Uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models

This paper shows uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models. Model ensembles and Monte Carlo Dropout (MCD) were used to evaluate uncertainty. Three methodologies were examined as performance improvement...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Japan society of photogrammetry and remote sensing Vol. 61; no. 6; pp. 368 - 386
Main Authors NAKAMURA, Yoshio, TAKEUCHI, Yutaro, FURUKI, Hirokazu, YOSHIDA, Kazuya, UTSUKI, Shinji, YAMAMOTO, Yoshiyuki
Format Journal Article
LanguageEnglish
Japanese
Published Tokyo Japan Society of Photogrammetry and Remote Sensing 2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0285-5844
1883-9061
DOI10.4287/jsprs.61.368

Cover

Abstract This paper shows uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models. Model ensembles and Monte Carlo Dropout (MCD) were used to evaluate uncertainty. Three methodologies were examined as performance improvement methodologies. The methodologies were slide processing, recall/precision emphasized models, and transfer learning with an inherent factor of landslide. The recall/precision emphasized models were developed by the improved loss function. The result showed that MCD could not be an alternative to model ensembles. In performance improvement methodologies, the transfer learning with geology distribution scored at 80% of precision. The recall/precision emphasized models inferred the distribution of landslide mass adequately. The effectiveness of the slide processing was found to be dependent on the performance of the trained model.
AbstractList This paper shows uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models. Model ensembles and Monte Carlo Dropout (MCD) were used to evaluate uncertainty. Three methodologies were examined as performance improvement methodologies. The methodologies were slide processing, recall/precision emphasized models, and transfer learning with an inherent factor of landslide. The recall/precision emphasized models were developed by the improved loss function. The result showed that MCD could not be an alternative to model ensembles. In performance improvement methodologies, the transfer learning with geology distribution scored at 80% of precision. The recall/precision emphasized models inferred the distribution of landslide mass adequately. The effectiveness of the slide processing was found to be dependent on the performance of the trained model.
Author TAKEUCHI, Yutaro
FURUKI, Hirokazu
YOSHIDA, Kazuya
NAKAMURA, Yoshio
YAMAMOTO, Yoshiyuki
UTSUKI, Shinji
Author_xml – sequence: 1
  fullname: NAKAMURA, Yoshio
– sequence: 1
  fullname: TAKEUCHI, Yutaro
– sequence: 1
  fullname: FURUKI, Hirokazu
– sequence: 1
  fullname: YOSHIDA, Kazuya
– sequence: 1
  fullname: UTSUKI, Shinji
– sequence: 1
  fullname: YAMAMOTO, Yoshiyuki
BookMark eNpFkMtOwzAQRS1UJErpjg-wxJaUOPErK4QQL6kSG7q2nHjSukrsYKdI_Qc-GkOrsprFPXNHcy7RxHkHCF2TfEELKe62cQhxwcmi5PIMTYmUZVblnEzQNC8ky5ik9ALNY7R1XuRUFLIqp-h75RoIo7Zu3GP40t1Oj9Y7rJ3BQ_CDj7qLuPUBDxDS6HXise1T9gU9uBH3MG688Z1fW4jYuhTqNeA1OAiHLt_iLvXFzhrAvY4R13tsAAbcgQ7OujXuvYEuXqHzNp2D-XHO0Or56ePxNVu-v7w9PiyzhrBKZlJw1nBgdcsNk0CAlYaLWgpSCVM3XEgJJjd10QpaCdJSY4QkZVUnDZQTXs7QzaE3ffG5gziqrd8Fl06qomIiF5RSlqjbA9UEH2OAVg0h_Rb2iuTqV7n6U644UUl5wu8P-DaOScAJ1mG0TQf_MD9unJJmo4MCV_4ATS6Ruw
Cites_doi 10.2208/jscejhe.77.2_I_319
10.1109/CVPR.2017.632
10.4287/jsprs.61.14
10.2208/jscejipm.77.4_400
ContentType Journal Article
