Recognising small colour changes with unsupervised learning, comparison of methods

Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations....

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational intelligence Vol. 4; no. 2; p. 6
Main Author Isohanni, Jari
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2730-7794
2730-7808
2730-7808
DOI10.1007/s43674-024-00073-7

Cover

Abstract Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations. Such demands arise in sectors like agriculture, printing, healthcare, and packaging. This research employs prevalent unsupervised learning techniques to detect printed colours on paper, focusing on CMYK ink (saturation) levels necessary for recognition against a white background. The aim is to assess whether unsupervised clustering can identify colours within QR-Codes. One use-case for this research is usage of functional inks, ones that change colour based on environmental factors. Within QR-Codes they serve as low-cost IoT sensors. Results of this research indicate that K-means, C-means, Gaussian Mixture Model (GMM), Hierarchical clustering, and Spectral clustering perform well in recognising colour differences when CMYK saturation is 20% or higher in at least one channel. K-means stands out when saturation drops below 10%, although its accuracy diminishes significantly, especially for yellow or magenta channels. A saturation of at least 10% in one CMYK channel is needed for reliable colour detection using unsupervised learning. To handle ink densities below 5%, further research or alternative unsupervised methods may be necessary.
AbstractList Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations. Such demands arise in sectors like agriculture, printing, healthcare, and packaging. This research employs prevalent unsupervised learning techniques to detect printed colours on paper, focusing on CMYK ink (saturation) levels necessary for recognition against a white background. The aim is to assess whether unsupervised clustering can identify colours within QR-Codes. One use-case for this research is usage of functional inks, ones that change colour based on environmental factors. Within QR-Codes they serve as low-cost IoT sensors. Results of this research indicate that K-means, C-means, Gaussian Mixture Model (GMM), Hierarchical clustering, and Spectral clustering perform well in recognising colour differences when CMYK saturation is 20% or higher in at least one channel. K-means stands out when saturation drops below 10%, although its accuracy diminishes significantly, especially for yellow or magenta channels. A saturation of at least 10% in one CMYK channel is needed for reliable colour detection using unsupervised learning. To handle ink densities below 5%, further research or alternative unsupervised methods may be necessary.
ArticleNumber 6
Author Isohanni, Jari
Author_xml – sequence: 1
  givenname: Jari
  orcidid: 0000-0002-7154-2515
  surname: Isohanni
  fullname: Isohanni, Jari
  email: x2603813@student.uwasa.fi, jari.isohanni@gmail.com
  organization: Digital Economy, University of Vaasa
BookMark eNqNkF9LwzAUxYNMcM59AZ8CvlpNk7RpHmX4DwbC0OeQpunW0SY1d3Xs2xvtxDfxIdzk8juHk3OOJs47i9BlSm5SQsQtcJYLnhAaT3yzRJygKRWMJKIgxeTnLiQ_Q3OAbYSoSAmldIpWK2v82jXQuDWGTrctNr71Q8Bmo93aAt43uw0eHAy9DR8N2Aq3VgcX-euIdr0ODXiHfY07u9v4Ci7Qaa1bsPPjnKG3h_vXxVOyfHl8XtwtE5NmUiQ5LbUtci5tyStmtLFVUZe1qUoiSVlZSgmVokxzk1LBTVyyrORFRWotDWcZmyE2-g6u14d9jK760HQ6HFRK1FczamxGxWbUdzNKRNXVqOqDfx8s7NQ2_tbFoIoRJnOWZ4JFio6UCR4g2Pp_1sdAEOHYXfi1_kP1CaOShTw
Cites_doi 10.1117/1.1637364
10.1007/978-981-16-8542-2_21
10.1016/j.procs.2016.02.118
10.1016/j.patcog.2007.02.006
10.1109/3CA.2010.5533758
10.1002/col.1049
10.1016/j.asoc.2015.09.016
10.1109/WKDD.2010.123
10.1155/2017/4897258
10.1109/CGiV.2016.82
10.1145/304181.304187
10.1109/IVS.2010.5548083
10.1371/journal.pone.0240015
10.1016/j.isprsjprs.2013.10.011
10.9734/bpi/mono/978-93-5547-265-6/CH9
10.1016/j.cogsys.2018.04.006
10.1007/s41783-022-00137-4
10.1007/978-3-319-21903-5_8
10.3390/f12091154
10.5220/0006621801810188
10.1177/0887302X21995948
10.1016/S0262-8856(02)00156-7
10.1533/9780857095534.1.129
10.1007/978-3-319-00065-7_27
10.1177/004051750507500103
10.1016/j.neucom.2018.04.010
10.1016/0098-3004(84)90020-7
