PARSIMONIOUS MACHINE LEARNING MODELS IN REQUIREMENTS ELICITATION TECHNIQUES SELECTION

The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few pr...

Full description

Saved in:
Bibliographic Details
Published inVestnik Nacionalʹnogo tehničeskogo universiteta "HPI". Seriâ Sistemnyj analiz, upravlenie i informacionnye tehnologii (Online) no. 1 (9); pp. 82 - 88
Main Authors Solovei, Olga, Gobov, Denys
Format Journal Article
LanguageEnglish
Published National Technical University Kharkiv Polytechnic Institute 15.07.2023
Subjects
Online AccessGet full text
ISSN2079-0023
2410-2857
2410-2857
DOI10.20998/2079-0023.2023.01.13

Cover

Abstract The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few predictor variables as possible without a significant deterioration in the prediction quality. The following tasks are solved in the article: design an algorithm to build parsimonious machine learning candidate models for requirement elicitation technique selection based on gathered information on practitioners' experience, assess parsimonious machine learning model accuracy, and design an algorithm for the best candidate model selection. The following methods are used: algorithm theory, statistics theory, sampling techniques, data modeling theory, and science experiments. The following results were obtained: 1) parsimonious machine learning candidate models were built for the requirement elicitation technique selection. They included less number of features that helps in the future to avoid overfitting problems associated with the best-fit models; 2) according to the proposed algorithm for best candidate selection – a single parsimonious model with satisfied performance was chosen. Conclusion: An algorithm is proposed to build parsimonious candidate models for requirement elicitation technique selection that avoids the overfitting problem. The algorithm for the best candidate model selection identifies when a parsimonious model's performance is degraded and decides on the suitable model's selection. Both proposed algorithms were successfully tested with four datasets and can be proposed for their extensions to others.
AbstractList The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few predictor variables as possible without a significant deterioration in the prediction quality. The following tasks are solved in the article: design an algorithm to build parsimonious machine learning candidate models for requirement elicitation technique selection based on gathered information on practitioners' experience, assess parsimonious machine learning model accuracy, and design an algorithm for the best candidate model selection. The following methods are used: algorithm theory, statistics theory, sampling techniques, data modeling theory, and science experiments. The following results were obtained: 1) parsimonious machine learning candidate models were built for the requirement elicitation technique selection. They included less number of features that helps in the future to avoid overfitting problems associated with the best-fit models; 2) according to the proposed algorithm for best candidate selection – a single parsimonious model with satisfied performance was chosen. Conclusion: An algorithm is proposed to build parsimonious candidate models for requirement elicitation technique selection that avoids the overfitting problem. The algorithm for the best candidate model selection identifies when a parsimonious model's performance is degraded and decides on the suitable model's selection. Both proposed algorithms were successfully tested with four datasets and can be proposed for their extensions to others.
Author Solovei, Olga
Gobov, Denys
Author_xml – sequence: 1
  givenname: Olga
  orcidid: 0000-0001-8774-7243
  surname: Solovei
  fullname: Solovei, Olga
– sequence: 2
  givenname: Denys
  orcidid: 0000-0001-9964-0339
  surname: Gobov
  fullname: Gobov, Denys
BookMark eNqNkM1OwzAQhC1UJP76CEh5gZT1X-wco2BaS2lCm-RsOY6LikpTJSDUtyelwJnL7uxo5zvMDZrsu71H6B7DjEAcywcCIg4BCB3vcQCeYXqBrgnDEBLJxWTUvy9XaDoMrzDKGGNJyDWqn5N1qZdFrou6DJZJutC5CjKVrHOdz4Nl8aiyMtB5sFarWq_VUuVVGahMp7pKKl3kQaXSRa5XtSqDUmUqPZl36HJjd4Of_uxbVD-pKl2EWTHXaZKFDvOYhj5m0DTMg-dCRszJaOMcl4CjhgDdeGBtRCIiqMTUESEp4yQWxNmIt60DTm-RPnPbzr6aQ799s_3RdHZrvo2ufzG2f9-6nTdxA7yxkkksHIsct06QtsXUYy6YEGxkRWfWx_5gj592t_sDYjDfXZtTkeZUpDl1bQAbTMcgPwdd3w1D7zf_zH0BrFB5-Q
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.20998/2079-0023.2023.01.13
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 2410-2857
EndPage 88
ExternalDocumentID oai_doaj_org_article_9b05ba84817c46c5ac72dd13e1574774
10.20998/2079-0023.2023.01.13
10_20998_2079_0023_2023_01_13
GroupedDBID AAFWJ
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c1593-e940bb4e0e57864c86fcc58016b203fe04d626273813c2783452972ca65ddc053
IEDL.DBID UNPAY
ISSN 2079-0023
2410-2857
IngestDate Fri Oct 03 12:42:38 EDT 2025
Tue Aug 19 19:04:07 EDT 2025
Tue Jul 01 03:05:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1 (9)
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1593-e940bb4e0e57864c86fcc58016b203fe04d626273813c2783452972ca65ddc053
ORCID 0000-0001-9964-0339
0000-0001-8774-7243
OpenAccessLink https://proxy.k.utb.cz/login?url=http://samit.khpi.edu.ua/article/download/284727/278813
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_9b05ba84817c46c5ac72dd13e1574774
unpaywall_primary_10_20998_2079_0023_2023_01_13
crossref_primary_10_20998_2079_0023_2023_01_13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-15
PublicationDateYYYYMMDD 2023-07-15
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Vestnik Nacionalʹnogo tehničeskogo universiteta "HPI". Seriâ Sistemnyj analiz, upravlenie i informacionnye tehnologii (Online)
PublicationYear 2023
Publisher National Technical University Kharkiv Polytechnic Institute
Publisher_xml – name: National Technical University Kharkiv Polytechnic Institute
SSID ssj0002911822
Score 2.228052
Snippet The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 82
SubjectTerms bayes factor grades
bayesian information criterion
log-likelihood
parsimonious model
requirements elicitation techniques
