Recognising small colour changes with unsupervised learning, comparison of methods
Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations....
Saved in:
| Published in | Advances in computational intelligence Vol. 4; no. 2; p. 6 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2730-7794 2730-7808 2730-7808 |
| DOI | 10.1007/s43674-024-00073-7 |
Cover
| Abstract | Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations. Such demands arise in sectors like agriculture, printing, healthcare, and packaging. This research employs prevalent unsupervised learning techniques to detect printed colours on paper, focusing on CMYK ink (saturation) levels necessary for recognition against a white background. The aim is to assess whether unsupervised clustering can identify colours within QR-Codes. One use-case for this research is usage of functional inks, ones that change colour based on environmental factors. Within QR-Codes they serve as low-cost IoT sensors. Results of this research indicate that K-means, C-means, Gaussian Mixture Model (GMM), Hierarchical clustering, and Spectral clustering perform well in recognising colour differences when CMYK saturation is 20% or higher in at least one channel. K-means stands out when saturation drops below 10%, although its accuracy diminishes significantly, especially for yellow or magenta channels. A saturation of at least 10% in one CMYK channel is needed for reliable colour detection using unsupervised learning. To handle ink densities below 5%, further research or alternative unsupervised methods may be necessary. |
|---|---|
| AbstractList | Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While common colours like blue, red, green, and yellow are easily distinguishable, some applications require recognising subtle colour variations. Such demands arise in sectors like agriculture, printing, healthcare, and packaging. This research employs prevalent unsupervised learning techniques to detect printed colours on paper, focusing on CMYK ink (saturation) levels necessary for recognition against a white background. The aim is to assess whether unsupervised clustering can identify colours within QR-Codes. One use-case for this research is usage of functional inks, ones that change colour based on environmental factors. Within QR-Codes they serve as low-cost IoT sensors. Results of this research indicate that K-means, C-means, Gaussian Mixture Model (GMM), Hierarchical clustering, and Spectral clustering perform well in recognising colour differences when CMYK saturation is 20% or higher in at least one channel. K-means stands out when saturation drops below 10%, although its accuracy diminishes significantly, especially for yellow or magenta channels. A saturation of at least 10% in one CMYK channel is needed for reliable colour detection using unsupervised learning. To handle ink densities below 5%, further research or alternative unsupervised methods may be necessary. |
| ArticleNumber | 6 |
| Author | Isohanni, Jari |
| Author_xml | – sequence: 1 givenname: Jari orcidid: 0000-0002-7154-2515 surname: Isohanni fullname: Isohanni, Jari email: x2603813@student.uwasa.fi, jari.isohanni@gmail.com organization: Digital Economy, University of Vaasa |
| BookMark | eNqNkF9LwzAUxYNMcM59AZ8CvlpNk7RpHmX4DwbC0OeQpunW0SY1d3Xs2xvtxDfxIdzk8juHk3OOJs47i9BlSm5SQsQtcJYLnhAaT3yzRJygKRWMJKIgxeTnLiQ_Q3OAbYSoSAmldIpWK2v82jXQuDWGTrctNr71Q8Bmo93aAt43uw0eHAy9DR8N2Aq3VgcX-euIdr0ODXiHfY07u9v4Ci7Qaa1bsPPjnKG3h_vXxVOyfHl8XtwtE5NmUiQ5LbUtci5tyStmtLFVUZe1qUoiSVlZSgmVokxzk1LBTVyyrORFRWotDWcZmyE2-g6u14d9jK760HQ6HFRK1FczamxGxWbUdzNKRNXVqOqDfx8s7NQ2_tbFoIoRJnOWZ4JFio6UCR4g2Pp_1sdAEOHYXfi1_kP1CaOShTw |
| Cites_doi | 10.1117/1.1637364 10.1007/978-981-16-8542-2_21 10.1016/j.procs.2016.02.118 10.1016/j.patcog.2007.02.006 10.1109/3CA.2010.5533758 10.1002/col.1049 10.1016/j.asoc.2015.09.016 10.1109/WKDD.2010.123 10.1155/2017/4897258 10.1109/CGiV.2016.82 10.1145/304181.304187 10.1109/IVS.2010.5548083 10.1371/journal.pone.0240015 10.1016/j.isprsjprs.2013.10.011 10.9734/bpi/mono/978-93-5547-265-6/CH9 10.1016/j.cogsys.2018.04.006 10.1007/s41783-022-00137-4 10.1007/978-3-319-21903-5_8 10.3390/f12091154 10.5220/0006621801810188 10.1177/0887302X21995948 10.1016/S0262-8856(02)00156-7 10.1533/9780857095534.1.129 10.1007/978-3-319-00065-7_27 10.1177/004051750507500103 10.1016/j.neucom.2018.04.010 10.1016/0098-3004(84)90020-7 10.1007/s12517-019-4431-z 10.1016/j.jvcir.2005.10.003 10.1016/0304-3975(85)90224-5 10.1109/SOCPAR.2015.7492784 10.1023/A:1009783824328 10.1109/AFGR.2002.1004190 10.1007/s11370-012-0105-3 10.1109/ICCIIS.2010.67 10.1016/j.neucom.2021.04.076 10.1016/j.compag.2019.05.051 10.1109/SmartIoT.2019.00048 10.1002/widm.30 10.1016/j.ins.2017.08.015 10.1068/p6307 10.1109/TIT.1982.1056489 10.1109/ICIA.2006.305864 10.1109/ICICCT.2017.7975215 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.1007/s43674-024-00073-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2730-7808 |