10.1007/s12517-019-4431-z
10.1016/j.jvcir.2005.10.003
10.1016/0304-3975(85)90224-5
10.1109/SOCPAR.2015.7492784
10.1023/A:1009783824328
10.1109/AFGR.2002.1004190
10.1007/s11370-012-0105-3
10.1109/ICCIIS.2010.67
10.1016/j.neucom.2021.04.076
10.1016/j.compag.2019.05.051
10.1109/SmartIoT.2019.00048
10.1002/widm.30
10.1016/j.ins.2017.08.015
10.1068/p6307
10.1109/TIT.1982.1056489
10.1109/ICIA.2006.305864
10.1109/ICICCT.2017.7975215
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOI 10.1007/s43674-024-00073-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2730-7808
ExternalDocumentID 10.1007/s43674-024-00073-7
10_1007_s43674_024_00073_7
GrantInformation_xml – fundername: Keski-Pohjanmaan Rahasto
  grantid: 25211242
  funderid: http://dx.doi.org/10.13039/501100005439
GroupedDBID 0R~
406
88I
AACDK
AAFHI
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABJNI
ABTEG
ABTKH
ABUWG
ACAOD
ACDTI
ACHSB
ACPIV
ACYDH
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AGMZJ
AGQEE
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
AZQEC
BENPR
BGLVJ
C6C
CCPQU
DPUIP
DWQXO
EBLON
EBS
FIGPU
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
M2P
NPVJJ
NQJWS
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c1597-62bae8649eb4d3caced8fbfcdb090bde220297b16c1274c09035b48d0fa9c4353
IEDL.DBID UNPAY
ISSN 2730-7794
2730-7808
IngestDate Tue Aug 19 18:42:51 EDT 2025
Fri Jul 25 09:35:32 EDT 2025
Wed Oct 01 02:19:40 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Machine vision, Colour difference, Printed colours, Unsupervised learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1597-62bae8649eb4d3caced8fbfcdb090bde220297b16c1274c09035b48d0fa9c4353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7154-2515
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s43674-024-00073-7.pdf
PQID 3039636573
PQPubID 6623282
ParticipantIDs unpaywall_primary_10_1007_s43674_024_00073_7
proquest_journals_3039636573
crossref_primary_10_1007_s43674_024_00073_7
springer_journals_10_1007_s43674_024_00073_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Salerno
PublicationTitle Advances in computational intelligence
PublicationTitleAbbrev Adv. in Comp. Int
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, pp 281–297
XuGLiXLeiBUnsupervised color image segmentation with color-alone feature using region growing pulse coupled neural networkNeurocomputing201830611610.1016/j.neucom.2018.04.010
YavuzZKöseCBlood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classificationJ Healthc Eng20172017489725810.1155/2017/4897258
Xu X, Ester M, Kriegel HP, et al (1998) A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings 14th International Conference on Data Engineering, IEEE, pp 324–331
Aarathi KS, Abraham A (2017) Vehicle color recognition using deep learning for hazy images. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp 335–339
BazeilleSQuiduIJaulinLColor-based underwater object recognition using water light attenuationIntell Serv Robot20125210911810.1007/s11370-012-0105-3
Zamir SW, Arora A, Khan S, et al (2021) Learning digital camera pipeline for extreme low-light imaging
GonzalezTFClustering to minimize the maximum intercluster distanceTheor Comput Sci19853829330680792710.1016/0304-3975(85)90224-5
Isohanni J (2023) Qr-code dataset, with colour embed inside
LuoMRCuiGRiggBThe development of the cie 2000 colour-difference formula: Ciede 2000Color Res Appl200126534035010.1002/col.1049
ZhangTRamakrishnanRLivnyMBirch: a new data clustering algorithm and its applicationsData Min Knowl Discov1997114118210.1023/A:1009783824328
Bo L, Ren X, Fox D (2013) Unsupervised feature learning for rgb-d based object recognition. In: Experimental robotics, Springer, pp 387–402
Giri K, Biswas TK (2020) Determining optimal epsilon (eps) on dbscan using empty circles. In: International Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings of AISE 2020, Vol 1, Springer Nature, p 265
KuoCFJShihCYKaoCYColor and pattern analysis of printed fabric by an unsupervised clustering methodTextile Res J200575191210.1177/004051750507500103
BezdekJCEhrlichRFullWFcm: The fuzzy c-means clustering algorithmComput Geosci1984102–319120310.1016/0098-3004(84)90020-7
Banic N, Loncaric S (2018) Unsupervised learning for color constancy. pp 181–188