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQA48B8RTlJQ-soc7DeYyluNSoTaFppG6W7bhTVSrUCvHv8TltVSYYWK3oHH0X-75zfN8hdJ8EUaUsDfCoMoEXxaTygBV7UptUhdIGlBQKnPt53C2jlzEdb7X6gjthtTxwDVwzU4QqCaLviY5iTaVOgqryQ-NTy4QTpwRK0mwrmYI9OMiAOMMvhIAkmQeRqS7fgUrRtLkZfIDu4aDb6Yc_ApPT7z9E-8vZXH59yul0K-h0jtHRii3iVv2WJ2jHzE7R3vqy-hkqX1vDgtttkQ_KAvdb7S7PGe6x1jDn-TPuD55Yr8A8x0P2VvKhU-4vMOvxNh-5wyk8Yu1uzt9KVuCC9Zi7UnKOyg4btbveqlGCpy0bCT2TRUSpyBBj118c6TSeaE1t7IlVQMKJIVFl8xYowvFD7Vpr0CBLAi1jWlXaLsMLtDt7n5lLhG30TvVEQXNwazSB5WzRnchMamvOyAZ6WKMk5rUehrB5hINVAKwCYBUAqyC-8MMGegQsNw-DnLUbsE4WKyeL35zcQM2NJ_427dV_THuNDsAiHOX69AbtLj6W5tZykIW6c5_bN3WjyAo
  priority: 102
  providerName: Directory of Open Access Journals
Title PARSIMONIOUS MACHINE LEARNING MODELS IN REQUIREMENTS ELICITATION TECHNIQUES SELECTION
URI http://samit.khpi.edu.ua/article/download/284727/278813
https://doaj.org/article/9b05ba84817c46c5ac72dd13e1574774
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2410-2857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002911822
  issn: 2410-2857
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2410-2857
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002911822
  issn: 2410-2857
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BKgE98CwipVR74Or3rh9Hk27JosRt41gKJ2tfAalVEpVEFfx6djZOCuJCb7a1tuX9vDPfjHbmQ-hjFhMtLQ3wqDSxR9JQe8CKPaFMLhNhHUoOBc7jKh025MuMzu5TFz9sVL_2r7-vnPaNvxFBN4GBht7xS6EDsKc2Xo-hD3ryGB2k1JLwHjpoqsvyK0jJhVnhgSuCY2KtTJzTbFu7A2WiebAf4IN0ODTtjJK_vJJr3n-Inm4WK_HzTtzc_OFxzl-g2a5uZ7vR5NrfrKWvfv3bxvGhH_MSPe9YKC63A1-hR2bxGj3ZbYJ_g5rLclJza275RVPjcTkY8orhESsnFa8-4_HFGRvVmFd4wq4aPnGKADVmIz7gU5f0wlM2GFb8qmE1rtmIua0qR6g5Z9PB0OsEGDxlWU7imYKEUhITGruuU6LydK4UtT4tlXGYzE1ItI2HoLgnSpST7KBxkcVKpFRrZZf3W9RbLBfmHcKWFeRqLkF03D40AzMR5sVcFELZxxnRR_4OgHa17bPR2vjEIdYCYi0g1gJibRi1UdJHnwCm_WBok-0uLG-_td08t4UMqRSgGJApkioqVBZrHSUmojaMykgfBXuQ_--1xw--4z16BieQD47oCeqtbzfmgyUya3nqEgCn3a_7GyF04MQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagK_E48EaUl3zgmsRJ7DyOoXipUZvdbRqpnCy_CtKu2mppheDX40nTAuLC3pLIcWR_8cw3lmc-hN7lCbXa04CAaZcENCM2AFYcKOMKnSrvUApIcJ7W2bilnxZs8Xvr4puP6rfh5ddNp30T7lTUT2BkoXb8WtkI7KmP1xOog57eRicZ8yR8gE7a-rz6DFJyJC8DcEVwTb2VSQqW73N3IE20iI4NQpAOh6KdcfqXV-qK999Hd3erjfrxXV1d_eFxTh-ixSFvZ3_Q5DLcbXVofv5bxvGmg3mEHvQsFFf7ho_RLbd6gu4cDsE_Re15NWuEN7firG3wtBqNRc3xhFezWtQf8fTsA580WNR4xi9aMesUARrMJ2Ik5t2mF57z0bgWFy1vcMMnvDuq8gy1p3w-Gge9AENgPMtJA1dSojV1xPl1nVFTZEtjmPdpmU5IunSEWh8PQXJPnJpOsoMlZZ4YlTFrjV_ez9FgtV65Fwh7VlCYpQbRcd9pDmaCFOVSlcr47pwaovAAgNzs62xIH590iElATAJiEhCTJJZxOkTvAaZjYyiT3T1YX3-R_TzLUhOmFSgG5IZmhimTJ9bGqYuZD6NyOkTREeT_--zLG7_xCt2DG9gPjtlrNNhe79wbT2S2-m3_0_4C4k3fzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARSIMONIOUS+MACHINE+LEARNING+MODELS+IN+REQUIREMENTS+ELICITATION+TECHNIQUES+SELECTION&rft.jtitle=Vestnik+Nacional%CA%B9nogo+tehni%C4%8Deskogo+universiteta+%22HPI%22.+Seri%C3%A2+Sistemnyj+analiz%2C+upravlenie+i+informacionnye+tehnologii+%28Online%29&rft.au=Solovei%2C+Olga&rft.au=Gobov%2C+Denys&rft.date=2023-07-15&rft.issn=2079-0023&rft.eissn=2410-2857&rft.issue=1+%289%29&rft.spage=82&rft.epage=88&rft_id=info:doi/10.20998%2F2079-0023.2023.01.13&rft.externalDBID=n%2Fa&rft.externalDocID=10_20998_2079_0023_2023_01_13
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-0023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-0023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-0023&client=summon