| ExternalDocumentID | 10.1007/s43674-024-00073-7 10_1007_s43674_024_00073_7 |
| GrantInformation_xml | – fundername: Keski-Pohjanmaan Rahasto grantid: 25211242 funderid: http://dx.doi.org/10.13039/501100005439 |
| GroupedDBID | 0R~ 406 88I AACDK AAFHI AAJBT AASML AATNV AAUYE ABAKF ABJNI ABTEG ABTKH ABUWG ACAOD ACDTI ACHSB ACPIV ACYDH ACZOJ ADTPH AEFQL AEMSY AESKC AFBBN AFKRA AGMZJ AGQEE AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS AZQEC BENPR BGLVJ C6C CCPQU DPUIP DWQXO EBLON EBS FIGPU GNUQQ HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM M2P NPVJJ NQJWS PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1597-62bae8649eb4d3caced8fbfcdb090bde220297b16c1274c09035b48d0fa9c4353 |
| IEDL.DBID | UNPAY |
| ISSN | 2730-7794 2730-7808 |
| IngestDate | Tue Aug 19 18:42:51 EDT 2025 Fri Jul 25 09:35:32 EDT 2025 Wed Oct 01 02:19:40 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Machine vision, Colour difference, Printed colours, Unsupervised learning |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1597-62bae8649eb4d3caced8fbfcdb090bde220297b16c1274c09035b48d0fa9c4353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7154-2515 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s43674-024-00073-7.pdf |
| PQID | 3039636573 |
| PQPubID | 6623282 |
| ParticipantIDs | unpaywall_primary_10_1007_s43674_024_00073_7 proquest_journals_3039636573 crossref_primary_10_1007_s43674_024_00073_7 springer_journals_10_1007_s43674_024_00073_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Salerno |
| PublicationTitle | Advances in computational intelligence |
| PublicationTitleAbbrev | Adv. in Comp. Int |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, pp 281–297 XuGLiXLeiBUnsupervised color image segmentation with color-alone feature using region growing pulse coupled neural networkNeurocomputing201830611610.1016/j.neucom.2018.04.010 YavuzZKöseCBlood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classificationJ Healthc Eng20172017489725810.1155/2017/4897258 Xu X, Ester M, Kriegel HP, et al (1998) A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings 14th International Conference on Data Engineering, IEEE, pp 324–331 Aarathi KS, Abraham A (2017) Vehicle color recognition using deep learning for hazy images. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp 335–339 BazeilleSQuiduIJaulinLColor-based underwater object recognition using water light attenuationIntell Serv Robot20125210911810.1007/s11370-012-0105-3 Zamir SW, Arora A, Khan S, et al (2021) Learning digital camera pipeline for extreme low-light imaging GonzalezTFClustering to minimize the maximum intercluster distanceTheor Comput Sci19853829330680792710.1016/0304-3975(85)90224-5 Isohanni J (2023) Qr-code dataset, with colour embed inside LuoMRCuiGRiggBThe development of the cie 2000 colour-difference formula: Ciede 2000Color Res Appl200126534035010.1002/col.1049 ZhangTRamakrishnanRLivnyMBirch: a new data clustering algorithm and its applicationsData Min Knowl Discov1997114118210.1023/A:1009783824328 Bo L, Ren X, Fox D (2013) Unsupervised feature learning for rgb-d based object recognition. In: Experimental robotics, Springer, pp 387–402 Giri K, Biswas TK (2020) Determining optimal epsilon (eps) on dbscan using empty circles. In: International Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings of AISE 2020, Vol 1, Springer Nature, p 265 KuoCFJShihCYKaoCYColor and pattern analysis of printed fabric by an unsupervised clustering methodTextile Res J200575191210.1177/004051750507500103 BezdekJCEhrlichRFullWFcm: The fuzzy c-means clustering algorithmComput Geosci1984102–319120310.1016/0098-3004(84)90020-7 Banic N, Loncaric S (2018) Unsupervised learning for color constancy. pp 181–188 