Improved Correlation of Oil Recovery Factor for Water Driven Reservoirs in the Niger Delta

Recovery factor is one of the most important variables for a reservoir engineer as it plays a major role in determining the economic viability of oil and gas projects and by implication what projects to mature. Over the years, many different approaches have been taken to estimating recovery factor o...

Full description

Saved in:
Bibliographic Details
Published inABUAD Journal of Engineering Research and Development Vol. 8; no. 2; pp. 233 - 241
Main Authors Daniel, Ayodele, Olanipekun, Faisal Olasubomi, Isehunwa, Sunday Oloruntoba
Format Journal Article
LanguageEnglish
Published College of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, Nigeria 29.07.2025
Subjects
Online AccessGet full text
ISSN2756-6811
2645-2685
2645-2685
DOI10.53982/ajerd.2025.0802.23-j

Cover

Abstract Recovery factor is one of the most important variables for a reservoir engineer as it plays a major role in determining the economic viability of oil and gas projects and by implication what projects to mature. Over the years, many different approaches have been taken to estimating recovery factor of oil and gas reservoirs generally and these include simulations, volumetric method and correlations. All these methods have their high inherent cost except for correlations which are not only easy and quick to use but also low cost. Even though correlations have been developed in the past for the recovery factor of Niger Delta crude, none has employed the data analytics and machine learning techniques. Data from strong water driven crude oil reservoir in the Niger Delta was used in this study. After data cleaning and quality checking, cleaned data was used to train the machine learning model using multiple linear regression algorithms optimized with batch gradient descent method. This was implemented using Python code developed for this work. The model developed had an excellent performance on the training set as the coefficient was about 0.84. The mean absolute error is about 0.018. The results obtained showed better model performance and generalization than any previously existing model.
AbstractList Recovery factor is one of the most important variables for a reservoir engineer as it plays a major role in determining the economic viability of oil and gas projects and by implication what projects to mature. Over the years, many different approaches have been taken to estimating recovery factor of oil and gas reservoirs generally and these include simulations, volumetric method and correlations. All these methods have their high inherent cost except for correlations which are not only easy and quick to use but also low cost. Even though correlations have been developed in the past for the recovery factor of Niger Delta crude, none has employed the data analytics and machine learning techniques. Data from strong water driven crude oil reservoir in the Niger Delta was used in this study. After data cleaning and quality checking, cleaned data was used to train the machine learning model using multiple linear regression algorithms optimized with batch gradient descent method. This was implemented using Python code developed for this work. The model developed had an excellent performance on the training set as the coefficient was about 0.84. The mean absolute error is about 0.018. The results obtained showed better model performance and generalization than any previously existing model.
Author Olanipekun, Faisal Olasubomi
Isehunwa, Sunday Oloruntoba
Daniel, Ayodele
Author_xml – sequence: 1
  givenname: Ayodele
  surname: Daniel
  fullname: Daniel, Ayodele
– sequence: 2
  givenname: Faisal Olasubomi
  surname: Olanipekun
  fullname: Olanipekun, Faisal Olasubomi
– sequence: 3
  givenname: Sunday Oloruntoba
  surname: Isehunwa
  fullname: Isehunwa, Sunday Oloruntoba
BookMark eNqNkNtKAzEQhoMoWA-PIOQFtuawOV1KtVoQBVEEb0I2ma1ZtpuSXSt9e7eteO3FMMPM_N_Fd4aOu9QBQleUTAU3ml27BnKYMsLElGjCpowXzRGaMFmKgkktjsdZCVlITekpuuz7hhDCOeVa6An6WKzWOW0g4FnKGVo3xNThVOPn2OIX8OMpb_Hc-SFlXI_17gbI-DbHDXTjQw95k2Lucezw8An4KS53Z2gHd4FOatf2cPnbz9Hb_O519lA8Pt8vZjePhafCNIWSOrCgnK6ErwLjpKJGaaUNBwPGSG3qYHgZSpDAjGIeSlN7SctQOU8U5-doceCG5Bq7znHl8tYmF-1-kfLSujxE34IlQSiiuQs8kLL2tDKgFTWhMpybEvzIkgfWV7d222_Xtn9ASuxeuN0LtzvhdifcMm6bMSgOQZ9T32eo_5n7AVlqiJ4
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.53982/ajerd.2025.0802.23-j
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2645-2685
EndPage 241
ExternalDocumentID oai_doaj_org_article_0d57083ad3d04fc1b9e8719db93394ec
10.53982/ajerd.2025.0802.23-j
10_53982_ajerd_2025_0802_23_j
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c159j-768d2d7a8b5cbd230b19787893e9e99689fd934d4e6e2972ce49fc614dbac0733
IEDL.DBID DOA
ISSN 2756-6811
2645-2685
IngestDate Tue Oct 14 19:06:45 EDT 2025
Tue Aug 19 23:45:42 EDT 2025
Wed Oct 01 05:38:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c159j-768d2d7a8b5cbd230b19787893e9e99689fd934d4e6e2972ce49fc614dbac0733
OpenAccessLink https://doaj.org/article/0d57083ad3d04fc1b9e8719db93394ec
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0d57083ad3d04fc1b9e8719db93394ec
unpaywall_primary_10_53982_ajerd_2025_0802_23_j
crossref_primary_10_53982_ajerd_2025_0802_23_j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-29
PublicationDateYYYYMMDD 2025-07-29
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-29
  day: 29
PublicationDecade 2020
PublicationTitle ABUAD Journal of Engineering Research and Development
PublicationYear 2025
Publisher College of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, Nigeria
Publisher_xml – name: College of Engineering of Afe Babalola University, Ado-Ekiti (ABUAD), Ekiti State, Nigeria
SSID ssj0003313858
ssib044727624
Score 2.3011253
Snippet Recovery factor is one of the most important variables for a reservoir engineer as it plays a major role in determining the economic viability of oil and gas...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 233
SubjectTerms Correlations
Machine Learning
Python
Recovery Factor
