Performance Analysis of Heuristic Miner and Genetics Algorithm in Process Cube: a Case Study

Databases that are processed in the form of Online Analytical Processing (OLAP) can solve large query loads that cannot be resolved by transactional databases. OLAP systems are based on a multidimensional model commonly called a cube. In this study, OLAP techniques are applied in process mining, a m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on advanced science, engineering and information technology Vol. 11; no. 1; pp. 393 - 399
Main Authors Andreswari, Rachmadita, Syahputra, Ismail, Lubis, Muharman
Format Journal Article
LanguageEnglish
Published 28.02.2021
Online AccessGet full text
ISSN2088-5334
2460-6952
2088-5334
DOI10.18517/ijaseit.11.1.11544

Cover

Abstract Databases that are processed in the form of Online Analytical Processing (OLAP) can solve large query loads that cannot be resolved by transactional databases. OLAP systems are based on a multidimensional model commonly called a cube. In this study, OLAP techniques are applied in process mining, a method for bridging analysis based on business process models with database analysis. Like data mining, process mining produces process models by implementing the algorithms. This study implements the heuristic miner algorithm compared with genetic algorithms. The selection of these two algorithms is due to the characteristics to be able to model the event log correctly and can handle the control-flow. The capability in handling control-flow including the ability to detect hidden task, looping, duplicate task, detecting implicit/explicit concurrency, non-free-choice, the ability to mine and exploiting time, overcoming noise, and overcome incompleteness. The results of conformance checking on the heuristic miner algorithm for all data, fitness values, position, and structure are 1, 0.495, and 1, while the results of the genetic algorithm are 0.977, 0.706 and 1. Both algorithms have good ability in modeling processes and have high accuracy. The results of the F-score calculation on the heuristic miner algorithm for all data is 0.622, while the result in the genetic algorithm is 0.820. It indicates that genetic algorithms have better performance in modeling event logs based on process cube.
AbstractList Databases that are processed in the form of Online Analytical Processing (OLAP) can solve large query loads that cannot be resolved by transactional databases. OLAP systems are based on a multidimensional model commonly called a cube. In this study, OLAP techniques are applied in process mining, a method for bridging analysis based on business process models with database analysis. Like data mining, process mining produces process models by implementing the algorithms. This study implements the heuristic miner algorithm compared with genetic algorithms. The selection of these two algorithms is due to the characteristics to be able to model the event log correctly and can handle the control-flow. The capability in handling control-flow including the ability to detect hidden task, looping, duplicate task, detecting implicit/explicit concurrency, non-free-choice, the ability to mine and exploiting time, overcoming noise, and overcome incompleteness. The results of conformance checking on the heuristic miner algorithm for all data, fitness values, position, and structure are 1, 0.495, and 1, while the results of the genetic algorithm are 0.977, 0.706 and 1. Both algorithms have good ability in modeling processes and have high accuracy. The results of the F-score calculation on the heuristic miner algorithm for all data is 0.622, while the result in the genetic algorithm is 0.820. It indicates that genetic algorithms have better performance in modeling event logs based on process cube.
Author Andreswari, Rachmadita
Lubis, Muharman
Syahputra, Ismail
Author_xml – sequence: 1
  givenname: Rachmadita
  surname: Andreswari
  fullname: Andreswari, Rachmadita
– sequence: 2
  givenname: Ismail
  surname: Syahputra
  fullname: Syahputra, Ismail
– sequence: 3
  givenname: Muharman
  surname: Lubis
  fullname: Lubis, Muharman
BookMark eNqNkM9KAzEQh4NUsNY-gZe8wNZM_nSz3sqirVCxoN6EJU0nmrLNlmQX2bd31R48Or_DDAPfMHyXZBSagIRcA5uBVpDf-L1J6NsZwGwIKCnPyJgzrTMlhBz9mS_INKU9GyqXjOv5mLxtMLomHkywSBfB1H3yiTaOrrCLPrXe0kcfMFITdnSJAYdNoov6vYm-_ThQH-gmNhZTomW3xVtqaDl8Q5_bbtdfkXNn6oTTU5-Q1_u7l3KVrZ-WD-VinVlQhczm1uGWowGUei5yZ0HscqWlALHlUthcCWXyotAMHUNUwLXiuihyza1mzokJkb93u3A0_aep6-oY_cHEvgJW_UiqTpIqgGrIt6QBE7-YjU1KEd2_qC8QdW6G
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.18517/ijaseit.11.1.11544
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2088-5334
EndPage 399
ExternalDocumentID 10.18517/ijaseit.11.1.11544
10_18517_ijaseit_11_1_11544
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
KQ8
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c1594-6cfeb2ea1e48637fc13d7584313b243c7535a79980ef0ee512852899782c80ff3
IEDL.DBID UNPAY
ISSN 2088-5334
2460-6952
IngestDate Tue Aug 19 21:05:02 EDT 2025
Tue Jul 01 02:45:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1594-6cfeb2ea1e48637fc13d7584313b243c7535a79980ef0ee512852899782c80ff3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/11544/2787
PageCount 7
ParticipantIDs unpaywall_primary_10_18517_ijaseit_11_1_11544
crossref_primary_10_18517_ijaseit_11_1_11544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-28
PublicationDateYYYYMMDD 2021-02-28
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-28
  day: 28
PublicationDecade 2020
PublicationTitle International journal on advanced science, engineering and information technology
PublicationYear 2021
SSID ssj0000740286
Score 2.1461804
Snippet Databases that are processed in the form of Online Analytical Processing (OLAP) can solve large query loads that cannot be resolved by transactional databases....
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 393
Title Performance Analysis of Heuristic Miner and Genetics Algorithm in Process Cube: a Case Study
URI http://www.insightsociety.org/ojaseit/index.php/ijaseit/article/download/11544/2787
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2088-5334
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740286
  issn: 2088-5334
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGP3Q-aAv6rzgvJEHHxTs2i696dsYylAUBQcThJG0qVZnO7YW0V_v97WZF3xRkEBpSxraJE3Oab9zArAnbB76rhKGJG7i-IFjCGGVGy4twe1Y0qeBi0uv23PO-m7_U1lHUZVJOiFeOqmiFsu_-dkjDulJbpYOgmQbYSb6jK5fMyJr-UxEZmkvY7awH87CnOciQK_BXO_yqn1Ly8zhO2WQ-JT2HQ-J05Hb0l5EtEj9tFgcSJqYqKhv89V8kY7E64sYDr9MQqdLkE-lPFXsyVOzyGUzfPvp7Pifz7cMixq0snaVqw4zKl2Buh4WJmxfe1cfrMLd1acQgU0NT1gWs64qKk9odkFyQybSiNFl5BLN2sP7bJzkD88sSZmWLrBOIdUxE6yDt8go3PF1DXqnJzedrqEXcDBCREmO4YUxEnclbOUEHvfj0OYR8hPELFy2HOok3BU-Ej5LxZZSiD0ClwggopYwsOKYr0MtzVK1AcxXOI9K3_GiGAmlsGQo8JhbEQ8El5HdgMNpMw1GlU_HgPgNtepAVyaynQEmqsAGGB9N-Zv8m3_MvwULLQp-KbXv21DLx4XaQfSSy12YPb8OdnWffAeUsfJK
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGA06H_RFnRecN_Lgg4JdL-lN38ZwDGFjDw4mCCNpU63OdmwtMn-939emTvFFQQKlLWlokzQ5p_3OCSFn3GSB50iuCeQmtufbGudGsWHC4MyMBH4a6PXd7tC-HTmjpbIOoyrjZI68dF5GLRZ_89NnGNLjTC8cBNE2Qo_VGVW_eojW8ikP9cJeRregH66SNdcBgF4ja8P-oHWPy8zBO6Wh-BT3bReI05VjKS8iXKS-KhYGkiYkLOrbfLWeJ1O-eOOTyZdJqLNFskrKU8aevDTzTDSD95_Ojv_5fNtkU4FW2ipz1cmKTHZIXQ0Lc3quvKsvdsnDYClEoJXhCU0j2pV56QlNeyg3pDwJKV6GLtG0NXlMZ3H29ErjhCrpAm3nQl5TTttwixTDHRd7ZNi5uWt3NbWAgxYASrI1N4iAuEtuStt3mRcFJguBnwBmYcKysZMwh3tA-AwZGVIC9vAdJICAWgLfiCK2T2pJmsgDQj0J86jwbDeMgFByQwQcjpkRMp8zEZoNclk103ha-nSMkd9gq45VZQLbGUPCCmwQ7bMpf5P_8I_5j8iGhcEvhfb9mNSyWS5PAL1k4lT1xg_sVvFV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Analysis+of+Heuristic+Miner+and+Genetics+Algorithm+in+Process+Cube%3A+a+Case+Study&rft.jtitle=International+journal+on+advanced+science%2C+engineering+and+information+technology&rft.au=Andreswari%2C+Rachmadita&rft.au=Syahputra%2C+Ismail&rft.au=Lubis%2C+Muharman&rft.date=2021-02-28&rft.issn=2088-5334&rft.eissn=2088-5334&rft.volume=11&rft.issue=1&rft.spage=393&rft.epage=399&rft_id=info:doi/10.18517%2Fijaseit.11.1.11544&rft.externalDBID=n%2Fa&rft.externalDocID=10_18517_ijaseit_11_1_11544
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2088-5334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2088-5334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2088-5334&client=summon