JhawarJOrange sorting by applying pattern recognition on colour imageProc Comput Sci20167869169710.1016/j.procs.2016.02.118 ZhouKFuCYangSFuzziness parameter selection in fuzzy c-means: the perspective of cluster validationSci China Inf Sci20145718 Dresp B, Wandeto JM (2020) Unsupervised classification of cell imaging data using the quantization error in a self-organizing map. In: on Science AC, ASCE E (eds) 22nd International Conference on Artificial Intelligence ICAI 2020, American Council on Science and Education, Las Vegas, United States, CSCI 2020 Book of Abstracts, https://hal.archives-ouvertes.fr/hal-02913378 Riri H, Elmoutaouakkil A, Beni-Hssane A et al (2016) Classification and recognition of dental images using a decisional tree. In: 2016 13th International Conference on Computer Graphics. Imaging and Visualization (CGiV), IEEE, pp 390–393 HartiganJAWongMAAlgorithm as 136: A k-means clustering algorithmJ R Stat Soc Ser C (Appl Stat)1979281100108 Gong J, Jiang Y, Xiong G, et al (2010) The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, IEEE, pp 431–435 De la EscaleraAArmingolJMMataMTraffic sign recognition and analysis for intelligent vehiclesImage Vis Comput200321324725810.1016/S0262-8856(02)00156-7 Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, IEEE, pp 195–199 IsohanniJUse of functional ink in a smart tag for fast-moving consumer goods industryJ Pack Technol Res20226318719810.1007/s41783-022-00137-4 Miyamoto S, Abe R, Endo Y, et al (2015) Ward method of hierarchical clustering for non-Euclidean similarity measures. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp 60–63 VishnuvarthananGRajasekaranMPSubbarajPAn unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain imagesAppl Soft Comput20163819021210.1016/j.asoc.2015.09.016 Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14 LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489 DuEYChangCIThouinPDUnsupervised approach to color video thresholdingOpt Eng200443228228910.1117/1.1637364 Reddy EK (2021) Clustering techniques in data mining: A comparative analysis. Research issues on datamining, pp 95–101 GerkeMXiaoEFusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classificationISPRS J Photogr Remote Sens201487789210.1016/j.isprsjprs.2013.10.011 Nielsen F (2016) Hierarchical clustering. Springer International Publishing, Cham, pp 195–211 PedregosaFVaroquauxGGramfortAScikit-learn: machine learning in PythonJ Mach Learn Res201112282528302854348 Yang G, Li H, Zhang L, et al (2010) Research on a skin color detection algorithm based on self-adaptive skin color model. In: 2010 International Conference on Communications and Intelligence Information Security, IEEE, pp 266–270 Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th international conference on Machine Learning (ICML-03), pp 147–153 Zhu S, Liu L (2006) Traffic sign recognition based on color standardization. In: 2006 IEEE International Conference on Information Acquisition, IEEE, pp 951–955 HanAKimJAhnJColor trend analysis using machine learning with fashion collection imagesClothing Textiles Res J202240430832410.1177/0887302X21995948 WangZZhuangZLiuYColor classification and texture recognition system of solid wood panelsForests2021129115410.3390/f12091154 AnkerstMBreunigMMKriegelHPOptics: ordering points to identify the clustering structureACM Sigmod Record1999282496010.1145/304181.304187 GaoXWPodladchikovaLShaposhnikovDRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ Vis Commun Image Represent200617467568510.1016/j.jvcir.2005.10.003 MaoBLiBBuilding façade semantic segmentation based on k-means classification and graph analysisArab J Geosci20191271910.1007/s12517-019-4431-z RabieTTraining-less color object recognition for autonomous roboticsInf Sci201741821824110.1016/j.ins.2017.08.015 BasarSAliMOchoa-RuizGUnsupervised color image segmentation: a case of rgb histogram based k-means clustering initializationPLoS ONE2020151010.1371/journal.pone.0240015 Ester M, Kriegel HP, Sander J, et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp 226–231 AbdallaACenHEl-manawyAInfield oilseed rape images segmentation via improved unsupervised learning models combined with supreme color featuresComput Electron Agric20191621057106810.1016/j.compag.2019.05.051 Feng L, Jiang D, Zhang A, et al (2019) Color recognition for rubik’s cube robot. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, pp 269–274 Bar-HaimYSaidelTYovelGThe role of skin colour in face recognitionPerception200938114514810.1068/p6307 Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, IEEE, pp 423–428 WuKLYangMSMean shift-based clusteringPattern Recogn200740113035305210.1016/j.patcog.2007.02.006 Koubaroulis D, Matas J, Kittler J, et al (2002) Evaluating colour-based object recognition algorithms using the soil-47 database. In: Asian Conference on Computer Vision Kang J, Ji Z (2010) Dental plaque quantification using mean-shift-based image segmentation. In: 2010 International Symposium on Computer, Communication, Control and Automation (3CA), IEEE, pp 470–473 Rasmussen C (2000) The infinite gaussian mixture model. Adv Neural Inf Process Syst KriegelHPKrögerPSanderJDensity-based clusteringWiley Interdiscip Rev Data Min Knowl Discov20111323124010.1002/widm.30 Kao WC, Wang SH, Che WH, et al (2006) Designing image processing pipeline for color imaging systems. In: 2006 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE ZhangSHuangWZhangCThree-channel convolutional neural networks for vegetable leaf disease recognitionCogn Syst Res201953314110.1016/j.cogsys.2018.04.006 Hurlbert A, Ling Y (2012) Understanding colour perception and preference. In: Colour design. Elsevier, p 129–157 A Abdalla (73_CR2) 2019; 162 73_CR19 MR Luo (73_CR34) 2001; 26 Y Bar-Haim (73_CR5) 2009; 38 73_CR10 73_CR55 73_CR12 73_CR57 73_CR14 B Mao (73_CR36) 2019; 12 73_CR15 73_CR16 73_CR9 73_CR50 73_CR4 Z Wang (73_CR46) 2021; 12 73_CR52 EY Du (73_CR13) 2004; 43 HP Kriegel (73_CR31) 2011; 1 73_CR28 S Bazeille (73_CR7) 2012; 5 73_CR29 73_CR20 KL Wu (73_CR47) 2007; 40 73_CR24 K Zhou (73_CR56) 2014; 57 73_CR26 F Pedregosa (73_CR40) 2011; 12 G Xu (73_CR48) 2018; 306 CFJ Kuo (73_CR32) 2005; 75 T Rabie (73_CR41) 2017; 418 S Zhang (73_CR53) 2019; 53 M Ankerst (73_CR3) 1999; 28 73_CR39 T Zhang (73_CR54) 1997; 1 JC Bezdek (73_CR8) 1984; 10 73_CR35 73_CR37 73_CR38 A De la Escalera (73_CR11) 2003; 21 M Gerke (73_CR18) 2014; 87 J Isohanni (73_CR25) 2022; 6 73_CR30 S Lloyd (73_CR33) 1982; 28 A Han (73_CR22) 2022; 40 G Vishnuvarthanan (73_CR45) 2016; 38 73_CR42 73_CR43 73_CR1 73_CR44 Z Yavuz (73_CR51) 2017; 2017 J Jhawar (73_CR27) 2016; 78 73_CR49 S Basar (73_CR6) 2020; 15 TF Gonzalez (73_CR21) 1985; 38 XW Gao (73_CR17) 2006; 17 JA Hartigan (73_CR23) 1979; 28 |
| References_xml | – reference: AbdallaACenHEl-manawyAInfield oilseed rape images segmentation via improved unsupervised learning models combined with supreme color featuresComput Electron Agric20191621057106810.1016/j.compag.2019.05.051 – reference: Elkan C (2003) Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th international conference on Machine Learning (ICML-03), pp 147–153 – reference: ZhangSHuangWZhangCThree-channel convolutional neural networks for vegetable leaf disease recognitionCogn Syst Res201953314110.1016/j.cogsys.2018.04.006 – reference: HanAKimJAhnJColor trend analysis using machine learning with fashion collection imagesClothing Textiles Res J202240430832410.1177/0887302X21995948 – reference: Isohanni J (2023) Qr-code dataset, with colour embed inside – reference: MacQueen J, et al (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, pp 281–297 – reference: Bar-HaimYSaidelTYovelGThe role of skin colour in face recognitionPerception200938114514810.1068/p6307 – reference: Bo L, Ren X, Fox D (2013) Unsupervised feature learning for rgb-d based object recognition. In: Experimental robotics, Springer, pp 387–402 – reference: WuKLYangMSMean shift-based clusteringPattern Recogn200740113035305210.1016/j.patcog.2007.02.006 – reference: Zamir SW, Arora A, Khan S, et al (2021) Learning digital camera pipeline for extreme low-light imaging – reference: De la EscaleraAArmingolJMMataMTraffic sign recognition and analysis for intelligent vehiclesImage Vis Comput200321324725810.1016/S0262-8856(02)00156-7 – reference: Aarathi KS, Abraham A (2017) Vehicle color recognition using deep learning for hazy images. In: 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), pp 335–339 – reference: PedregosaFVaroquauxGGramfortAScikit-learn: machine learning in PythonJ Mach Learn Res201112282528302854348 – reference: BazeilleSQuiduIJaulinLColor-based underwater object recognition using water light attenuationIntell Serv