Copyright 2022 Japan Society of Photogrammetry and Remote Sensing
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Japan Society of Photogrammetry and Remote Sensing
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
H8D
KR7
L7M
DOI 10.4287/jsprs.61.368
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1883-9061
EndPage 386
ExternalDocumentID 10_4287_jsprs_61_368
article_jsprs_61_6_61_368_article_char_en
GroupedDBID ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
~02
AAYXX
CITATION
7SP
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c1598-8765c6e5bf6d58e1e53d67b87197dbc6788ed0db2f74971f4dd78139b28546163
ISSN 0285-5844
IngestDate Sun Jun 29 12:41:51 EDT 2025
Tue Jul 01 04:16:10 EDT 2025
Wed Sep 03 06:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1598-8765c6e5bf6d58e1e53d67b87197dbc6788ed0db2f74971f4dd78139b28546163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jsprs/61/6/61_368/_article/-char/en
PQID 2957074445
PQPubID 2048407
PageCount 19
ParticipantIDs proquest_journals_2957074445
crossref_primary_10_4287_jsprs_61_368
jstage_primary_article_jsprs_61_6_61_368_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of the Japan society of photogrammetry and remote sensing
PublicationTitleAlternate Journal of the Japan society of photogrammetry and remote sensing
PublicationYear 2022
Publisher Japan Society of Photogrammetry and Remote Sensing
Japan Science and Technology Agency
Publisher_xml – name: Japan Society of Photogrammetry and Remote Sensing
– name: Japan Science and Technology Agency
References 戸田堅一郎,2014.曲率と傾斜による立体図法(CS立体図)を用いた地形判読,森林立地,Vol. 56,No.2,75-79
佐藤 剛,土志田正二,2018.地すべり地形分布図を作成するうえで地形判読の専門家は地すべり地の何を見ているのか?,公益財団法人国土地理協会第18回学術研究助成,https://www.kokudo.or.jp/grant/pdf/2018/sato206.pdf. (2022/9/4確認)
竹内祐太朗,山本義幸,古木宏和,宇津木慎司,吉田一也,中村吉男,2022.空間的不均一性・連続性に関する正規化処理による地すべり移動体の深層生成,写真測量とリモートセンシング,vol. 61,no.1,14-31
叶井和樹,久保 栞,山根達郎,全 邦釘,2021.Mask R-CNNによる航空写真からの土砂崩壊地自動検出手法.AI・データサイエンス論文集,2巻,223-231
青島亘佐,山本拓海,中野 聡,中村秀明,2020.深層学習によるセグメンテーション手法を用いたコンクリート表面の変状領域の検出.AI・データサイエンス論文集,1巻,481-490
三浦奈都,宮本 崇,天方匡純,安野貴人,石井 明,2021.ベイズ深層学習を用いた予報雨量の不確実性を考慮したダム流入量の確率的予測,AI・データサイエンス論文集,2巻,933-943
防災科学技術研究所,2002.地すべり地形GISデータ:国立研究開発法人防災科学技術研究所地すべり地形分布図,https://dil-opac.bosai.go.jp/publication/nied_tech_note/landslidemap/gis.html. (2022/9/1確認)
久野 元,蘇  迪,長山智則,2020.LSTMとモンテカルロドロップアウトに基づく浮きまくらぎ検知手法の数値的検討,AI・データサイエンス論文集,1巻,536-544
及川 康,片田敏孝,2016.避難勧告等の見逃し・空振りが住民対応行動の意思決定に及ぼす影響.災害情報,14巻,93-104
TensorFlow,2022,pix2pix:条件付きGANによる画像から画像への変換,https://www.tensorflow.org/tutorials/generative/pix2pix (2022/9/2確認)
山口真一,1967.地すべりの素因と誘因について.地すべり,4巻,1号,4-11
平野英孝,相馬一義,宮本 崇,石平 博,馬籠 純,黒田 晴,倉上 健,2021.富士川周辺地域における深層学習を活用した土砂災害危険度現況推定手法の構築とその評価,水文・水資源学会研究発表会要旨集,34巻,水文・水資源学会/日本水文科学会 2021年度研究発表会,講演番号PP-B-26
古木宏和,2021.3次元地形情報を用いた深層学習による地すべり移動体抽出,日本地すべり学会誌,Vol. 58,No.2,65-72
内閣府,2014.避難勧告等の判断・伝達マニュアル作成ガイドライン,https://www.bousai.go.jp/oukyu/hinankankoku/guideline/guideline_2014.html (2022/9/2確認)
Sam Maddrell-Mander, 2019, pix2pix GAN in TensorFlow 2.0, https://towardsdatascience.com/pix2pix-gan-in-tensorflow-2-0-fe0ab475c713 (2022/9/2確認)
木村延明,皆川裕樹,福重雄大,木村匡臣,馬場大地,2021.深層学習モデルに物理モデルを融合させた排水機場水位予測への転移学習の適用.土木学会論文集B1(水工学),77巻,2号,I_319-I_324
児島利治,Chantsal NARANTSETSEG,大橋慶介,2021.深層学習を用いた地形図の土地利用分類,土木学会論文集D3(土木計画学),77巻,4号,400-411
岡谷貴之,2022.深層学習改訂第2版,講談社,東京
産総研地質調査総合センター 地質図類データダウンロード,https://gbank.gsj.jp/datastore/download.php. (2022/9/1確認)
Fort, S., Hu, H., Lakshminarayanan, B., 2019. Deep Ensembles : A Loss Landscape Perspective. arXiv, 1912.02757.
Gal, Y., Ghahramani, Z., 2016. Dropout as a Bayesian Approximation : Representing Model Uncertainty in Deep Learning. Proceedings of the 33rd International Conference on Machine Learning, 48, 1050-1059.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A.A., 2016. Imageto-image translation with conditional adversarial networks, CoRR, Vol. abs/1611.07004.
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: Sam Maddrell-Mander, 2019, pix2pix GAN in TensorFlow 2.0, https://towardsdatascience.com/pix2pix-gan-in-tensorflow-2-0-fe0ab475c713 (2022/9/2確認)
– reference: 叶井和樹,久保 栞,山根達郎,全 邦釘,2021.Mask R-CNNによる航空写真からの土砂崩壊地自動検出手法.AI・データサイエンス論文集,2巻,223-231.
– reference: 防災科学技術研究所,2002.地すべり地形GISデータ:国立研究開発法人防災科学技術研究所地すべり地形分布図,https://dil-opac.bosai.go.jp/publication/nied_tech_note/landslidemap/gis.html. (2022/9/1確認)
– reference: 佐藤 剛,土志田正二,2018.地すべり地形分布図を作成するうえで地形判読の専門家は地すべり地の何を見ているのか?,公益財団法人国土地理協会第18回学術研究助成,https://www.kokudo.or.jp/grant/pdf/2018/sato206.pdf. (2022/9/4確認)
– reference: 山口真一,1967.地すべりの素因と誘因について.地すべり,4巻,1号,4-11.
– reference: 児島利治,Chantsal NARANTSETSEG,大橋慶介,2021.深層学習を用いた地形図の土地利用分類,土木学会論文集D3(土木計画学),77巻,4号,400-411.
– reference: Fort, S., Hu, H., Lakshminarayanan, B., 2019. Deep Ensembles : A Loss Landscape Perspective. arXiv, 1912.02757.
– reference: 青島亘佐,山本拓海,中野 聡,中村秀明,2020.深層学習によるセグメンテーション手法を用いたコンクリート表面の変状領域の検出.AI・データサイエンス論文集,1巻,481-490.
– reference: Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A.A., 2016. Imageto-image translation with conditional adversarial networks, CoRR, Vol. abs/1611.07004.
– reference: 竹内祐太朗,山本義幸,古木宏和,宇津木慎司,吉田一也,中村吉男,2022.空間的不均一性・連続性に関する正規化処理による地すべり移動体の深層生成,写真測量とリモートセンシング,vol. 61,no.1,14-31.
– reference: 岡谷貴之,2022.深層学習改訂第2版,講談社,東京.
– reference: Gal, Y., Ghahramani, Z., 2016. Dropout as a Bayesian Approximation : Representing Model Uncertainty in Deep Learning. Proceedings of the 33rd International Conference on Machine Learning, 48, 1050-1059.
– reference: 内閣府,2014.避難勧告等の判断・伝達マニュアル作成ガイドライン,https://www.bousai.go.jp/oukyu/hinankankoku/guideline/guideline_2014.html (2022/9/2確認)
– reference: 木村延明,皆川裕樹,福重雄大,木村匡臣,馬場大地,2021.深層学習モデルに物理モデルを融合させた排水機場水位予測への転移学習の適用.土木学会論文集B1(水工学),77巻,2号,I_319-I_324.
– reference: 平野英孝,相馬一義,宮本 崇,石平 博,馬籠 純,黒田 晴,倉上 健,2021.富士川周辺地域における深層学習を活用した土砂災害危険度現況推定手法の構築とその評価,水文・水資源学会研究発表会要旨集,34巻,水文・水資源学会/日本水文科学会 2021年度研究発表会,講演番号PP-B-26.
– reference: 三浦奈都,宮本 崇,天方匡純,安野貴人,石井 明,2021.ベイズ深層学習を用いた予報雨量の不確実性を考慮したダム流入量の確率的予測,AI・データサイエンス論文集,2巻,933-943.
– reference: 古木宏和,2021.3次元地形情報を用いた深層学習による地すべり移動体抽出,日本地すべり学会誌,Vol. 58,No.2,65-72.
– reference: 及川 康,片田敏孝,2016.避難勧告等の見逃し・空振りが住民対応行動の意思決定に及ぼす影響.災害情報,14巻,93-104.
– reference: 戸田堅一郎,2014.曲率と傾斜による立体図法(CS立体図)を用いた地形判読,森林立地,Vol. 56,No.2,75-79.
– reference: 久野 元,蘇  迪,長山智則,2020.LSTMとモンテカルロドロップアウトに基づく浮きまくらぎ検知手法の数値的検討,AI・データサイエンス論文集,1巻,536-544.
