Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method

Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviousl...

Full description

Saved in:
Bibliographic Details
Published inOpen Journal of Composite Materials (Irvine, CA) Vol. 2; no. 2; pp. 54 - 60
Main Authors Behera, Ajit, Mishra, S. C.
Format Journal Article
LanguageEnglish
Published 01.04.2012
Subjects
Online AccessGet full text
ISSN2164-5612
2164-5655
2164-5655
DOI10.4236/ojcm.2012.22008

Cover

Abstract Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high per- formance to machinery and industrial equipments. The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates. To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used. By this quality control technique, it is sufficient to describe approximation complex of in- ter-relationships of operating parameters in atmospheric plasma spray process. ANN technique helps in saving time and resources for experimental trials. The aim of this work is to outline a procedure for selecting an appropriate input vec- tors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set. This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance. The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance. ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized.
AbstractList Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable processes. Plasma spray coating process has become a subject of intense research which attempts to create functional layers on the surface is obviously the most economical way to provide high per- formance to machinery and industrial equipments. The present work aims at developing and studying the industrial wastes (Flay-ash, Quartz and illmenite composite mixture) as the coating material, which is to be deposited on Mild Steel and Copper substrates. To study and evaluate Coating deposition efficiency, artificial neural network analysis (ANN) technique is used. By this quality control technique, it is sufficient to describe approximation complex of in- ter-relationships of operating parameters in atmospheric plasma spray process. ANN technique helps in saving time and resources for experimental trials. The aim of this work is to outline a procedure for selecting an appropriate input vec- tors in ANN coating efficiency models, based on statistical pre-processing of the experimental data set. This methodology can provide deep understanding of various co-relationships across multiple scales of length and time, which could be essential for improvement of product and process performance. The deposition efficiency of coatings has a strong dependence on input power level, particle size of the feed material, powder feed rate and torch to substrate distance. ANN experimental results indicate that the projection network has good generalization capability to optimize the deposition efficiency, when an appropriate size of training set and network is utilized.
Author Behera, Ajit
Mishra, S. C.
Author_xml – sequence: 1
  givenname: Ajit
  surname: Behera
  fullname: Behera, Ajit
– sequence: 2
  givenname: S. C.
  surname: Mishra
  fullname: Mishra, S. C.
BookMark eNqNkMFLwzAUh4NMcM6dveboZVuSNm13HHPqYOJAdy6vaTIz0qQmHdL_3nYTD4JgDi8P3u978L5rNLDOSoRuKZnGLEpm7iCqKSOUTRkjJLtAQ0aTeMITzgc_PWVXaBzCgXQvTeeUxkNUbb0stWi0sxhsiRcWTBt0wE7he1m7oE-jlVJaaGlF2w-2BkIF-LX20OKlg0bbPd6Fvi58o_soGLy2jTRG7ztK4mfZvLvyBl0qMEGOv_8R2j2s3pZPk83L43q52EwETUg24aWUqcqKQkmmCIk4JFwllDPKoYij7qg5lIxFTHDOIoACZCGAAylYVkIG0QiR896jraH9BGPy2usKfJtTkvfG8t5Y3hvLT8Y65O6M1N59HGVo8koH0R0AVrpjyGmcxDye05R10dk5KrwLwUv1j-X8FyF0A73ZxoM2f3JfuJaRqQ
CitedBy_id crossref_primary_10_1155_2022_1061461
crossref_primary_10_1016_j_carbon_2016_04_025
crossref_primary_10_1109_TPS_2018_2817234
crossref_primary_10_1007_s13369_018_3337_5
crossref_primary_10_4028_www_scientific_net_AMM_766_767_590
crossref_primary_10_3923_itj_2014_477_484
crossref_primary_10_1007_s11666_017_0538_5
crossref_primary_10_1016_j_surfcoat_2020_126143
crossref_primary_10_1088_2058_6272_aa9cde
Cites_doi 10.1016/S0065-2717(08)70139-4
10.1016/S0017-9310(98)00364-0
10.1002/adem.200600215
10.1016/S0169-7439(03)00093-5
10.1016/j.surfcoat.2006.01.051
10.1063/1.2355446
10. 1177/0731684407087758
10.1109/ICICIC.2009.361
10.1007/BF02659011
ContentType Journal Article
DBID AAYXX
CITATION
7SC
7SR
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.4236/ojcm.2012.22008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 2164-5655
EndPage 60
ExternalDocumentID 10.4236/ojcm.2012.22008
10_4236_ojcm_2012_22008
GroupedDBID AAYXX
AAZHT
AHWXS
ALMA_UNASSIGNED_HOLDINGS
ATFKH
CITATION
GX1
OK1
RNS
UY8
7SC
7SR
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c1608-5dee7f8bbfe2f0035a65f615215ab436559ad2232c5523aabaebca5a0b28da8a3
IEDL.DBID UNPAY
ISSN 2164-5612
2164-5655
IngestDate Tue Aug 19 23:21:48 EDT 2025
Thu Oct 02 11:55:38 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Tue Jul 01 04:04:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1608-5dee7f8bbfe2f0035a65f615215ab436559ad2232c5523aabaebca5a0b28da8a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.scirp.org/journal/PaperDownload.aspx?paperID=18809
PQID 1464549172
PQPubID 23500
PageCount 7
ParticipantIDs unpaywall_primary_10_4236_ojcm_2012_22008
proquest_miscellaneous_1464549172
crossref_primary_10_4236_ojcm_2012_22008
crossref_citationtrail_10_4236_ojcm_2012_22008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120401
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 20120401
  day: 01
PublicationDecade 2010
PublicationTitle Open Journal of Composite Materials (Irvine, CA)
PublicationYear 2012
References ref
References_xml – ident: ref
  doi: 10.1016/S0065-2717(08)70139-4
– ident: ref
  doi: 10.1016/S0017-9310(98)00364-0
– ident: ref
  doi: 10.1002/adem.200600215
– ident: ref
  doi: 10.1016/S0169-7439(03)00093-5
– ident: ref
  doi: 10.1016/j.surfcoat.2006.01.051
– ident: ref
  doi: 10.1063/1.2355446
– ident: ref
  doi: 10. 1177/0731684407087758
– ident: ref
  doi: 10.1109/ICICIC.2009.361
– ident: ref
  doi: 10.1007/BF02659011
SSID ssj0000779114
Score 1.7956523
Snippet Modern industrial technologies call for the development of novel materials with improved surface properties, lower costs and environmentally suitable...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 54
SubjectTerms Coating
Deposition
Economics
Learning theory
Mathematical models
Networks
Neural networks
Spray coating
Title Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method
URI https://www.proquest.com/docview/1464549172
http://www.scirp.org/journal/PaperDownload.aspx?paperID=18809
UnpaywallVersion publishedVersion
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2164-5655
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000779114
  issn: 2164-5655
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSDb7G-WMGDHlJtmt0mR_EtKAUt1FOYTTag1iT0Qam_3pk8tCIietskm4TsTHa_Yb79BmCf3CB0ooBmPxmFFiHihuVF0rFC7aFytRc0s01it3fqqu3cdGRngpszGlFU99RLsyR-MZxHLUwNTbqjuJtgKVXLpxjDkv950zCjJEHxCsy071onj1xQjsIAiys_fralzKV9CECoo-Q54H3odbtmMwPg66r0CTVnh3GK4xF2uxOrzsViXlq1n4kVMtnkpTYc6Frw9l3K8X8ftAQLBR4VJ7kDLcOUiVdgfkKlcBVeWz3O5rAFBcahKHVMRBKJM1OyvsR5JkbBOzn5QotQ-SuK-7SHY3GaILOrRcZPyN6V61aI6wlBUHGbFbNeg_bF-cPplVVUabCCujp2LRka04xcrSNjR5yYRCUjxbBAonYaNOwehgRC7EBS0IuokflXEo-17YboYmMdKnESmw0Q6NWxYVylKOZ0bMMcGNuETWoTqghsrwq10kp-UEiYcyWNrk-hDJvVZ7P6bFY_M2sVDj5uSHP1jp-77pVm9-kP47QJxiYZ9jk4ciiKJqRXhcMPf_jteZt_6LsFc3yQE4K2oTLoDc0OYZ2B3oXpy059t_Drdw8fAKg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60PagH32J9sYIHPaS2aXabHEu1VKGloIV6CrPJBtQ2CX1Q6q93Jg-tiIjeNskmITuT3W-Yb79h7ALdwLcCD2c_EfgGIuKa4QTCMnzlgLSV49WTTWKdrmz3rfuBGCxxc-ZzjOqex3GSxM-G87oHscZJdx4OI8ilaukUYVj0P2eVFaVAKF5gxX6313iignIYBhhU-fGzLUQq7YMAQl5HLx7tQ6-aZZMYAF9XpU-ouTYLY1jMYThcWnVaW2lp1UkiVkhkk9fybKrK3tt3Kcf_fdA228zwKG-kDrTDVnS4yzaWVAr32Kg3pmwOWZBD6PNcx4RHAb_ROeuL3yZiFLSTky70EJWPgD_EY1jwZgTEruYJPyF5V6pbwe-WBEF5Jylmvc_6rdvHZtvIqjQYXlVWbEP4WtcDW6lAmwElJkGKQBIsEKCsGg67Az6CENMTGPQCKCD-lYCKMm0fbKgdsEIYhfqQcXCqUNO2lBhzWqYmDoyp_Tq2EVV4plNi5dxKrpdJmFMljaGLoQyZ1SWzumRWNzFriV1-3BCn6h0_dz3Pze7iH0ZpEwh1NJtQcGRhFI1Ir8SuPvzht-cd_aHvMVung5QQdMIK0_FMnyLWmaqzzKPfARD3_6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+and+Analysis+of+Deposition+Efficiency+of+Plasma+Spray+Coating+Using+Artificial+Intelligence+Method&rft.jtitle=Open+Journal+of+Composite+Materials+%28Irvine%2C+CA%29&rft.au=Behera%2C+Ajit&rft.au=Mishra%2C+S.+C.&rft.date=2012-04-01&rft.issn=2164-5612&rft.eissn=2164-5655&rft.volume=2&rft.issue=2&rft.spage=54&rft.epage=60&rft_id=info:doi/10.4236%2Fojcm.2012.22008&rft.externalDBID=n%2Fa&rft.externalDocID=10_4236_ojcm_2012_22008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-5612&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-5612&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-5612&client=summon