Robot20125210911810.1007/s11370-012-0105-3 – reference: Feng L, Jiang D, Zhang A, et al (2019) Color recognition for rubik’s cube robot. In: 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, pp 269–274 – reference: Rasmussen C (2000) The infinite gaussian mixture model. Adv Neural Inf Process Syst – reference: XuGLiXLeiBUnsupervised color image segmentation with color-alone feature using region growing pulse coupled neural networkNeurocomputing201830611610.1016/j.neucom.2018.04.010 – reference: BasarSAliMOchoa-RuizGUnsupervised color image segmentation: a case of rgb histogram based k-means clustering initializationPLoS ONE2020151010.1371/journal.pone.0240015 – reference: Yang G, Li H, Zhang L, et al (2010) Research on a skin color detection algorithm based on self-adaptive skin color model. In: 2010 International Conference on Communications and Intelligence Information Security, IEEE, pp 266–270 – reference: HartiganJAWongMAAlgorithm as 136: A k-means clustering algorithmJ R Stat Soc Ser C (Appl Stat)1979281100108 – reference: ZhouKFuCYangSFuzziness parameter selection in fuzzy c-means: the perspective of cluster validationSci China Inf Sci20145718 – reference: MaoBLiBBuilding façade semantic segmentation based on k-means classification and graph analysisArab J Geosci20191271910.1007/s12517-019-4431-z – reference: Ester M, Kriegel HP, Sander J, et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, pp 226–231 – reference: GerkeMXiaoEFusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classificationISPRS J Photogr Remote Sens201487789210.1016/j.isprsjprs.2013.10.011 – reference: KuoCFJShihCYKaoCYColor and pattern analysis of printed fabric by an unsupervised clustering methodTextile Res J200575191210.1177/004051750507500103 – reference: Nielsen F (2016) Hierarchical clustering. Springer International Publishing, Cham, pp 195–211 – reference: Hurlbert A, Ling Y (2012) Understanding colour perception and preference. In: Colour design. Elsevier, p 129–157 – reference: WangZZhuangZLiuYColor classification and texture recognition system of solid wood panelsForests2021129115410.3390/f12091154 – reference: Giri K, Biswas TK (2020) Determining optimal epsilon (eps) on dbscan using empty circles. In: International Conference on Artificial Intelligence and Sustainable Engineering: Select Proceedings of AISE 2020, Vol 1, Springer Nature, p 265 – reference: Bretzner L, Laptev I, Lindeberg T (2002) Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering. In: Proceedings of fifth IEEE international conference on automatic face gesture recognition, IEEE, pp 423–428 – reference: Banic N, Loncaric S (2018) Unsupervised learning for color constancy. pp 181–188 – reference: Koubaroulis D, Matas J, Kittler J, et al (2002) Evaluating colour-based object recognition algorithms using the soil-47 database. In: Asian Conference on Computer Vision – reference: ZhangTRamakrishnanRLivnyMBirch: a new data clustering algorithm and its applicationsData Min Knowl Discov1997114118210.1023/A:1009783824328 – reference: Zhu S, Liu L (2006) Traffic sign recognition based on color standardization. In: 2006 IEEE International Conference on Information Acquisition, IEEE, pp 951–955 – reference: Gong J, Jiang Y, Xiong G, et al (2010) The recognition and tracking of traffic lights based on color segmentation and camshift for intelligent vehicles. In: 2010 IEEE Intelligent Vehicles Symposium, IEEE, pp 431–435 – reference: JhawarJOrange sorting by applying pattern recognition on colour imageProc Comput Sci20167869169710.1016/j.procs.2016.02.118 – reference: AnkerstMBreunigMMKriegelHPOptics: ordering points to identify the clustering structureACM Sigmod Record1999282496010.1145/304181.304187 – reference: VishnuvarthananGRajasekaranMPSubbarajPAn unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain imagesAppl Soft Comput20163819021210.1016/j.asoc.2015.09.016 – reference: DuEYChangCIThouinPDUnsupervised approach to color video thresholdingOpt Eng200443228228910.1117/1.1637364 – reference: Kao WC, Wang SH, Che WH, et al (2006) Designing image processing pipeline for color imaging systems. In: 2006 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE – reference: YavuzZKöseCBlood vessel extraction in color retinal fundus images with enhancement filtering and unsupervised classificationJ Healthc Eng20172017489725810.1155/2017/4897258 – reference: LuoMRCuiGRiggBThe development of the cie 2000 colour-difference formula: Ciede 2000Color Res Appl200126534035010.1002/col.1049 – reference: IsohanniJUse of functional ink in a smart tag for fast-moving consumer goods industryJ Pack Technol Res20226318719810.1007/s41783-022-00137-4 – reference: Miyamoto S, Abe R, Endo Y, et al (2015) Ward method of hierarchical clustering for non-Euclidean similarity measures. In: 2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR), IEEE, pp 60–63 – reference: Ng A, Jordan M, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst 14 – reference: KriegelHPKrögerPSanderJDensity-based clusteringWiley Interdiscip Rev Data Min Knowl Discov20111323124010.1002/widm.30 – reference: Xu X, Ester M, Kriegel HP, et al (1998) A distribution-based clustering algorithm for mining in large spatial databases. In: Proceedings 14th International Conference on Data Engineering, IEEE, pp 324–331 – reference: GonzalezTFClustering to minimize the maximum intercluster distanceTheor Comput Sci19853829330680792710.1016/0304-3975(85)90224-5 – reference: RabieTTraining-less color object recognition for autonomous roboticsInf Sci201741821824110.1016/j.ins.2017.08.015 – reference: Zhao H, Qi Z (2010) Hierarchical agglomerative clustering with ordering constraints. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, IEEE, pp 195–199 – reference: LloydSLeast squares quantization in pcmIEEE Trans Inf Theory198228212913765180710.1109/TIT.1982.1056489 – reference: Reddy EK (2021) Clustering techniques in data mining: A comparative analysis. Research issues on datamining, pp 95–101 – reference: BezdekJCEhrlichRFullWFcm: The fuzzy c-means clustering algorithmComput Geosci1984102–319120310.1016/0098-3004(84)90020-7 – reference: Dresp B, Wandeto JM (2020) Unsupervised classification of cell imaging data using the quantization error in a self-organizing map. In: on Science AC, ASCE E (eds) 22nd International Conference on Artificial Intelligence ICAI 2020, American Council on Science and Education, Las Vegas, United States, CSCI 2020 Book of Abstracts, https://hal.archives-ouvertes.fr/hal-02913378 – reference: GaoXWPodladchikovaLShaposhnikovDRecognition of traffic signs based on their colour and shape features extracted using human vision modelsJ Vis Commun Image Represent200617467568510.1016/j.jvcir.2005.10.003 – reference: Kang J, Ji Z (2010) Dental plaque quantification using mean-shift-based image segmentation. In: 2010 International Symposium on Computer, Communication, Control and Automation (3CA), IEEE, pp 470–473 – reference: Riri H, Elmoutaouakkil A, Beni-Hssane A et al (2016) Classification and recognition of dental images using a decisional tree. In: 2016 13th International Conference on Computer Graphics. Imaging and Visualization (CGiV), IEEE, pp 390–393 – volume: 43 start-page: 282 issue: 2 year: 2004 ident: 73_CR13 publication-title: Opt Eng doi: 10.1117/1.1637364 – ident: 73_CR19 doi: 10.1007/978-981-16-8542-2_21 – volume: 78 start-page: 691 year: 2016 ident: 73_CR27 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2016.02.118 – ident: 73_CR15 – volume: 12 start-page: 2825 year: 2011 ident: 73_CR40 publication-title: J Mach Learn Res – ident: 73_CR38 – volume: 40 start-page: 3035 issue: 11 year: 2007 ident: 73_CR47 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.02.006 – ident: 73_CR28 doi: 10.1109/3CA.2010.5533758 – volume: 26 start-page: 340 issue: 5 year: 2001 ident: 73_CR34 publication-title: Color Res Appl doi: 10.1002/col.1049 – volume: 38 start-page: 190 year: 2016 ident: 73_CR45 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.09.016 – ident: 73_CR12 – ident: 73_CR35 – ident: 73_CR55 doi: 10.1109/WKDD.2010.123 – volume: 2017 start-page: 4897258 year: 2017 ident: 73_CR51 publication-title: J Healthc Eng doi: 10.1155/2017/4897258 – ident: 73_CR44 doi: 10.1109/CGiV.2016.82 – volume: 28 start-page: 49 issue: 2 year: 1999 ident: 73_CR3 publication-title: ACM Sigmod Record doi: 10.1145/304181.304187 – ident: 73_CR20 doi: 10.1109/IVS.2010.5548083 – volume: 15 issue: 10 year: 2020 ident: 73_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0240015 – volume: 87 start-page: 78 year: 2014 ident: 73_CR18 publication-title: ISPRS J Photogr Remote Sens doi: 10.1016/j.isprsjprs.2013.10.011 – ident: 73_CR43 doi: 