Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method
Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviousl...
Saved in:
| Published in | Open Journal of Composite Materials (Irvine, CA) Vol. 2; no. 2; pp. 54 - 60 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2164-5612 2164-5655 2164-5655 |
| DOI | 10.4236/ojcm.2012.22008 |
Cover
| Abstract | Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high per- formance to machinery and industrial equipments. The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates. To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used. By this quality control technique, it is sufficient to describe approximation complex of in- ter-relationships of operating parameters in atmospheric plasma spray process. ANN technique helps in saving time and resources for experimental trials. The aim of this work is to outline a procedure for selecting an appropriate input vec- tors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set. This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance. The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance. ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized. |
|---|---|
| AbstractList | Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high per- formance to machinery and industrial equipments. The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates. To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used. By this quality control technique, it is sufficient to describe approximation complex of in- ter-relationships of operating parameters in atmospheric plasma spray process. ANN technique helps in saving time and resources for experimental trials. The aim of this work is to outline a procedure for selecting an appropriate input vec- tors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set. This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance. The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance. ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized. |
| Author | Behera, Ajit Mishra, S. C. |
| Author_xml | – sequence: 1 givenname: Ajit surname: Behera fullname: Behera, Ajit – sequence: 2 givenname: S. C. surname: Mishra fullname: Mishra, S. C. |
| BookMark | eNqNkMFLwzAUh4NMcM6dveboZVuSNm13HHPqYOJAdy6vaTIz0qQmHdL_3nYTD4JgDi8P3u978L5rNLDOSoRuKZnGLEpm7iCqKSOUTRkjJLtAQ0aTeMITzgc_PWVXaBzCgXQvTeeUxkNUbb0stWi0sxhsiRcWTBt0wE7he1m7oE-jlVJaaGlF2w-2BkIF-LX20OKlg0bbPd6Fvi58o_soGLy2jTRG7ztK4mfZvLvyBl0qMEGOv_8R2j2s3pZPk83L43q52EwETUg24aWUqcqKQkmmCIk4JFwllDPKoYij7qg5lIxFTHDOIoACZCGAAylYVkIG0QiR896jraH9BGPy2usKfJtTkvfG8t5Y3hvLT8Y65O6M1N59HGVo8koH0R0AVrpjyGmcxDye05R10dk5KrwLwUv1j-X8FyF0A73ZxoM2f3JfuJaRqQ |
| CitedBy_id | crossref_primary_10_1155_2022_1061461 crossref_primary_10_1016_j_carbon_2016_04_025 crossref_primary_10_1109_TPS_2018_2817234 crossref_primary_10_1007_s13369_018_3337_5 crossref_primary_10_4028_www_scientific_net_AMM_766_767_590 crossref_primary_10_3923_itj_2014_477_484 crossref_primary_10_1007_s11666_017_0538_5 crossref_primary_10_1016_j_surfcoat_2020_126143 crossref_primary_10_1088_2058_6272_aa9cde |
| Cites_doi | 10.1016/S0065-2717(08)70139-4 10.1016/S0017-9310(98)00364-0 10.1002/adem.200600215 10.1016/S0169-7439(03)00093-5 10.1016/j.surfcoat.2006.01.051 10.1063/1.2355446 10. 1177/0731684407087758 10.1109/ICICIC.2009.361 10.1007/BF02659011 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7SC 7SR 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.4236/ojcm.2012.22008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 2164-5655 |
| EndPage | 60 |
| ExternalDocumentID | 10.4236/ojcm.2012.22008 10_4236_ojcm_2012_22008 |
| GroupedDBID | AAYXX AAZHT AHWXS ALMA_UNASSIGNED_HOLDINGS ATFKH CITATION GX1 OK1 RNS UY8 7SC 7SR 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1608-5dee7f8bbfe2f0035a65f615215ab436559ad2232c5523aabaebca5a0b28da8a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2164-5612 2164-5655 |