JhawarJOrange sorting by applying pattern recognition on colour imageProc Comput Sci20167869169710.1016/j.procs.2016.02.118
ZhouKFuCYangSFuzziness parameter selection in fuzzy c-means: the perspective of cluster validationSci China Inf Sci20145718
Dresp B, Wandeto JM (2020) Unsupervised classification of cell imaging data using the quantization error in a self-organizing map. In: on Science AC, ASCE E (eds) 22nd International Conference on Artificial Intelligence ICAI 2020, American Council on Science and Education, Las Vegas, United States, CSCI 2020 Book of Abstracts, https://hal.archives-ouvertes.fr/hal-02913378
Riri H, Elmoutaouakkil A, Beni-Hssane A et al (2016) Classification and recognition of dental images using a decisional tree. In: 2016 13th International Conference on Computer Graphics. Imaging and Visualization (CGiV), IEEE, pp 390–393
HartiganJAWongMAAlgorithm as 136: A k-means clustering algorithmJ R Stat Soc Ser C (Appl Stat)1979281100108
Gong J, Jiang Y, Xiong G, et al (2010) The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, IEEE, pp 431–435
De la EscaleraAArmingolJMMataMTraffic sign recognition and analysis for intelligent vehiclesImage Vis Comput200321324725810.1016/S0262-8856(02)00156-7
Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, IEEE, pp 195–199
IsohanniJUse of functional ink in a smart tag for fast-moving consumer goods industryJ Pack Technol Res20226318719810.1007/s41783-022-00137-4
Miyamoto S, Abe R, Endo Y, et al (2015) Ward method of hierarchical clustering for non-Euclidean similarity measures. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp 60–63
VishnuvarthananGRajasekaranMPSubbarajPAn unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain imagesAppl Soft Comput20163819021210.1016/j.asoc.2015.09.016
Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14
LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489
DuEYChangCIThouinPDUnsupervised approach to color video thresholdingOpt Eng200443228228910.1117/1.1637364
Reddy EK (2021) Clustering techniques in data mining: A comparative analysis. Research issues on datamining, pp 95–101
GerkeMXiaoEFusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classificationISPRS J Photogr Remote Sens201487789210.1016/j.isprsjprs.2013.10.011
Nielsen F (2016) Hierarchical clustering. Springer International Publishing, Cham, pp 195–211
PedregosaFVaroquauxGGramfortAScikit-learn: machine learning in PythonJ Mach Learn Res201112282528302854348
Yang G, Li H, Zhang L, et al (2010) Research on a skin color detection algorithm based on self-adaptive skin color model. In: 2010 International Conference on Communications and Intelligence Information Security, IEEE, pp 266–270
Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th international conference on Machine Learning (ICML-03), pp 147–153
Zhu S, Liu L (2006) Traffic sign recognition based on color standardization. In: 2006 IEEE International Conference on Information Acquisition, IEEE, pp 951–955
HanAKimJAhnJColor trend analysis using machine learning with fashion collection imagesClothing Textiles Res J202240430832410.1177/0887302X21995948
WangZZhuangZLiuYColor classification and texture recognition system of solid wood panelsForests2021129115410.3390/f12091154
AnkerstMBreunigMMKriegelHPOptics: ordering points to identify the clustering structureACM Sigmod Record1999282496010.1145/304181.304187
GaoXWPodladchikovaLShaposhnikovDRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ Vis Commun Image Represent200617467568510.1016/j.jvcir.2005.10.003
MaoBLiBBuilding façade semantic segmentation based on k-means classification and graph analysisArab J Geosci20191271910.1007/s12517-019-4431-z
RabieTTraining-less color object recognition for autonomous roboticsInf Sci201741821824110.1016/j.ins.2017.08.015
BasarSAliMOchoa-RuizGUnsupervised color image segmentation: a case of rgb histogram based k-means clustering initializationPLoS ONE2020151010.1371/journal.pone.0240015
Ester M, Kriegel HP, Sander J, et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp 226–231
AbdallaACenHEl-manawyAInfield oilseed rape images segmentation via improved unsupervised learning models combined with supreme color featuresComput Electron Agric20191621057106810.1016/j.compag.2019.05.051
Feng L, Jiang D, Zhang A, et al (2019) Color recognition for rubik’s cube robot. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, pp 269–274
Bar-HaimYSaidelTYovelGThe role of skin colour in face recognitionPerception200938114514810.1068/p6307
Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, IEEE, pp 423–428
WuKLYangMSMean shift-based clusteringPattern Recogn200740113035305210.1016/j.patcog.2007.02.006
Koubaroulis D, Matas J, Kittler J, et al (2002) Evaluating colour-based object recognition algorithms using the soil-47 database. In: Asian Conference on Computer Vision
Kang J, Ji Z (2010) Dental plaque quantification using mean-shift-based image segmentation. In: 2010 International Symposium on Computer, Communication, Control and Automation (3CA), IEEE, pp 470–473
Rasmussen C (2000) The infinite gaussian mixture model. Adv Neural Inf Process Syst
KriegelHPKrögerPSanderJDensity-based clusteringWiley Interdiscip Rev Data Min Knowl Discov20111323124010.1002/widm.30
Kao WC, Wang SH, Che WH, et al (2006) Designing image processing pipeline for color imaging systems. In: 2006 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE
ZhangSHuangWZhangCThree-channel convolutional neural networks for vegetable leaf disease recognitionCogn Syst Res201953314110.1016/j.cogsys.2018.04.006
Hurlbert A, Ling Y (2012) Understanding colour perception and preference. In: Colour design. Elsevier, p 129–157
A Abdalla (73_CR2) 2019; 162
73_CR19
MR Luo (73_CR34) 2001; 26
Y Bar-Haim (73_CR5) 2009; 38
73_CR10
73_CR55
73_CR12
73_CR57
73_CR14
B Mao (73_CR36) 2019; 12
73_CR15
73_CR16
73_CR9
73_CR50
73_CR4
Z Wang (73_CR46) 2021; 12
73_CR52
EY Du (73_CR13) 2004; 43
HP Kriegel (73_CR31) 2011; 1
73_CR28
S Bazeille (73_CR7) 2012; 5
73_CR29
73_CR20
KL Wu (73_CR47) 2007; 40
73_CR24
K Zhou (73_CR56) 2014; 57
73_CR26
F Pedregosa (73_CR40) 2011; 12
G Xu (73_CR48) 2018; 306
CFJ Kuo (73_CR32) 2005; 75
T Rabie (73_CR41) 2017; 418
S Zhang (73_CR53) 2019; 53
M Ankerst (73_CR3) 1999; 28
73_CR39
T Zhang (73_CR54) 1997; 1
JC Bezdek (73_CR8) 1984; 10
73_CR35
73_CR37
73_CR38
A De la Escalera (73_CR11) 2003; 21
M Gerke (73_CR18) 2014; 87
J Isohanni (73_CR25) 2022; 6
73_CR30
S Lloyd (73_CR33) 1982; 28
A Han (73_CR22) 2022; 40
G Vishnuvarthanan (73_CR45) 2016; 38
73_CR42
73_CR43
73_CR1
73_CR44
Z Yavuz (73_CR51) 2017; 2017
J Jhawar (73_CR27) 2016; 78
73_CR49
S Basar (73_CR6) 2020; 15
TF Gonzalez (73_CR21) 1985; 38
XW Gao (73_CR17) 2006; 17
JA Hartigan (73_CR23) 1979; 28
References_xml – reference: AbdallaACenHEl-manawyAInfield oilseed rape images segmentation via improved unsupervised learning models combined with supreme color featuresComput Electron Agric20191621057106810.1016/j.compag.2019.05.051
– reference: Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th international conference on Machine Learning (ICML-03), pp 147–153
– reference: ZhangSHuangWZhangCThree-channel convolutional neural networks for vegetable leaf disease recognitionCogn Syst Res201953314110.1016/j.cogsys.2018.04.006
– reference: HanAKimJAhnJColor trend analysis using machine learning with fashion collection imagesClothing Textiles Res J202240430832410.1177/0887302X21995948
– reference: Isohanni J (2023) Qr-code dataset, with colour embed inside
– reference: MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, pp 281–297
– reference: Bar-HaimYSaidelTYovelGThe role of skin colour in face recognitionPerception200938114514810.1068/p6307
– reference: Bo L, Ren X, Fox D (2013) Unsupervised feature learning for rgb-d based object recognition. In: Experimental robotics, Springer, pp 387–402
– reference: WuKLYangMSMean shift-based clusteringPattern Recogn200740113035305210.1016/j.patcog.2007.02.006
– reference: Zamir SW, Arora A, Khan S, et al (2021) Learning digital camera pipeline for extreme low-light imaging
– reference: De la EscaleraAArmingolJMMataMTraffic sign recognition and analysis for intelligent vehiclesImage Vis Comput200321324725810.1016/S0262-8856(02)00156-7
– reference: Aarathi KS, Abraham A (2017) Vehicle color recognition using deep learning for hazy images. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp 335–339