10.9734/bpi/mono/978-93-5547-265-6/CH9 – volume: 53 start-page: 31 year: 2019 ident: 73_CR53 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.04.006 – volume: 6 start-page: 187 issue: 3 year: 2022 ident: 73_CR25 publication-title: J Pack Technol Res doi: 10.1007/s41783-022-00137-4 – ident: 73_CR39 doi: 10.1007/978-3-319-21903-5_8 – volume: 12 start-page: 1154 issue: 9 year: 2021 ident: 73_CR46 publication-title: Forests doi: 10.3390/f12091154 – ident: 73_CR4 doi: 10.5220/0006621801810188 – ident: 73_CR29 – volume: 40 start-page: 308 issue: 4 year: 2022 ident: 73_CR22 publication-title: Clothing Textiles Res J doi: 10.1177/0887302X21995948 – volume: 21 start-page: 247 issue: 3 year: 2003 ident: 73_CR11 publication-title: Image Vis Comput doi: 10.1016/S0262-8856(02)00156-7 – ident: 73_CR24 doi: 10.1533/9780857095534.1.129 – ident: 73_CR42 – ident: 73_CR9 doi: 10.1007/978-3-319-00065-7_27 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 73_CR23 publication-title: J R Stat Soc Ser C (Appl Stat) – volume: 75 start-page: 9 issue: 1 year: 2005 ident: 73_CR32 publication-title: Textile Res J doi: 10.1177/004051750507500103 – volume: 306 start-page: 1 year: 2018 ident: 73_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.010 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 73_CR8 publication-title: Comput Geosci doi: 10.1016/0098-3004(84)90020-7 – volume: 12 start-page: 1 issue: 7 year: 2019 ident: 73_CR36 publication-title: Arab J Geosci doi: 10.1007/s12517-019-4431-z – ident: 73_CR14 – ident: 73_CR26 – volume: 17 start-page: 675 issue: 4 year: 2006 ident: 73_CR17 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2005.10.003 – ident: 73_CR49 – volume: 38 start-page: 293 year: 1985 ident: 73_CR21 publication-title: Theor Comput Sci doi: 10.1016/0304-3975(85)90224-5 – ident: 73_CR37 doi: 10.1109/SOCPAR.2015.7492784 – volume: 1 start-page: 141 year: 1997 ident: 73_CR54 publication-title: Data Min Knowl Discov doi: 10.1023/A:1009783824328 – ident: 73_CR10 doi: 10.1109/AFGR.2002.1004190 – volume: 5 start-page: 109 issue: 2 year: 2012 ident: 73_CR7 publication-title: Intell Serv Robot doi: 10.1007/s11370-012-0105-3 – ident: 73_CR50 doi: 10.1109/ICCIIS.2010.67 – ident: 73_CR52 doi: 10.1016/j.neucom.2021.04.076 – volume: 162 start-page: 1057 year: 2019 ident: 73_CR2 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.05.051 – ident: 73_CR16 doi: 10.1109/SmartIoT.2019.00048 – ident: 73_CR30 – volume: 1 start-page: 231 issue: 3 year: 2011 ident: 73_CR31 publication-title: Wiley Interdiscip Rev Data Min Knowl Discov doi: 10.1002/widm.30 – volume: 418 start-page: 218 year: 2017 ident: 73_CR41 publication-title: Inf Sci doi: 10.1016/j.ins.2017.08.015 – volume: 38 start-page: 145 issue: 1 year: 2009 ident: 73_CR5 publication-title: Perception doi: 10.1068/p6307 – volume: 57 start-page: 1 year: 2014 ident: 73_CR56 publication-title: Sci China Inf Sci – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 73_CR33 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1982.1056489 – ident: 73_CR57 doi: 10.1109/ICIA.2006.305864 – ident: 73_CR1 doi: 10.1109/ICICCT.2017.7975215 |
| SSID | ssj0002710222 |
| Score | 2.2603078 |
| Snippet | Colour differentiation is crucial in machine learning and computer vision. It is often used when identifying items and objects based on distinct colours. While... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 6 |
| SubjectTerms | Accuracy Algorithms Artificial Intelligence Blood vessels Classification Cluster analysis Clustering Color Computational Intelligence Computer vision Datasets Engineering Inks Machine Learning Oilseeds Original Article Probabilistic models Rape plants Saturation (color) Teaching methods Unsupervised learning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VdgAGBAJEoSAPbNSidRzbGRAC1KpiqFBFpW6RHwlLSUPTCPHvsfMqLIg5ii3dne8-3_nuA7imhJh4oCm2vj_GlHrWD2opsK-JCYZSuajqXltM2WROnxf-ogXTuhfGPausfWLhqM1Kuxz5rXW11laYz7379AM71ihXXa0pNGRFrWDuihFjO9AhbjJWGzqPo-nLrMm6EF7ccBzjnDVtCy0DWnXSFP101GOcYhu2cFHCwvx3tNpC0KZqug-7eZLKr0-5XP4ITONDOKgQJXooTeAIWlFyDLNZ-TDIZQJQ9m5_Q248db5GZadvhlwCFuVJlqfOW2SRQRWBxFsf6YacEK1iVJJMZycwH49enya4ok_A2mIUjhlRMhKMBpGixtNSR0bEKtZGDYKBMhEhjrhKDZke2qupdgkbX1FhBrEMtEVR3im0k1USnQGyOEwoqWVAZEA50UJzu4wXCMM4o4J14aYWU5iWUzLCZh5yIdTQCjUshBryLvRqSYbVicnCrX670K-lu_3812r9RgP_2Pz8780vYI8U-nd5lh60N-s8urSwY6OuKlv6Bu2g0lQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HrQH8YnVKnvwZhfTzWYfRymW4sFDsdBb2EfipaalaRD_vbtJmlYR0XNgArOz830zszMDcEsJsWlgKHa-P8WUhs4PGiVwZIiVfaU9qvrXFs9sNKFP02haj8nxvTDf6vf3OQ0Zp9ghCS6rSpjvwp4DKVYWZtmgyacQXsYufpecM1pHGiWte2R-FvMVhzbksqmHtmG_yBbq413NZluQMzyCw5oroofqcI9hJ8lOoL01QfAUxuPqAZCP-FH-5oQgP4a6WKKqozdHPtGKiiwvFt4r5IlF9aKI1x4yzRJCNE9RtUw6P4PJ8PFlMML1mgRsHBfhmBGtEsGoTDS1oVEmsSLVqbE6kIG2CSF-QZXuM9N3IajxiZlIU2GDVEnj2FJ4Dq1sniUXgBzfEloZJYmSlBMjDHdiQiks44wK1oG7tdLiRTUNI27mHpcqjp2K41LFMe9Ad63XuL4Zeewg0915FvGwA721rjeff5PWa87jDz-__J_0KzggpXX4_EoXWqtlkVw7urHSN6WdfQJyjckb priority: 102 providerName: Springer Nature |