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AAceAgQKQ_tgatf-7C9x1IIFRKBAxGFy2qfISGyKzcpKr-eHdupgBNIXNfr14y9832rmW8AXpQ-N0EXIQlG64RLZhKJurfMWxbyUGnKsFD43bw8XfC3Z-LsAN7sa2FGC16k2uz0UG_eLLNeORDlIjK99p3LRqtmDgXlW-2yggmZ1aK8AYeliKB8AoeL-Yfjz9haruSYx1WLoX5HMFnT4TKRHVKRYrFpSlmy_i0y9QL-t-HmrjnXV9_1ZvNL1Jndha_75x2STb6lu61J7Y8_pBz_wwvdgzsjMiXHw5z7cOCbB_Bl2HTwjpxgG48hcY60gbxfbQhS1_gnXJFZ37SHRPxLPkXs2pFXHS6iBNP6ust21V2QVUMi1CTz1RIP-81WP4TF7PXHk9NkbMeQ2Ih51kkkJo66StdGWOMidTFFpKBVBDxe-kibahmcZNxxX3oqK2o9l8HG8O-Mttgb8hFMmrbxj4FQIy2Pq6zkzvFaBK09M6bOXRE4N6WYQrp3hTofVDdUZCu971RvMYW-U-g7RZlaT-ElOux6Mopm9wNtt1SjcVXuRBURp3bM5TzYwkgf6aJ0RjImubdTyK7d_Xe3PfrnM57ALRzA3WEqn8Jk2-38swhrtub5-Mn-BC1S-hs
  priority: 102
  providerName: Unpaywall
Title Improved Correlation of Oil Recovery Factor for Water Driven Reservoirs in the Niger Delta
URI https://journals.abuad.edu.ng/index.php/ajerd/article/download/1359/856
https://doaj.org/article/0d57083ad3d04fc1b9e8719db93394ec
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2645-2685
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003313858
  issn: 2756-6811
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQDMCAQIAoL3lgTZvYzsMjFCqERGGg4rFYfqJWVYpCAfHvuUtKVSYYWJMojr6z7r7PuQchJ5mPTdBJiILROhKSm0hi31vuLQ9xyDXjWCh83c8uB-LqIX1YGPWFOWFNe-AGuE7s0hxognbcxSLYxEgPHF86A0pcCm_R-8aFXBBTsJOEgLCczeoe0CdznuAfMJw0l6dZlBVJ0pTzpFwWrKNHvsK2oSxtY-1pm_Fo9CNQ1f3818nqW_miPz_0eLwQhHqbZGPGHulp89VbZMmX2-SpORjwjnZx1EaT3EYngd4MxxTlJezWT9qrB-tQ4Kj0HvhlRc8rdHQUU--q98mweqXDkgIdpP3hM97246neIYPexV33MpqNTIgs8JJRBOLBMZfrwqTWOJAXJgGZmAMp8dKDtClkcJILJ3zmmcyZ9UIGCyHaGW1xfuMuWS4npd8jlBlpBXhCKZwTRRq09tyYInZJEMJkaYu0v_FRL01nDAWKogZU1YAqBFQhoIpxNWqRM0Rx_jA2tq4vgLnVzNzqN3O3SGdug78tu_8fyx6QNXwrHuoyeUiWp9WbPwI2MjXH9cY7JiuD_u3p4xcwRNre
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6V9AAceAgQKQ_tgatf-7C9x1IIFRKBAxGFy2qfISGyKzcpKr-eHdupgBNIXNfr14y9832rmW8AXpQ-N0EXIQlG64RLZhKJurfMWxbyUGnKsFD43bw8XfC3Z-LsAN7sa2FGC16k2uz0UG_eLLNeORDlIjK99p3LRqtmDgXlW-2yggmZ1aK8AYeliKB8AoeL-Yfjz9haruSYx1WLoX5HMFnT4TKRHVKRYrFpSlmy_i0y9QL-t-HmrjnXV9_1ZvNL1Jndha_75x2STb6lu61J7Y8_pBz_wwvdgzsjMiXHw5z7cOCbB_Bl2HTwjpxgG48hcY60gbxfbQhS1_gnXJFZ37SHRPxLPkXs2pFXHS6iBNP6ust21V2QVUMi1CTz1RIP-81WP4TF7PXHk9NkbMeQ2Ih51kkkJo66StdGWOMidTFFpKBVBDxe-kibahmcZNxxX3oqK2o9l8HG8O-Mttgb8hFMmrbxj4FQIy2Pq6zkzvFaBK09M6bOXRE4N6WYQrp3hTofVDdUZCu971RvMYW-U-g7RZlaT-ElOux6Mopm9wNtt1SjcVXuRBURp3bM5TzYwkgf6aJ0RjImubdTyK7d_Xe3PfrnM57ALRzA3WEqn8Jk2-38swhrtub5-Mn-BC1S-hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Correlation+of+Oil+Recovery+Factor+for+Water+Driven+Reservoirs+in+the+Niger+Delta&rft.jtitle=ABUAD+Journal+of+Engineering+Research+and+Development&rft.au=Ayodele+Daniel&rft.au=Faisal+Olasubomi+Olanipekun&rft.au=Sunday+Oloruntoba+Isehunwa&rft.date=2025-07-29&rft.pub=College+of+Engineering+of+Afe+Babalola+University%2C+Ado-Ekiti+%28ABUAD%29%2C+Ekiti+State%2C+Nigeria&rft.issn=2756-6811&rft.eissn=2645-2685&rft.volume=8&rft.issue=2&rft_id=info:doi/10.53982%2Fajerd.2025.0802.23-j&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0d57083ad3d04fc1b9e8719db93394ec
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2756-6811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2756-6811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2756-6811&client=summon