– reference: 産総研地質調査総合センター 地質図類データダウンロード,https://gbank.gsj.jp/datastore/download.php. (2022/9/1確認)
– reference: TensorFlow,2022,pix2pix:条件付きGANによる画像から画像への変換,https://www.tensorflow.org/tutorials/generative/pix2pix (2022/9/2確認)
– ident: 2
– ident: 17
– ident: 3
– ident: 18
– ident: 4
– ident: 5
  doi: 10.2208/jscejhe.77.2_I_319
– ident: 1
– ident: 20
  doi: 10.1109/CVPR.2017.632
– ident: 12
– ident: 11
  doi: 10.4287/jsprs.61.14
– ident: 10
– ident: 19
– ident: 13
– ident: 16
– ident: 14
– ident: 15
– ident: 6
– ident: 9
– ident: 8
– ident: 21
– ident: 7
  doi: 10.2208/jscejipm.77.4_400
– ident: 22
SSID ssib020472893
ssib036263174
ssib004305393
ssj0000400259
ssib031741132
Score 2.1720786
Snippet This paper shows uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models....
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 368
SubjectTerms Deep learning
Image processing
Landslides
Proposals
Recall
Uncertainty
Title Uncertainty evaluation and proposals for performance improvement methodologies in image generation of landslide mass by deep learning models
URI https://www.jstage.jst.go.jp/article/jsprs/61/6/61_368/_article/-char/en
https://www.proquest.com/docview/2957074445
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Japan society of photogrammetry and remote sensing, 2022, Vol.61(6), pp.368-386
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1883-9061
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000400259
  issn: 0285-5844
  databaseCode: KQ8
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF61hQMcEE81UNAe4IRcvM6uvT5apVXaqDySGvVm-bFO3aLYsuND8xv40czu-hUCUunFSryOs_HMN_vNZGYWofdEpDGsApFhmrFpUNAhg4fcNFhipSyJYIzJauTzL_bEp2eX7HJnd3-QtVSvosN4_de6kvtIFc6BXGWV7H9ItrspnIDXIF84goTheCcZ-yAx9Y8-MOm-bXdT-58XeSV7I8s8wmJQHpCpMIKKCjb7Ryv7pxKzYFDm8CxUL-qWS6pq4J-ZSnUFswh8NRGiaPebWOjNdKp_sFzJa89gQV6q6LzQ-R_FVb5SaWHw_aVuAFUK0BnxsZL59M1iKkPU3tQ792eeWijy6konjalIgzc99o8mp2qkXoVlN3Liz_ypOj_JyvwmXNedZfs6n5x-9nQSybq-DYchD6t3jfV85_18v23Pd6bnOx_MV5tTizMD6JYOXwht7jkfG66p28G360HzLtsy7mO9AVDDE8a6hfefS5B0QeUSVBVldWiTw-5DG029G5UJ1GWBTQJbHuDaoB2RRXeg47vogeUAh5LpBt-HjdnAePaW1ZI9PwddhIAUUkL6imHVc4g0RF9xFCrJrvIN28eiq0Lk9D8NJ7_B1x5eg8uy2OYtioxdPEVPGv3Cnv4Vz9DOdfgcPf6RVbU-W71AvwbgwD04MAgPd-DAgAo8AAcegANvgANnS6zAgXtw4DzFHTiwBAeObrEEB27BgTU4XiL_5PjiaGI0W48YMfB7LjkCi23BotROGBdEsHFiOxF3iOuABQOGx0ViJpGVOtR1SEqTxOHgTEWyINkGH-cV2lvmS7GPMIghJJawSEgJdRwRUirSyIoT13TH8HqEPrQPOCh0h5kAPHMpiF49QBAjxPXT7666sxKN0EErr6AxX1VgucwB_4FS9vr-d36DHkmA6pjkAdpblbV4Cyx9Fb1TCvsbiBnz2w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+evaluation+and+proposals+for+performance+improvement+methodologies+in+image+generation+of+landslide+mass+by+deep+learning+models&rft.jtitle=Journal+of+the+Japan+society+of+photogrammetry+and+remote+sensing&rft.au=NAKAMURA%2C+Yoshio&rft.au=TAKEUCHI%2C+Yutaro&rft.au=FURUKI%2C+Hirokazu&rft.au=YOSHIDA%2C+Kazuya&rft.date=2022&rft.pub=Japan+Society+of+Photogrammetry+and+Remote+Sensing&rft.issn=0285-5844&rft.eissn=1883-9061&rft.volume=61&rft.issue=6&rft.spage=368&rft.epage=386&rft_id=info:doi/10.4287%2Fjsprs.61.368&rft.externalDocID=article_jsprs_61_6_61_368_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0285-5844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0285-5844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0285-5844&client=summon