| IngestDate | Tue Aug 19 23:21:48 EDT 2025 Thu Oct 02 11:55:38 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Tue Jul 01 04:04:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1608-5dee7f8bbfe2f0035a65f615215ab436559ad2232c5523aabaebca5a0b28da8a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.scirp.org/journal/PaperDownload.aspx?paperID=18809 |
| PQID | 1464549172 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_4236_ojcm_2012_22008 proquest_miscellaneous_1464549172 crossref_primary_10_4236_ojcm_2012_22008 crossref_citationtrail_10_4236_ojcm_2012_22008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20120401 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 20120401 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Open Journal of Composite Materials (Irvine, CA) |
| PublicationYear | 2012 |
| References | ref |
| References_xml | – ident: ref doi: 10.1016/S0065-2717(08)70139-4 – ident: ref doi: 10.1016/S0017-9310(98)00364-0 – ident: ref doi: 10.1002/adem.200600215 – ident: ref doi: 10.1016/S0169-7439(03)00093-5 – ident: ref doi: 10.1016/j.surfcoat.2006.01.051 – ident: ref doi: 10.1063/1.2355446 – ident: ref doi: 10. 1177/0731684407087758 – ident: ref doi: 10.1109/ICICIC.2009.361 – ident: ref doi: 10.1007/BF02659011 |
| SSID | ssj0000779114 |
| Score | 1.7956523 |
| Snippet | Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 54 |
| SubjectTerms | Coating Deposition Economics Learning theory Mathematical models Networks Neural networks Spray coating |
| Title | Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method |
| URI | https://www.proquest.com/docview/1464549172 http://www.scirp.org/journal/PaperDownload.aspx?paperID=18809 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2164-5655 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000779114 issn: 2164-5655 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7G-WMGDHlJtmt0mR_EtKAUt1FOYTTag1iT0Qam_3pk8tCIietskm4TsTHa_Yb79BmCf3CB0ooBmPxmFFiHihuVF0rFC7aFytRc0s01it3fqqu3cdGRngpszGlFU99RLsyR-MZxHLUwNTbqjuJtgKVXLpxjDkv950zCjJEHxCsy071onj1xQjsIAiys_fralzKV9CECoo-Q54H3odbtmMwPg66r0CTVnh3GK4xF2uxOrzsViXlq1n4kVMtnkpTYc6Frw9l3K8X8ftAQLBR4VJ7kDLcOUiVdgfkKlcBVeWz3O5rAFBcahKHVMRBKJM1OyvsR5JkbBOzn5QotQ-SuK-7SHY3GaILOrRcZPyN6V61aI6wlBUHGbFbNeg_bF-cPplVVUabCCujp2LRka04xcrSNjR5yYRCUjxbBAonYaNOwehgRC7EBS0IuokflXEo-17YboYmMdKnESmw0Q6NWxYVylKOZ0bMMcGNuETWoTqghsrwq10kp-UEiYcyWNrk-hDJvVZ7P6bFY_M2sVDj5uSHP1jp-77pVm9-kP47QJxiYZ9jk4ciiKJqRXhcMPf_jteZt_6LsFc3yQE4K2oTLoDc0OYZ2B3oXpy059t_Drdw8fAKg |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60PagH32J9sYIHPaS2aXabHEu1VKGloIV6CrPJBtQ2CX1Q6q93Jg-tiIjeNskmITuT3W-Yb79h7ALdwLcCD2c_EfgGIuKa4QTCMnzlgLSV49WTTWKdrmz3rfuBGCxxc-ZzjOqex3GSxM-G87oHscZJdx4OI8ilaukUYVj0P2eVFaVAKF5gxX6313iignIYBhhU-fGzLUQq7YMAQl5HLx7tQ6-aZZMYAF9XpU-ouTYLY1jMYThcWnVaW2lp1UkiVkhkk9fybKrK3tt3Kcf_fdA228zwKG-kDrTDVnS4yzaWVAr32Kg3pmwOWZBD6PNcx4RHAb_ROeuL3yZiFLSTky70EJWPgD_EY1jwZgTEruYJPyF5V6pbwe-WBEF5Jylmvc_6rdvHZtvIqjQYXlVWbEP4WtcDW6lAmwElJkGKQBIsEKCsGg67Az6CENMTGPQCKCD-lYCKMm0fbKgdsEIYhfqQcXCqUNO2lBhzWqYmDoyp_Tq2EVV4plNi5dxKrpdJmFMljaGLoQyZ1SWzumRWNzFriV1-3BCn6h0_dz3Pze7iH0ZpEwh1NJtQcGRhFI1Ir8SuPvzht-cd_aHvMVung5QQdMIK0_FMnyLWmaqzzKPfARD3_6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Analysis+of+Deposition+Efficiency+of+Plasma+Spray+Coating+Using+Artificial+Intelligence+Method&rft.jtitle=Open+Journal+of+Composite+Materials+%28Irvine%2C+CA%29&rft.au=Behera%2C+Ajit&rft.au=Mishra%2C+S.+C.&rft.date=2012-04-01&rft.issn=2164-5612&rft.eissn=2164-5655&rft.volume=2&rft.issue=2&rft.spage=54&rft.epage=60&rft_id=info:doi/10.4236%2Fojcm.2012.22008&rft.externalDBID=n%2Fa&rft.externalDocID=10_4236_ojcm_2012_22008 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5612&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5612&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5612&client=summon |