– reference: PedregosaFVaroquauxGGramfortAScikit-learn: machine learning in PythonJ Mach Learn Res201112282528302854348
– reference: BazeilleSQuiduIJaulinLColor-based underwater object recognition using water light attenuationIntell Serv Robot20125210911810.1007/s11370-012-0105-3
– reference: Feng L, Jiang D, Zhang A, et al (2019) Color recognition for rubik’s cube robot. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, pp 269–274
– reference: Rasmussen C (2000) The infinite gaussian mixture model. Adv Neural Inf Process Syst
– reference: XuGLiXLeiBUnsupervised color image segmentation with color-alone feature using region growing pulse coupled neural networkNeurocomputing201830611610.1016/j.neucom.2018.04.010
– reference: BasarSAliMOchoa-RuizGUnsupervised color image segmentation: a case of rgb histogram based k-means clustering initializationPLoS ONE2020151010.1371/journal.pone.0240015
– reference: Yang G, Li H, Zhang L, et al (2010) Research on a skin color detection algorithm based on self-adaptive skin color model. In: 2010 International Conference on Communications and Intelligence Information Security, IEEE, pp 266–270
– reference: HartiganJAWongMAAlgorithm as 136: A k-means clustering algorithmJ R Stat Soc Ser C (Appl Stat)1979281100108
– reference: ZhouKFuCYangSFuzziness parameter selection in fuzzy c-means: the perspective of cluster validationSci China Inf Sci20145718
– reference: MaoBLiBBuilding façade semantic segmentation based on k-means classification and graph analysisArab J Geosci20191271910.1007/s12517-019-4431-z
– reference: Ester M, Kriegel HP, Sander J, et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp 226–231
– reference: GerkeMXiaoEFusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classificationISPRS J Photogr Remote Sens201487789210.1016/j.isprsjprs.2013.10.011
– reference: KuoCFJShihCYKaoCYColor and pattern analysis of printed fabric by an unsupervised clustering methodTextile Res J200575191210.1177/004051750507500103
– reference: Nielsen F (2016) Hierarchical clustering. Springer International Publishing, Cham, pp 195–211
– reference: Hurlbert A, Ling Y (2012) Understanding colour perception and preference. In: Colour design. Elsevier, p 129–157
– reference: WangZZhuangZLiuYColor classification and texture recognition system of solid wood panelsForests2021129115410.3390/f12091154
– reference: Giri K, Biswas TK (2020) Determining optimal epsilon (eps) on dbscan using empty circles. In: International Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings of AISE 2020, Vol 1, Springer Nature, p 265
– reference: Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, IEEE, pp 423–428
– reference: Banic N, Loncaric S (2018) Unsupervised learning for color constancy. pp 181–188
– reference: Koubaroulis D, Matas J, Kittler J, et al (2002) Evaluating colour-based object recognition algorithms using the soil-47 database. In: Asian Conference on Computer Vision
– reference: ZhangTRamakrishnanRLivnyMBirch: a new data clustering algorithm and its applicationsData Min Knowl Discov1997114118210.1023/A:1009783824328
– reference: Zhu S, Liu L (2006) Traffic sign recognition based on color standardization. In: 2006 IEEE International Conference on Information Acquisition, IEEE, pp 951–955
– reference: Gong J, Jiang Y, Xiong G, et al (2010) The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, IEEE, pp 431–435
– reference: JhawarJOrange sorting by applying pattern recognition on colour imageProc Comput Sci20167869169710.1016/j.procs.2016.02.118
– reference: AnkerstMBreunigMMKriegelHPOptics: ordering points to identify the clustering structureACM Sigmod Record1999282496010.1145/304181.304187
– reference: VishnuvarthananGRajasekaranMPSubbarajPAn unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain imagesAppl Soft Comput20163819021210.1016/j.asoc.2015.09.016
– reference: DuEYChangCIThouinPDUnsupervised approach to color video thresholdingOpt Eng200443228228910.1117/1.1637364
– reference: Kao WC, Wang SH, Che WH, et al (2006) Designing image processing pipeline for color imaging systems. In: 2006 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE
– reference: YavuzZKöseCBlood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classificationJ Healthc Eng20172017489725810.1155/2017/4897258
– reference: LuoMRCuiGRiggBThe development of the cie 2000 colour-difference formula: Ciede 2000Color Res Appl200126534035010.1002/col.1049
– reference: IsohanniJUse of functional ink in a smart tag for fast-moving consumer goods industryJ Pack Technol Res20226318719810.1007/s41783-022-00137-4
– reference: Miyamoto S, Abe R, Endo Y, et al (2015) Ward method of hierarchical clustering for non-Euclidean similarity measures. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp 60–63
– reference: Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14
– reference: KriegelHPKrögerPSanderJDensity-based clusteringWiley Interdiscip Rev Data Min Knowl Discov20111323124010.1002/widm.30
– reference: Xu X, Ester M, Kriegel HP, et al (1998) A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings 14th International Conference on Data Engineering, IEEE, pp 324–331
– reference: GonzalezTFClustering to minimize the maximum intercluster distanceTheor Comput Sci19853829330680792710.1016/0304-3975(85)90224-5
– reference: RabieTTraining-less color object recognition for autonomous roboticsInf Sci201741821824110.1016/j.ins.2017.08.015
– reference: Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, IEEE, pp 195–199
– reference: LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489
– reference: Reddy EK (2021) Clustering techniques in data mining: A comparative analysis. Research issues on datamining, pp 95–101
– reference: BezdekJCEhrlichRFullWFcm: The fuzzy c-means clustering algorithmComput Geosci1984102–319120310.1016/0098-3004(84)90020-7
– reference: Dresp B, Wandeto JM (2020) Unsupervised classification of cell imaging data using the quantization error in a self-organizing map. In: on Science AC, ASCE E (eds) 22nd International Conference on Artificial Intelligence ICAI 2020, American Council on Science and Education, Las Vegas, United States, CSCI 2020 Book of Abstracts, https://hal.archives-ouvertes.fr/hal-02913378
– reference: GaoXWPodladchikovaLShaposhnikovDRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ Vis Commun Image Represent200617467568510.1016/j.jvcir.2005.10.003
– reference: Kang J, Ji Z (2010) Dental plaque quantification using mean-shift-based image segmentation. In: 2010 International Symposium on Computer, Communication, Control and Automation (3CA), IEEE, pp 470–473
– reference: Riri H, Elmoutaouakkil A, Beni-Hssane A et al (2016) Classification and recognition of dental images using a decisional tree. In: 2016 13th International Conference on Computer Graphics. Imaging and Visualization (CGiV), IEEE, pp 390–393
– volume: 43
  start-page: 282
  issue: 2
  year: 2004
  ident: 73_CR13
  publication-title: Opt Eng
  doi: 10.1117/1.1637364
– ident: 73_CR19
  doi: 10.1007/978-981-16-8542-2_21
– volume: 78
  start-page: 691
  year: 2016
  ident: 73_CR27
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2016.02.118
– ident: 73_CR15
– volume: 12
  start-page: 2825
  year: 2011
  ident: 73_CR40
  publication-title: J Mach Learn Res
– ident: 73_CR38
– volume: 40
  start-page: 3035
  issue: 11
  year: 2007
  ident: 73_CR47
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.02.006
– ident: 73_CR28
  doi: 10.1109/3CA.2010.5533758
– volume: 26
  start-page: 340
  issue: 5
  year: 2001
  ident: 73_CR34
  publication-title: Color Res Appl
  doi: 10.1002/col.1049
– volume: 38
  start-page: 190
  year: 2016
  ident: 73_CR45
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.016
– ident: 73_CR12
– ident: 73_CR35
– ident: 73_CR55
  doi: 10.1109/WKDD.2010.123
– volume: 2017
  start-page: 4897258
  year: 2017
  ident: 73_CR51
  publication-title: J Healthc Eng
  doi: 10.1155/2017/4897258
– ident: 73_CR44
  doi: 10.1109/CGiV.2016.82
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 73_CR3
  publication-title: ACM Sigmod Record
  doi: 10.1145/304181.304187
– ident: 73_CR20
  doi: 10.1109/IVS.2010.5548083
– volume: 15
  issue: 10
  year: 2020
  ident: 73_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0240015
– volume: 87
  start-page: 78
  year: 2014
  ident: 73_CR18
  publication-title: ISPRS J Photogr Remote Sens
  doi: 10.1016/j.isprsjprs.2013.10.011
– ident: 73_CR43
  doi: 10.9734/bpi/mono/978-93-5547-265-6/CH9
– volume: 53
  start-page: 31
  year: 2019
  ident: 73_CR53
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.04.006
– volume: 6
  start-page: 187
  issue: 3
  year: 2022
  ident: 73_CR25
  publication-title: J Pack Technol Res
  doi: 10.1007/s41783-022-00137-4
– ident: 73_CR39
  doi: 10.1007/978-3-319-21903-5_8
– volume: 12
  start-page: 1154
  issue: 9
  year: 2021
  ident: 73_CR46
  publication-title: Forests
  doi: 10.3390/f12091154
– ident: 73_CR4
  doi: 10.5220/0006621801810188
– ident: 73_CR29
– volume: 40
  start-page: 308
  issue: 4
  year: 2022
  ident: 73_CR22
  publication-title: Clothing Textiles Res J
  doi: 10.1177/0887302X21995948
– volume: 21
  start-page: 247
  issue: 3
  year: 2003
  ident: 73_CR11
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(02)00156-7
– ident: 73_CR24
  doi: 10.1533/9780857095534.1.129
– ident: 73_CR42
– ident: 73_CR9
  doi: 10.1007/978-3-319-00065-7_27
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 73_CR23
  publication-title: J R Stat Soc Ser C (Appl Stat)
– volume: 75
  start-page: 9
  issue: 1
  year: 2005
  ident: 73_CR32
  publication-title: Textile Res J
  doi: 10.1177/004051750507500103
– volume: 306
  start-page: 1
  year: 2018
  ident: 73_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.010
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 73_CR8
  publication-title: Comput Geosci
  doi: 10.1016/0098-3004(84)90020-7
– volume: 12
  start-page: 1
  issue: 7
  year: 2019
  ident: 73_CR36
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-019-4431-z
– ident: 73_CR14
– ident: 73_CR26
– volume: 17
  start-page: 675
  issue: 4
  year: 2006
  ident: 73_CR17
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2005.10.003
– ident: 73_CR49
– volume: 38
  start-page: 293
  year: 1985
  ident: 73_CR21
  publication-title: Theor Comput Sci
  doi: 10.1016/0304-3975(85)90224-5
– ident: 73_CR37
  doi: 10.1109/SOCPAR.2015.7492784
– volume: 1
  start-page: 141
  year: 1997
  ident: 73_CR54
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009783824328
– ident: 73_CR10
  doi: 10.1109/AFGR.2002.1004190
– volume: 5
  start-page: 109
  issue: 2
  year: 2012
  ident: 73_CR7
  publication-title: Intell Serv Robot
  doi: 10.1007/s11370-012-0105-3
– ident: 73_CR50
  doi: 10.1109/ICCIIS.2010.67
– ident: 73_CR52
  doi: 10.1016/j.neucom.2021.04.076
– volume: 162
  start-page: 1057
  year: 2019
  ident: 73_CR2
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.05.051
– ident: 73_CR16
  doi: 10.1109/SmartIoT.2019.00048
– ident: 73_CR30
– volume: 1
  start-page: 231
  issue: 3
  year: 2011
  ident: 73_CR31
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.30
– volume: 418
  start-page: 218
  year: 2017
  ident: 73_CR41
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.08.015
– volume: 38
  start-page: 145
  issue: 1
  year: 2009
  ident: 73_CR5
  publication-title: Perception
  doi: 10.1068/p6307
– volume: 57
  start-page: 1
  year: 2014
  ident: 73_CR56
  publication-title: Sci China Inf Sci
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 73_CR33
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 73_CR57
  doi: 10.1109/ICIA.2006.305864
– ident: 73_CR1
  doi: 10.1109/ICICCT.2017.7975215
SSID ssj0002710222
Score 2.2603078
Snippet Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Blood vessels
Classification
Cluster analysis
Clustering
Color
Computational Intelligence
Computer vision
Datasets
Engineering
Inks
Machine Learning
Oilseeds
Original Article
Probabilistic models
Rape plants
Saturation (color)
Teaching methods
Unsupervised learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VdgAGBAJEoSAPbNSidRzbGRAC1KpiqFBFpW6RHwlLSUPTCPHvsfMqLIg5ii3dne8-3_nuA7imhJh4oCm2vj_GlHrWD2opsK-JCYZSuajqXltM2WROnxf-ogXTuhfGPausfWLhqM1Kuxz5rXW11laYz7379AM71ihXXa0pNGRFrWDuihFjO9AhbjJWGzqPo-nLrMm6EF7ccBzjnDVtCy0DWnXSFP101GOcYhu2cFHCwvx3tNpC0KZqug-7eZLKr0-5XP4ITONDOKgQJXooTeAIWlFyDLNZ-TDIZQJQ9m5_Q248db5GZadvhlwCFuVJlqfOW2SRQRWBxFsf6YacEK1iVJJMZycwH49enya4ok_A2mIUjhlRMhKMBpGixtNSR0bEKtZGDYKBMhEhjrhKDZke2qupdgkbX1FhBrEMtEVR3im0k1USnQGyOEwoqWVAZEA50UJzu4wXCMM4o4J14aYWU5iWUzLCZh5yIdTQCjUshBryLvRqSYbVicnCrX670K-lu_3812r9RgP_2Pz8780vYI8U-nd5lh60N-s8urSwY6OuKlv6Bu2g0lQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HrQH8YnVKnvwZhfTzWYfRymW4sFDsdBb2EfipaalaRD_vbtJmlYR0XNgArOz830zszMDcEsJsWlgKHa-P8WUhs4PGiVwZIiVfaU9qvrXFs9sNKFP02haj8nxvTDf6vf3OQ0Zp9ghCS6rSpjvwp4DKVYWZtmgyacQXsYufpecM1pHGiWte2R-FvMVhzbksqmHtmG_yBbq413NZluQMzyCw5oroofqcI9hJ8lOoL01QfAUxuPqAZCP-FH-5oQgP4a6WKKqozdHPtGKiiwvFt4r5IlF9aKI1x4yzRJCNE9RtUw6P4PJ8PFlMML1mgRsHBfhmBGtEsGoTDS1oVEmsSLVqbE6kIG2CSF-QZXuM9N3IajxiZlIU2GDVEnj2FJ4Dq1sniUXgBzfEloZJYmSlBMjDHdiQiks44wK1oG7tdLiRTUNI27mHpcqjp2K41LFMe9Ad63XuL4Zeewg0915FvGwA721rjeff5PWa87jDz-__J_0KzggpXX4_EoXWqtlkVw7urHSN6WdfQJyjckb
  priority: 102
  providerName: Springer Nature
Title Recognising small colour changes with unsupervised learning, comparison of methods
URI https://link.springer.com/article/10.1007/s43674-024-00073-7
https://www.proquest.com/docview/3039636573
https://link.springer.com/content/pdf/10.1007/s43674-024-00073-7.pdf
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2730-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710222
  issn: 2730-7808
  databaseCode: AFBBN
  dateStart: 20210522
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central Collection
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-7808
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0002710222
  issn: 2730-7808
  databaseCode: BENPR
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5Be0AcYBEgitjKh71RlzRxHOfIFgraQ4UqKsEp8iscgFCRRgh-PeO8YFcrBOKWyJETj52Zz-OZ-QB-Md83qacZRd2fUsYC1INaChpq38QjqZxVddEWU34-Z3-uwqsVOGlyYcpo9-ZIssppcFWasuXRwqRHbeIbC3jEKNoXWp410WiIzavQ5SEi8g5059OL42vHK4cLGAFkyYdYXQtP1Lkz_-_ob_v0Bjrbc9J1WCuyhXx-knd370zRZBNsM4gqAuV2WCzVUL_8U9_xu6P8ARs1ViXH1eLaghWbbcNsVoUcOR8Dye_x84grfF08kiqHOCfOtUuKLC8WTg_l1pCamuJmQHRLe0geUlLRV-c7MJ-cXo7PaU3MQDWin4hyX0krOIutYibQUlsjUpVqo7zYU8b6vqPEUiOuR7jp1c4VFComjJfKWCM-C3ahkz1kdg8IIjyhpJaxL2MW-VroCLsJYmF4xJngPThspiNZVPU3krbScimfBOWTlPJJoh4cNDOW1P9inqCRRi3DwyjowaAR-lvzR70N2pn-xMv3v_b4AXSWj4X9iZhmqfqwKiZnfej-Pp1ezPBuzMf9ehm_AqX88ek
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hONAeqla0aii0PsCpsZp4HXt9QFWhoPCKUAQSt61fywU2gWWF-HP9bR17HykXxIXzam3p83ienvkAtjhjLh9YTlH355TzBPWg1SkdWebUUJtgVcNri4kYX_Cjy9HlEvxte2HCs8pWJ0ZF7WY25Mh_oKpFWREjmfyc39LAGhWqqy2Fhm6oFdxOHDHWNHYc-8cHDOHKncPfeN7bjB3sn--NacMyQC2ackkFM9qngitvuEustt6lucmtMwM1MM4zFvidzFDYIUZwNuQ1RoanbpBrZXlkjUATsMITrjD4W9ndn5xNuywPkzGiCgx3eJXQlVW86dyJ_Xs8EZJTNJM0lsyofGodFy5vV6V9C6tVMdePD_r6-j9DePAe3jUeLPlVi9wHWPLFGkyn9UOkkHkg5Q3-RsI47OqO1J3FJQkJX1IVZTUP2qn0jjSEFVd9YjsyRDLLSU1qXX6Ei1cB8hMsF7PCfwaCfl9qtNWKacUls6mVuEyiUiek4KnowfcWpmxeT-XIuvnLEdQMQc0iqJnswUaLZNbc0DJbyFMP-i26i8_PrdbvTuAFm68_v_k3WB2fn55kJ4eT4y_whkVZCDmeDVi-v6v8Jro89-ZrI1cE_ry2KP8DWJMQDQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gtqD-MRq1T14s0vbzWY3OUq11AdFioXewj4SLzUNTYP4791N0rSCiJ4DE5idnfl2Xh_ANSVERx1FsfH9EabUMX5QCQ-7imi_K6SNqrbbYsgGY_o4cSdrU_x5t_uyJFnMNNgtTfGineioXQ2-UYdxik18wXmtCfNN2KImulkOgx7rVVkWwvMXjWWYM6ZsoKRPy8mZn8V8j04ryFlVSeuwk8WJ-PwQ0-laIOrvw16JINFtceQHsBHGh1Bf2yt4BKNR0RZk8wAofTdCkF1Onc1RMeebIpt-RVmcZon1FWmoUUkf8dZCqqImRLMIFRTT6TGM-_evvQEuyROwMgiFY0akCD1G_VBS7SihQu1FMlJadvyO1CEhlrZKdpnqmoepsukaV1JPdyLhK4OhnBOoxbM4PAVkUJgnhRI-ET7lRHmKGzGO72nGGfVYA26WSguSYkdGUG1DzlUcGBUHuYoD3oDmUq9BeV_SwARS4wmYy50GtJa6Xn3-TVqrOo8__Pzsf9KvYPvlrh88PwyfzmGX5IZiEzBNqC3mWXhh8MhCXuYm9wW2HNRR
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7W3YN48IGKKyo5eHOzdts0TY_iA_Egsriwnkpe9aDWxW4R_fVO-vKBiOKtkDJtJtOZr8nMfAD7zPdN6mlG0fenlLEA_aCWgobaN_FIKhdVXbbFJT-fsItpOO3ASVMLU2a7N0eSVU2D69KUzQ9nJj1sC99YwCNGMb7Q8qyJRkMcXoAeDxGRd6E3ubw6unG8cmjACCBLPsTqWniirp35XtDn-PQOOttz0iVYLLKZfHmW9_cfQtHZCthmElUGyt2wmKuhfv3S3_G_s1yF5RqrkqPKuNagY7N1GI-rlCO3x0DyB3w94hpfF0-kqiHOidvaJUWWFzPnh3JrSE1NcTsguqU9JI8pqeir8w2YnJ1eH5_TmpiBakQ_EeW-klZwFlvFTKCltkakKtVGebGnjPV9R4mlRlyP8KdXu62gUDFhvFTGGvFZsAnd7DGzW0AQ4QkltYx9GbPI10JHKCaIheERZ4L34aBZjmRW9d9I2k7LpX4S1E9S6ieJ-rDTrFhSf4t5gkEavQwPo6APg0bp78M_SRu0K_2Lh2__7fYd6M6fCruLmGau9mqTfQPo3O6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognising+small+colour+changes+with+unsupervised+learning%2C+comparison+of+methods&rft.jtitle=Advances+in+computational+intelligence&rft.au=Isohanni%2C+Jari&rft.date=2024-06-01&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=2&rft_id=info:doi/10.1007%2Fs43674-024-00073-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43674_024_00073_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon