PARSIMONIOUS MACHINE LEARNING MODELS IN REQUIREMENTS ELICITATION TECHNIQUES SELECTION
The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few pr...
        Saved in:
      
    
          | Published in | Vestnik Nacionalʹnogo tehničeskogo universiteta "HPI". Seriâ Sistemnyj analiz, upravlenie i informacionnye tehnologii (Online) no. 1 (9); pp. 82 - 88 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            National Technical University Kharkiv Polytechnic Institute
    
        15.07.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2079-0023 2410-2857 2410-2857  | 
| DOI | 10.20998/2079-0023.2023.01.13 | 
Cover
| Abstract | The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few predictor variables as possible without a significant deterioration in the prediction quality. The following tasks are solved in the article: design an algorithm to build parsimonious machine learning candidate models for requirement elicitation technique selection based on gathered information on practitioners' experience, assess parsimonious machine learning model accuracy, and design an algorithm for the best candidate model selection. The following methods are used: algorithm theory, statistics theory, sampling techniques, data modeling theory, and science experiments. The following results were obtained: 1) parsimonious machine learning candidate models were built for the requirement elicitation technique selection. They included less number of features that helps in the future to avoid overfitting problems associated with the best-fit models; 2) according to the proposed algorithm for best candidate selection – a single parsimonious model with satisfied performance was chosen. Conclusion: An algorithm is proposed to build parsimonious candidate models for requirement elicitation technique selection that avoids the overfitting problem. The algorithm for the best candidate model selection identifies when a parsimonious model's performance is degraded and decides on the suitable model's selection. Both proposed algorithms were successfully tested with four datasets and can be proposed for their extensions to others. | 
    
|---|---|
| AbstractList | The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few predictor variables as possible without a significant deterioration in the prediction quality. The following tasks are solved in the article: design an algorithm to build parsimonious machine learning candidate models for requirement elicitation technique selection based on gathered information on practitioners' experience, assess parsimonious machine learning model accuracy, and design an algorithm for the best candidate model selection. The following methods are used: algorithm theory, statistics theory, sampling techniques, data modeling theory, and science experiments. The following results were obtained: 1) parsimonious machine learning candidate models were built for the requirement elicitation technique selection. They included less number of features that helps in the future to avoid overfitting problems associated with the best-fit models; 2) according to the proposed algorithm for best candidate selection – a single parsimonious model with satisfied performance was chosen. Conclusion: An algorithm is proposed to build parsimonious candidate models for requirement elicitation technique selection that avoids the overfitting problem. The algorithm for the best candidate model selection identifies when a parsimonious model's performance is degraded and decides on the suitable model's selection. Both proposed algorithms were successfully tested with four datasets and can be proposed for their extensions to others. | 
    
| Author | Solovei, Olga Gobov, Denys  | 
    
| Author_xml | – sequence: 1 givenname: Olga orcidid: 0000-0001-8774-7243 surname: Solovei fullname: Solovei, Olga – sequence: 2 givenname: Denys orcidid: 0000-0001-9964-0339 surname: Gobov fullname: Gobov, Denys  | 
    
| BookMark | eNqNkM1OwzAQhC1UJP76CEh5gZT1X-wco2BaS2lCm-RsOY6LikpTJSDUtyelwJnL7uxo5zvMDZrsu71H6B7DjEAcywcCIg4BCB3vcQCeYXqBrgnDEBLJxWTUvy9XaDoMrzDKGGNJyDWqn5N1qZdFrou6DJZJutC5CjKVrHOdz4Nl8aiyMtB5sFarWq_VUuVVGahMp7pKKl3kQaXSRa5XtSqDUmUqPZl36HJjd4Of_uxbVD-pKl2EWTHXaZKFDvOYhj5m0DTMg-dCRszJaOMcl4CjhgDdeGBtRCIiqMTUESEp4yQWxNmIt60DTm-RPnPbzr6aQ799s_3RdHZrvo2ufzG2f9-6nTdxA7yxkkksHIsct06QtsXUYy6YEGxkRWfWx_5gj592t_sDYjDfXZtTkeZUpDl1bQAbTMcgPwdd3w1D7zf_zH0BrFB5-Q | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.20998/2079-0023.2023.01.13 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Business | 
    
| EISSN | 2410-2857 | 
    
| EndPage | 88 | 
    
| ExternalDocumentID | oai_doaj_org_article_9b05ba84817c46c5ac72dd13e1574774 10.20998/2079-0023.2023.01.13 10_20998_2079_0023_2023_01_13  | 
    
| GroupedDBID | AAFWJ AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1593-e940bb4e0e57864c86fcc58016b203fe04d626273813c2783452972ca65ddc053 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2079-0023 2410-2857  | 
    
| IngestDate | Fri Oct 03 12:42:38 EDT 2025 Tue Aug 19 19:04:07 EDT 2025 Tue Jul 01 03:05:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 (9) | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1593-e940bb4e0e57864c86fcc58016b203fe04d626273813c2783452972ca65ddc053 | 
    
| ORCID | 0000-0001-9964-0339 0000-0001-8774-7243  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://samit.khpi.edu.ua/article/download/284727/278813 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9b05ba84817c46c5ac72dd13e1574774 unpaywall_primary_10_20998_2079_0023_2023_01_13 crossref_primary_10_20998_2079_0023_2023_01_13  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-07-15 | 
    
| PublicationDateYYYYMMDD | 2023-07-15 | 
    
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Vestnik Nacionalʹnogo tehničeskogo universiteta "HPI". Seriâ Sistemnyj analiz, upravlenie i informacionnye tehnologii (Online) | 
    
| PublicationYear | 2023 | 
    
| Publisher | National Technical University Kharkiv Polytechnic Institute | 
    
| Publisher_xml | – name: National Technical University Kharkiv Polytechnic Institute | 
    
| SSID | ssj0002911822 | 
    
| Score | 2.228052 | 
    
| Snippet | The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 82 | 
    
| SubjectTerms | bayes factor grades bayesian information criterion log-likelihood parsimonious model requirements elicitation techniques  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQA48B8RTlJQ-soc7DeYyluNSoTaFppG6W7bhTVSrUCvHv8TltVSYYWK3oHH0X-75zfN8hdJ8EUaUsDfCoMoEXxaTygBV7UptUhdIGlBQKnPt53C2jlzEdb7X6gjthtTxwDVwzU4QqCaLviY5iTaVOgqryQ-NTy4QTpwRK0mwrmYI9OMiAOMMvhIAkmQeRqS7fgUrRtLkZfIDu4aDb6Yc_ApPT7z9E-8vZXH59yul0K-h0jtHRii3iVv2WJ2jHzE7R3vqy-hkqX1vDgtttkQ_KAvdb7S7PGe6x1jDn-TPuD55Yr8A8x0P2VvKhU-4vMOvxNh-5wyk8Yu1uzt9KVuCC9Zi7UnKOyg4btbveqlGCpy0bCT2TRUSpyBBj118c6TSeaE1t7IlVQMKJIVFl8xYowvFD7Vpr0CBLAi1jWlXaLsMLtDt7n5lLhG30TvVEQXNwazSB5WzRnchMamvOyAZ6WKMk5rUehrB5hINVAKwCYBUAqyC-8MMGegQsNw-DnLUbsE4WKyeL35zcQM2NJ_427dV_THuNDsAiHOX69AbtLj6W5tZykIW6c5_bN3WjyAo priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | PARSIMONIOUS MACHINE LEARNING MODELS IN REQUIREMENTS ELICITATION TECHNIQUES SELECTION | 
    
| URI | http://samit.khpi.edu.ua/article/download/284727/278813 https://doaj.org/article/9b05ba84817c46c5ac72dd13e1574774  | 
    
| UnpaywallVersion | publishedVersion | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2410-2857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002911822 issn: 2410-2857 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2410-2857 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002911822 issn: 2410-2857 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BKgE98CwipVR74Or3rh9Hk27JosRt41gKJ2tfAalVEpVEFfx6djZOCuJCb7a1tuX9vDPfjHbmQ-hjFhMtLQ3wqDSxR9JQe8CKPaFMLhNhHUoOBc7jKh025MuMzu5TFz9sVL_2r7-vnPaNvxFBN4GBht7xS6EDsKc2Xo-hD3ryGB2k1JLwHjpoqsvyK0jJhVnhgSuCY2KtTJzTbFu7A2WiebAf4IN0ODTtjJK_vJJr3n-Inm4WK_HzTtzc_OFxzl-g2a5uZ7vR5NrfrKWvfv3bxvGhH_MSPe9YKC63A1-hR2bxGj3ZbYJ_g5rLclJza275RVPjcTkY8orhESsnFa8-4_HFGRvVmFd4wq4aPnGKADVmIz7gU5f0wlM2GFb8qmE1rtmIua0qR6g5Z9PB0OsEGDxlWU7imYKEUhITGruuU6LydK4UtT4tlXGYzE1ItI2HoLgnSpST7KBxkcVKpFRrZZf3W9RbLBfmHcKWFeRqLkF03D40AzMR5sVcFELZxxnRR_4OgHa17bPR2vjEIdYCYi0g1gJibRi1UdJHnwCm_WBok-0uLG-_td08t4UMqRSgGJApkioqVBZrHSUmojaMykgfBXuQ_--1xw--4z16BieQD47oCeqtbzfmgyUya3nqEgCn3a_7GyF04MQ | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagK_E48EaUl3zgmsRJ7DyOoXipUZvdbRqpnCy_CtKu2mppheDX40nTAuLC3pLIcWR_8cw3lmc-hN7lCbXa04CAaZcENCM2AFYcKOMKnSrvUApIcJ7W2bilnxZs8Xvr4puP6rfh5ddNp30T7lTUT2BkoXb8WtkI7KmP1xOog57eRicZ8yR8gE7a-rz6DFJyJC8DcEVwTb2VSQqW73N3IE20iI4NQpAOh6KdcfqXV-qK999Hd3erjfrxXV1d_eFxTh-ixSFvZ3_Q5DLcbXVofv5bxvGmg3mEHvQsFFf7ho_RLbd6gu4cDsE_Re15NWuEN7firG3wtBqNRc3xhFezWtQf8fTsA580WNR4xi9aMesUARrMJ2Ik5t2mF57z0bgWFy1vcMMnvDuq8gy1p3w-Gge9AENgPMtJA1dSojV1xPl1nVFTZEtjmPdpmU5IunSEWh8PQXJPnJpOsoMlZZ4YlTFrjV_ez9FgtV65Fwh7VlCYpQbRcd9pDmaCFOVSlcr47pwaovAAgNzs62xIH590iElATAJiEhCTJJZxOkTvAaZjYyiT3T1YX3-R_TzLUhOmFSgG5IZmhimTJ9bGqYuZD6NyOkTREeT_--zLG7_xCt2DG9gPjtlrNNhe79wbT2S2-m3_0_4C4k3fzw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARSIMONIOUS+MACHINE+LEARNING+MODELS+IN+REQUIREMENTS+ELICITATION+TECHNIQUES+SELECTION&rft.jtitle=Vestnik+Nacional%CA%B9nogo+tehni%C4%8Deskogo+universiteta+%22HPI%22.+Seri%C3%A2+Sistemnyj+analiz%2C+upravlenie+i+informacionnye+tehnologii+%28Online%29&rft.au=Solovei%2C+Olga&rft.au=Gobov%2C+Denys&rft.date=2023-07-15&rft.issn=2079-0023&rft.eissn=2410-2857&rft.issue=1+%289%29&rft.spage=82&rft.epage=88&rft_id=info:doi/10.20998%2F2079-0023.2023.01.13&rft.externalDBID=n%2Fa&rft.externalDocID=10_20998_2079_0023_2023_01_13 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-0023&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-0023&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-0023&client=summon |