| Title | Recognising small colour changes with unsupervised learning, comparison of methods |
| URI | https://link.springer.com/article/10.1007/s43674-024-00073-7 https://www.proquest.com/docview/3039636573 https://link.springer.com/content/pdf/10.1007/s43674-024-00073-7.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2730-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710222 issn: 2730-7808 databaseCode: AFBBN dateStart: 20210522 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central Collection customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-7808 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0002710222 issn: 2730-7808 databaseCode: BENPR dateStart: 20210901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5Be0AcYBEgitjKh71RlzRxHOfIFgraQ4UqKsEp8iscgFCRRgh-PeO8YFcrBOKWyJETj52Zz-OZ-QB-Md83qacZRd2fUsYC1INaChpq38QjqZxVddEWU34-Z3-uwqsVOGlyYcpo9-ZIssppcFWasuXRwqRHbeIbC3jEKNoXWp410WiIzavQ5SEi8g5059OL42vHK4cLGAFkyYdYXQtP1Lkz_-_ob_v0Bjrbc9J1WCuyhXx-knd370zRZBNsM4gqAuV2WCzVUL_8U9_xu6P8ARs1ViXH1eLaghWbbcNsVoUcOR8Dye_x84grfF08kiqHOCfOtUuKLC8WTg_l1pCamuJmQHRLe0geUlLRV-c7MJ-cXo7PaU3MQDWin4hyX0krOIutYibQUlsjUpVqo7zYU8b6vqPEUiOuR7jp1c4VFComjJfKWCM-C3ahkz1kdg8IIjyhpJaxL2MW-VroCLsJYmF4xJngPThspiNZVPU3krbScimfBOWTlPJJoh4cNDOW1P9inqCRRi3DwyjowaAR-lvzR70N2pn-xMv3v_b4AXSWj4X9iZhmqfqwKiZnfej-Pp1ezPBuzMf9ehm_AqX88ek |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB4hONAeqla0aii0PsCpsZp4HXt9QFWhoPCKUAQSt61fywU2gWWF-HP9bR17HykXxIXzam3p83ienvkAtjhjLh9YTlH355TzBPWg1SkdWebUUJtgVcNri4kYX_Cjy9HlEvxte2HCs8pWJ0ZF7WY25Mh_oKpFWREjmfyc39LAGhWqqy2Fhm6oFdxOHDHWNHYc-8cHDOHKncPfeN7bjB3sn--NacMyQC2ackkFM9qngitvuEustt6lucmtMwM1MM4zFvidzFDYIUZwNuQ1RoanbpBrZXlkjUATsMITrjD4W9ndn5xNuywPkzGiCgx3eJXQlVW86dyJ_Xs8EZJTNJM0lsyofGodFy5vV6V9C6tVMdePD_r6-j9DePAe3jUeLPlVi9wHWPLFGkyn9UOkkHkg5Q3-RsI47OqO1J3FJQkJX1IVZTUP2qn0jjSEFVd9YjsyRDLLSU1qXX6Ei1cB8hMsF7PCfwaCfl9qtNWKacUls6mVuEyiUiek4KnowfcWpmxeT-XIuvnLEdQMQc0iqJnswUaLZNbc0DJbyFMP-i26i8_PrdbvTuAFm68_v_k3WB2fn55kJ4eT4y_whkVZCDmeDVi-v6v8Jro89-ZrI1cE_ry2KP8DWJMQDQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gtqD-MRq1T14s0vbzWY3OUq11AdFioXewj4SLzUNTYP4791N0rSCiJ4DE5idnfl2Xh_ANSVERx1FsfH9EabUMX5QCQ-7imi_K6SNqrbbYsgGY_o4cSdrU_x5t_uyJFnMNNgtTfGineioXQ2-UYdxik18wXmtCfNN2KImulkOgx7rVVkWwvMXjWWYM6ZsoKRPy8mZn8V8j04ryFlVSeuwk8WJ-PwQ0-laIOrvw16JINFtceQHsBHGh1Bf2yt4BKNR0RZk8wAofTdCkF1Onc1RMeebIpt-RVmcZon1FWmoUUkf8dZCqqImRLMIFRTT6TGM-_evvQEuyROwMgiFY0akCD1G_VBS7SihQu1FMlJadvyO1CEhlrZKdpnqmoepsukaV1JPdyLhK4OhnBOoxbM4PAVkUJgnhRI-ET7lRHmKGzGO72nGGfVYA26WSguSYkdGUG1DzlUcGBUHuYoD3oDmUq9BeV_SwARS4wmYy50GtJa6Xn3-TVqrOo8__Pzsf9KvYPvlrh88PwyfzmGX5IZiEzBNqC3mWXhh8MhCXuYm9wW2HNRR |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7W3YN48IGKKyo5eHOzdts0TY_iA_Egsriwnkpe9aDWxW4R_fVO-vKBiOKtkDJtJtOZr8nMfAD7zPdN6mlG0fenlLEA_aCWgobaN_FIKhdVXbbFJT-fsItpOO3ASVMLU2a7N0eSVU2D69KUzQ9nJj1sC99YwCNGMb7Q8qyJRkMcXoAeDxGRd6E3ubw6unG8cmjACCBLPsTqWniirp35XtDn-PQOOttz0iVYLLKZfHmW9_cfQtHZCthmElUGyt2wmKuhfv3S3_G_s1yF5RqrkqPKuNagY7N1GI-rlCO3x0DyB3w94hpfF0-kqiHOidvaJUWWFzPnh3JrSE1NcTsguqU9JI8pqeir8w2YnJ1eH5_TmpiBakQ_EeW-klZwFlvFTKCltkakKtVGebGnjPV9R4mlRlyP8KdXu62gUDFhvFTGGvFZsAnd7DGzW0AQ4QkltYx9GbPI10JHKCaIheERZ4L34aBZjmRW9d9I2k7LpX4S1E9S6ieJ-rDTrFhSf4t5gkEavQwPo6APg0bp78M_SRu0K_2Lh2__7fYd6M6fCruLmGau9mqTfQPo3O6M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognising+small+colour+changes+with+unsupervised+learning%2C+comparison+of+methods&rft.jtitle=Advances+in+computational+intelligence&rft.au=Isohanni%2C+Jari&rft.date=2024-06-01&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=4&rft.issue=2&rft_id=info:doi/10.1007%2Fs43674-024-00073-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43674_024_00073_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon |