQID | 2658325120 |
PQPubID | 2048391 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2658325120 crossref_primary_10_6009_jjrt_2022_1189 jstage_primary_article_jjrt_78_4_78_2022_1189_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kyoto |
PublicationPlace_xml | – name: Kyoto |
PublicationTitle | Japanese Journal of Radiological Technology |
PublicationTitleAlternate | Jpn. J. Radiol. Technol. |
PublicationYear | 2022 |
Publisher | Japanese Society of Radiological Technology Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Radiological Technology – name: Japan Science and Technology Agency |
References | 17) Tatsumi S, Ayaki T, Shinohara M, et al. Type of gradient recalled-echo sequence results in size and number change of cerebral microbleeds. AJNR Am J Neuroradiol 2008; 29(4): e13. 13) Werring DJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2007; 17(3): 193–203. 3) Stark DD, Bradley WG Jr. 5 Image Contrast and Noise. Magnetic Resonance Imaging, 2nd ed. Mosby Year Book, St. Louis, 1992: 129–35. 4) 巨瀬勝美.6.2高速勾配エコー法.NMRイメージング.共立出版,東京,2004: 123–31. 21) 綾部佑介,濱本耕平,池田欣正,他.体幹部MRAにおける金属塞栓物質の磁化率アーチファクトの影響の比較.日放技学誌2019; 75(5): 460–467. 5) Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol 1999; 9(6): 1032–1046. 16) Gregoire SM, Werring DJ, Chaudhary UJ, et al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010; 65(5): 391–394. 1) Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29(5): 1433–1449. 15) Offenbacher H, Fazekas F, Schmidt R, et al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996; 17(3): 573–578. 6) Atlas SW, Mark AS, Grossman RI, et al. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988; 168(3): 803–807. 10) Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 2009; 73(3): 530–533. 19) 川村拓,東直輝.磁化率強調画像における像拡大に関する検討とプロファイル評価.茨城医療大紀2017; 22: 57–63. 12) Saito T, Kawamura Y, Sato N, et al. Cerebral microbleeds remain for nine years: a prospective study with yearly magnetic resonance imaging. J Stroke Cerebrovasc Dis 2018; 27(2): 315–320. 9) Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke 2006; 37(2): 550–555. 7) Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999; 20(4): 637–642. 18) 太田絢子,内藤健一,大久保真樹,他.MR用簡易ファントムを用いた磁化率強調画像(Susceptibility-weighted Imaging: SWI)の基礎的検討.日放技学誌2007; 63(9): 1093–1098. 11) 仲博満.Cerebral microbleedsの成因と臨床.脳卒中2016; 38(5): 346–352. 20) Imai H, Tanaka Y, Nomura N, et al. Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images. Acta Biomater 2013; 9(9): 8433–8439. 22) Wansapura JP, Holland SK, Dunn RS, et al. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9(4): 531–538. 2) Bernstein MA, King KF, Zhou XJ. 14.1 Gradient Echo. Handbook of MRI Pulse Sequences. Elsevier Academic Press, Amsterdam, 2004: 579–82. 14) Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130(Pt 8): 1988–2003. 8) Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165–174. 11 22 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 12) Saito T, Kawamura Y, Sato N, et al. Cerebral microbleeds remain for nine years: a prospective study with yearly magnetic resonance imaging. J Stroke Cerebrovasc Dis 2018; 27(2): 315–320. – reference: 7) Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999; 20(4): 637–642. – reference: 22) Wansapura JP, Holland SK, Dunn RS, et al. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999; 9(4): 531–538. – reference: 9) Viswanathan A, Chabriat H. Cerebral microhemorrhage. Stroke 2006; 37(2): 550–555. – reference: 1) Chavhan GB, Babyn PS, Thomas B, et al. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29(5): 1433–1449. – reference: 21) 綾部佑介,濱本耕平,池田欣正,他.体幹部MRAにおける金属塞栓物質の磁化率アーチファクトの影響の比較.日放技学誌2019; 75(5): 460–467. – reference: 19) 川村拓,東直輝.磁化率強調画像における像拡大に関する検討とプロファイル評価.茨城医療大紀2017; 22: 57–63. – reference: 11) 仲博満.Cerebral microbleedsの成因と臨床.脳卒中2016; 38(5): 346–352. – reference: 2) Bernstein MA, King KF, Zhou XJ. 14.1 Gradient Echo. Handbook of MRI Pulse Sequences. Elsevier Academic Press, Amsterdam, 2004: 579–82. – reference: 10) Igase M, Tabara Y, Igase K, et al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 2009; 73(3): 530–533. – reference: 16) Gregoire SM, Werring DJ, Chaudhary UJ, et al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010; 65(5): 391–394. – reference: 17) Tatsumi S, Ayaki T, Shinohara M, et al. Type of gradient recalled-echo sequence results in size and number change of cerebral microbleeds. AJNR Am J Neuroradiol 2008; 29(4): e13. – reference: 18) 太田絢子,内藤健一,大久保真樹,他.MR用簡易ファントムを用いた磁化率強調画像(Susceptibility-weighted Imaging: SWI)の基礎的検討.日放技学誌2007; 63(9): 1093–1098. – reference: 13) Werring DJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2007; 17(3): 193–203. – reference: 5) Nitz WR, Reimer P. Contrast mechanisms in MR imaging. Eur Radiol 1999; 9(6): 1032–1046. – reference: 8) Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009; 8(2): 165–174. – reference: 20) Imai H, Tanaka Y, Nomura N, et al. Three-dimensional quantification of susceptibility artifacts from various metals in magnetic resonance images. Acta Biomater 2013; 9(9): 8433–8439. – reference: 3) Stark DD, Bradley WG Jr. 5 Image Contrast and Noise. Magnetic Resonance Imaging, 2nd ed. Mosby Year Book, St. Louis, 1992: 129–35. – reference: 15) Offenbacher H, Fazekas F, Schmidt R, et al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996; 17(3): 573–578. – reference: 14) Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007; 130(Pt 8): 1988–2003. – reference: 4) 巨瀬勝美.6.2高速勾配エコー法.NMRイメージング.共立出版,東京,2004: 123–31. – reference: 6) Atlas SW, Mark AS, Grossman RI, et al. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988; 168(3): 803–807. – ident: 22 doi: 10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L – ident: 1 doi: 10.1148/rg.295095034 – ident: 3 – ident: 9 doi: 10.1161/01.STR.0000199847.96188.12 – ident: 4 – ident: 20 doi: 10.1016/j.actbio.2013.05.017 – ident: 2 doi: 10.1016/B978-012092861-3/50021-2 – ident: 18 doi: 10.6009/jjrt.63.1093 – ident: 10 doi: 10.1253/circj.CJ-08-0764 – ident: 6 doi: 10.1148/radiology.168.3.3406410 – ident: 11 doi: 10.3995/jstroke.10390 – ident: 14 doi: 10.1093/brain/awl387 – ident: 19 – ident: 16 doi: 10.1016/j.crad.2010.01.004 – ident: 15 – ident: 8 doi: 10.1016/S1474-4422(09)70013-4 – ident: 12 doi: 10.1016/j.jstrokecerebrovasdis.2017.09.001 – ident: 5 doi: 10.1007/s003300050789 – ident: 17 doi: 10.3174/ajnr.A0908 – ident: 7 – ident: 21 – ident: 13 doi: 10.1111/j.1552-6569.2006.00070.x |
SSID | ssib000936904 ssib002223925 ssj0055458 ssib005879721 ssib031740840 ssib000959831 ssib000753122 ssib008799587 ssib002484555 ssib023160873 |
Score | 2.1993487 |
Snippet | Purpose: To propose a method for evaluating the T2*-weighting effect in MRI. Methods: Multiple solutions with different concentrations of a superparamagnetic... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 357 |
SubjectTerms | Contrast agents Image acquisition Image contrast Iron oxides Magnetic resonance imaging magnetic resonance imaging (MRI) Medical imaging Parameters Scanners Simulation superparamagnetic iron oxide (SPIO) susceptibility effect T2-weighted image Weighting |
Title | A Method for Evaluating the T2∗-weighting Effect in MRI |
URI | https://www.jstage.jst.go.jp/article/jjrt/78/4/78_2022-1189/_article/-char/en https://www.proquest.com/docview/2658325120 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese Journal of Radiological Technology, 2022, Vol.78(4), pp.357-363 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1881-4883 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055458 issn: 0369-4305 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKghAXxFMUFpQDiEMVaBLHjwOHCi0qrIrE0pV2T5FdJ0uLaFGbaKX9BfwDfgj_iF_CjJ2Hu4sEC5coch6yZsYz39jzIORpkUpWaEZDI0wRUlnIUMbGhENttCqMMXqIicKT92x8SN8dpUe93g8vaqkq9YvZ2W_zSv6FqzAGfMUs2Utwtv0pDMA98BeuwGG4_hWPR4OJbQBtYwX36rrddfrTNLZxDOKZ5OGp3f_EJ3Wx4vlyMDl4uwVMwWhiM8qBh1APlJm3uvHiHvxHNbc9mAbj-XoFQLTdr_30udIrlwi08caP1YkNHTiuytYW7KulOlOnFsFON1W5-lL5-xBxfG4fop1mE236h2k2OVsyxKJjzho5FSwEeLXCtbdpdDQXnixST-Emrrx1bbsTpyzPmwUAdVhVdbFYY_QsTB28KtkZwDYssWZkhi9mXGQUL_hBhh9kzWPMhwPxu0KuxpwxbJux_0H4GCyJ_JqI2DLRL4AjUym8o1cEaDLeqjFHUz9ZWHDp17ATWMKvw9SAzxmMtUoW8CAd2gI-Do6keDLqDuwdqV3lUiTJy22CbCGzawtwTk4uIhQLu6a3yM1aGoORI8pt0luoO-T6pI4IuUvkKHBrIIA1EHRrIIA1EEzjn9--d9IfOOkP5ssApP8eOXyzN309Dut2IOEM3JI4NLM8YpzlCVN4Nh1paWDqCQUHPE-lVIBNleIK8G8R8SgpIhgzKThEPNdKpTy5T3aWq2X-gASc0ahQWitbT1EDPxSbgeXKqSkKykSfPG9IkX11VV8y8JaRaE44WqHok1eOUu17lxOiPtltCJzVmmWTxeAWJOh4DB_-5-8fkRvdWt0lO-W6yh8Dii71Eyu1vwAcRbwV |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Evaluating+the+T2%E2%88%97-weighting+Effect+in+MRI&rft.jtitle=Japanese+Journal+of+Radiological+Technology&rft.au=Saito%2C+Hiroaki&rft.au=Ohkubo%2C+Masaki&rft.au=Yagi%2C+Yuta&rft.au=Kanazawa%2C+Tsutomu&rft.date=2022-01-01&rft.pub=Japanese+Society+of+Radiological+Technology&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=78&rft.issue=4&rft.spage=357&rft.epage=363&rft_id=info:doi/10.6009%2Fjjrt.2022-1189&rft.externalDocID=article_jjrt_78_4_78_2022_1189_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon |