Estimation of Melting State at Groove Root in Pulsed MAG Welding Using Deep Learning

Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the...

Full description

Saved in:
Bibliographic Details
Published inQUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol. 39; no. 4; pp. 322 - 333
Main Authors Denchi, WANG, Gewei, ZHANG, YAMANE, Satoshi
Format Journal Article
LanguageJapanese
Published Tokyo JAPAN WELDING SOCIETY 2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0288-4771
2434-8252
2434-8252
DOI10.2207/qjjws.39.322

Cover

Abstract Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the melting state of the root of the groove. In this study, a single-sided downward-facing weld with a ceramic backing material is used. In order to apply deep learning, it is necessary to construct training data. A large amount of time is required to construct the training data. The relationship between the melting state of the root of the groove and that of the ceramic backing material was determined by basic experiments. The ceramic backing material melts when the brightness of the state in front of the weld pool increases. Using this feature, the state of the tip of the weld pool in the molten pool image was classified into three types. This facilitated the image classification. In addition, since only the tip ofthe molten part was targeted, the image was less susceptible to changes in the bevel shape. This was applied to the case where the gap varied from 4 mm to 6 mm. The effectiveness of the estimation of the melting state of the root of the groove was confirmed.
AbstractList Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the melting state of the root of the groove. In this study, a single-sided downward-facing weld with a ceramic backing material is used. In order to apply deep learning, it is necessary to construct training data. A large amount of time is required to construct the training data. The relationship between the melting state of the root of the groove and that of the ceramic backing material was determined by basic experiments. The ceramic backing material melts when the brightness of the state in front of the weld pool increases. Using this feature, the state of the tip of the weld pool in the molten pool image was classified into three types. This facilitated the image classification. In addition, since only the tip ofthe molten part was targeted, the image was less susceptible to changes in the bevel shape. This was applied to the case where the gap varied from 4 mm to 6 mm. The effectiveness of the estimation of the melting state of the root of the groove was confirmed.
Author YAMANE, Satoshi
Gewei, ZHANG
Denchi, WANG
Author_xml – sequence: 1
  fullname: Denchi, WANG
  organization: Graduate School of Engineering, Saitama Univ
– sequence: 1
  fullname: Gewei, ZHANG
  organization: Graduate School of Engineering, Saitama Univ
– sequence: 1
  fullname: YAMANE, Satoshi
  organization: Graduate School of Engineering, Saitama Univ
BookMark eNqF0E1LAzEQBuAgFazVmz8g4NWt-dhsNicRrVVoUbTiMcTdWd2yJjVJLf33prbo0UuGYZ4MyXuIetZZQOiEkiFjRJ5_zuerMORqyBnbQ32W8zwrmWA91CesLLNcSnqAjkNoXwkRitBSln00G4XYfpjYOotdg6fQxda-4adoImAT8dg79wX40bmIW4sfll2AGk8vx_gFunpDn8PmvAZY4AkYb1N3hPYbk-Dxrg7Q881odnWbTe7Hd1eXk6yiQrGseZV1bRRRBamAykooQQsmlSiZYg0pGC1pVdd5wVORvIbUKgYGBM3rNOYDlG33Lu3CrFem6_TCp9_4taZEb1LRP6lornRKJfnTrV9497mEEPXcLb1NT9SsoEIKISVP6myrKu9C8ND8t_Riy-chmjf4xcbHturgD-e7G7-T6t14DZZ_A-f5iPI
Cites_doi 10.2207/qjjws.12.374
10.2207/qjjws.23.65
10.1016/j.jmapro.2020.12.067
10.14723/tmrsj.44.181
10.1016/j.jmapro.2020.10.019
10.1016/j.sna.2021.112551
10.2355/isijinternational.39.1075
10.1007/s11263-015-0816-y
10.1016/j.jmsy.2020.01.006
10.2207/qjjws.12.468
10.1016/j.ijthermalsci.2012.07.006
10.2207/qjjws.38.147
10.2207/qjjws.38.173
10.2207/qjjws.37.108
10.2207/qjjws.38.164
10.1126/science.1127647
10.1016/S1003-6326(08)60275-7
10.2207/jjws.88.230
10.1038/323533a0
10.1299/jsmea.46.391
10.2207/qjjws.7.21
10.1109/TSMC.1979.4310076
10.2207/qjjws.38.103
ContentType Journal Article
Copyright 2021 by JAPAN WELDING SOCIETY
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 by JAPAN WELDING SOCIETY
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
7TB
8BQ
8FD
FR3
JG9
KR7
ADTOC
UNPAY
DOI 10.2207/qjjws.39.322
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
METADEX
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2434-8252
EndPage 333
ExternalDocumentID 10.2207/qjjws.39.322
10_2207_qjjws_39_322
article_qjjws_39_4_39_322_article_char_en
GroupedDBID 123
2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
JSF
KQ8
OK1
RJT
AAYXX
CITATION
7TB
8BQ
8FD
FR3
JG9
KR7
ADTOC
UNPAY
ID FETCH-LOGICAL-c1592-fb7dda90960ce17c5951627958292f062181cdd4631cd73de81c92eae514d0623
IEDL.DBID UNPAY
ISSN 0288-4771
2434-8252
IngestDate Sun Sep 07 11:07:31 EDT 2025
Mon Jun 30 06:12:09 EDT 2025
Tue Jul 01 00:40:02 EDT 2025
Wed Sep 03 06:30:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1592-fb7dda90960ce17c5951627958292f062181cdd4631cd73de81c92eae514d0623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.2207/qjjws.39.322
PQID 2615755773
PQPubID 2048480
PageCount 12
ParticipantIDs unpaywall_primary_10_2207_qjjws_39_322
proquest_journals_2615755773
crossref_primary_10_2207_qjjws_39_322
jstage_primary_article_qjjws_39_4_39_322_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY
PublicationYear 2021
Publisher JAPAN WELDING SOCIETY
Japan Science and Technology Agency
Publisher_xml – name: JAPAN WELDING SOCIETY
– name: Japan Science and Technology Agency
References 18) Zhehao Zhanga,b, Bin Lia,b, Weifeng Zhanga,b, Rundong Lua,b, Satoshi Wadac, Yi Zhanga,b,Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks, Journal of Manufacturing Systems,Volume 54(2020) 348- 360.
13) K. Kasano, Y. Ogino, S. Asai: Fundamental Study on On-line Image Sensing Technology of Arc Welding– Development of In-process Quality Control Technology of Arc Welding –, Quarterly Journal of The Japan Welding Society, 37-3(2019) 108-114.(in Japanese
23) S. Yamane, H. Yuzawa, Y. Kaneko, H. Yamamoto, M. Hirakawa, K. Oshima ,Image Processing and Control of Weld pool in Switch Back Welding without Backing Plate, Quarterly Journal of The Japan Welding Society, 23-1(2005) 65-70 (in Japanese).
20)K. Nomura, K. Fukushima, T. Matsumura, S. Asai: Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation, Journal of Manufacturing Processes, 61 (2021) 590–600.
5) C. Jia, C. Wu and Y. M. Zhang: Sensing controlled pulse key-holing condition in plasma arc welding , Trans. Nonferrous Met. Soc. China,19 (2009), 341-346
2) Yasuo Suga, Takahiro Shimamura, Shigeaki Usui, Kimiya Aoki:Measurement of Molten Pool Shape and Penetration Control Applying Neural Network in TIG Welding of Thin Steel Plates, ISIJ International, 39-10 (1999) pp. 1075-1080
24) N. Otsu: A threshold selection method from gray-level histogram, IEEE Transactions on System Man Cybernetics, Vol. SMC-9-1(1979) 62-66.
3) Masahiro MURAMATSU, Yasuo SUGA, Kazuhiro MORI: Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding, JSME International Journal Series A Solid Mechanics and Material Engineering,46-3(2003) 391-397
4) Takanori Hino, Syota Fujioka, Shin Kira, Shigeru Kato, Takuro Sakiyama, Ryo Kato, Toshio Matsubara, Hiroyuki Yanagimoto: Visualization of Gas Tungsten Arc Welding Skill Using Brightness Map of Backside Weld Pool,Transactions of the Materials Research Society of Japan, 44-5 (2019) 181-186
9) Y. Sugitani, Y. Kanjo, Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of The Japan Welding Society, 7-1(1989),21-26.(in Japanese
14) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai: Study on welding phenomena observation method based on arc and moltenpool light emission characteristics in visible and infrared wavelength region–Development of image sensing technology for in-process welding monitoring technology –,Quarterly Journal of The Japan Welding Society, 38-2(2020) 103-113.(in Japanese
7) S. Wonthaisong, S. Shinohara, K. Shinozaki, R. Phaoniam, M. Yamamoto: High-Efficiency and Low-Heat-Input CO2 Arc-Welding Technology for Butt Joint of Thick Steel Plate Using Hot Wire, Quarterly Journal of The Japan Welding Society,38-3(2020) 164-170.
15) Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams: Learning representations by back-propagating errors, Nature, 323(1986), 533–536 .
25) MVTec Software GmbH: HALCON 12 User's Manuals (2014
19) Guohong Ma, Lesheng Yu, Haitao Yuan, Wenbo Xiao, Yinshui He: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network, Journal of Manufacturing Processes, 64 (2021) 130–139.
22) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, https://arxiv.org/ abs/1512.03385 , Access 2021,6,30
17) Russakovsky, O., Deng, J., Su, H., et al. : ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), 115-3(2015) 211-252
11) Y. Kaneko, T. Iisaka, S. Yamane, K. Ohshima: Neuro-Fuzzy Control of Weld Pool in Pulsed MIG Welding, Quarterly Journal of The Japan Welding Society,12-3(1994), 374-378.(in Japanese
21) A. Okamoto, K. Ozaki, T. Ashida, M. Hida, T. Yamashita : Automatic Welding in Initial Layer Penetration Welding using Deep Learning, Journal of the Japan Welding Society, 88-4 (2019) 230-233. (in Japanese
1) Yanling Xu, Ziheng Wang: Visual sensing technologies in robotic welding: Recent research developments and future interests, Sensors and Actuators A: Physical, 320(2021).
10) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai, T. Sano: Observation of welding phenomena with blowholes for detection of welding defects– Development of in-process welding monitoring technology with image sensing technology –,Quarterly Journal of The Japan Welding Society, 38-3(2020), 173-182.(in Japanese
12) T. Matsumura, K. Nomura, S. Asai: Study of burn-through prediction in MAG arc welding using molten pool monitoring technique, Quarterly Journal of The Japan Welding Society,38-3(2020) 147-156. (in Japanese
16) Hinton, Geoffrey E., and Ruslan R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313 (2006), 504-507.
6) Zuming Liu, Chuan Song Wu, and Jinqiang Gao: Vision-based observation of keyhole geometry in plasma arc welding, International Journal of Thermal Sciences, 63 (2013), 38-45.
8) Y. Sugitani, W. Mao :Automatic Simultaneous Control of Bead Height and Back Bead Shape Utilizing Arc Sensor in One Side Welding with Backing Plate, Quarterly Journal of The Japan Welding Society,12-1(1994) 468-476.(in Japanese
22
23
24
25
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 4) Takanori Hino, Syota Fujioka, Shin Kira, Shigeru Kato, Takuro Sakiyama, Ryo Kato, Toshio Matsubara, Hiroyuki Yanagimoto: Visualization of Gas Tungsten Arc Welding Skill Using Brightness Map of Backside Weld Pool,Transactions of the Materials Research Society of Japan, 44-5 (2019) 181-186
– reference: 22) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, https://arxiv.org/ abs/1512.03385 , Access 2021,6,30
– reference: 3) Masahiro MURAMATSU, Yasuo SUGA, Kazuhiro MORI: Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding, JSME International Journal Series A Solid Mechanics and Material Engineering,46-3(2003) 391-397
– reference: 24) N. Otsu: A threshold selection method from gray-level histogram, IEEE Transactions on System Man Cybernetics, Vol. SMC-9-1(1979) 62-66.
– reference: 17) Russakovsky, O., Deng, J., Su, H., et al. : ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), 115-3(2015) 211-252
– reference: 18) Zhehao Zhanga,b, Bin Lia,b, Weifeng Zhanga,b, Rundong Lua,b, Satoshi Wadac, Yi Zhanga,b,Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks, Journal of Manufacturing Systems,Volume 54(2020) 348- 360.
– reference: 7) S. Wonthaisong, S. Shinohara, K. Shinozaki, R. Phaoniam, M. Yamamoto: High-Efficiency and Low-Heat-Input CO2 Arc-Welding Technology for Butt Joint of Thick Steel Plate Using Hot Wire, Quarterly Journal of The Japan Welding Society,38-3(2020) 164-170.
– reference: 12) T. Matsumura, K. Nomura, S. Asai: Study of burn-through prediction in MAG arc welding using molten pool monitoring technique, Quarterly Journal of The Japan Welding Society,38-3(2020) 147-156. (in Japanese)
– reference: 25) MVTec Software GmbH: HALCON 12 User's Manuals (2014)
– reference: 11) Y. Kaneko, T. Iisaka, S. Yamane, K. Ohshima: Neuro-Fuzzy Control of Weld Pool in Pulsed MIG Welding, Quarterly Journal of The Japan Welding Society,12-3(1994), 374-378.(in Japanese)
– reference: 13) K. Kasano, Y. Ogino, S. Asai: Fundamental Study on On-line Image Sensing Technology of Arc Welding– Development of In-process Quality Control Technology of Arc Welding –, Quarterly Journal of The Japan Welding Society, 37-3(2019) 108-114.(in Japanese)
– reference: 6) Zuming Liu, Chuan Song Wu, and Jinqiang Gao: Vision-based observation of keyhole geometry in plasma arc welding, International Journal of Thermal Sciences, 63 (2013), 38-45.
– reference: 15) Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams: Learning representations by back-propagating errors, Nature, 323(1986), 533–536 .
– reference: 20)K. Nomura, K. Fukushima, T. Matsumura, S. Asai: Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation, Journal of Manufacturing Processes, 61 (2021) 590–600.
– reference: 23) S. Yamane, H. Yuzawa, Y. Kaneko, H. Yamamoto, M. Hirakawa, K. Oshima ,Image Processing and Control of Weld pool in Switch Back Welding without Backing Plate, Quarterly Journal of The Japan Welding Society, 23-1(2005) 65-70 (in Japanese).
– reference: 19) Guohong Ma, Lesheng Yu, Haitao Yuan, Wenbo Xiao, Yinshui He: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network, Journal of Manufacturing Processes, 64 (2021) 130–139.
– reference: 21) A. Okamoto, K. Ozaki, T. Ashida, M. Hida, T. Yamashita : Automatic Welding in Initial Layer Penetration Welding using Deep Learning, Journal of the Japan Welding Society, 88-4 (2019) 230-233. (in Japanese)
– reference: 14) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai: Study on welding phenomena observation method based on arc and moltenpool light emission characteristics in visible and infrared wavelength region–Development of image sensing technology for in-process welding monitoring technology –,Quarterly Journal of The Japan Welding Society, 38-2(2020) 103-113.(in Japanese)
– reference: 16) Hinton, Geoffrey E., and Ruslan R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313 (2006), 504-507.
– reference: 10) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai, T. Sano: Observation of welding phenomena with blowholes for detection of welding defects– Development of in-process welding monitoring technology with image sensing technology –,Quarterly Journal of The Japan Welding Society, 38-3(2020), 173-182.(in Japanese)
– reference: 1) Yanling Xu, Ziheng Wang: Visual sensing technologies in robotic welding: Recent research developments and future interests, Sensors and Actuators A: Physical, 320(2021).
– reference: 2) Yasuo Suga, Takahiro Shimamura, Shigeaki Usui, Kimiya Aoki:Measurement of Molten Pool Shape and Penetration Control Applying Neural Network in TIG Welding of Thin Steel Plates, ISIJ International, 39-10 (1999) pp. 1075-1080
– reference: 5) C. Jia, C. Wu and Y. M. Zhang: Sensing controlled pulse key-holing condition in plasma arc welding , Trans. Nonferrous Met. Soc. China,19 (2009), 341-346
– reference: 8) Y. Sugitani, W. Mao :Automatic Simultaneous Control of Bead Height and Back Bead Shape Utilizing Arc Sensor in One Side Welding with Backing Plate, Quarterly Journal of The Japan Welding Society,12-1(1994) 468-476.(in Japanese)
– reference: 9) Y. Sugitani, Y. Kanjo, Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of The Japan Welding Society, 7-1(1989),21-26.(in Japanese)
– ident: 11
  doi: 10.2207/qjjws.12.374
– ident: 23
  doi: 10.2207/qjjws.23.65
– ident: 19
  doi: 10.1016/j.jmapro.2020.12.067
– ident: 4
  doi: 10.14723/tmrsj.44.181
– ident: 20
  doi: 10.1016/j.jmapro.2020.10.019
– ident: 1
  doi: 10.1016/j.sna.2021.112551
– ident: 2
  doi: 10.2355/isijinternational.39.1075
– ident: 17
  doi: 10.1007/s11263-015-0816-y
– ident: 18
  doi: 10.1016/j.jmsy.2020.01.006
– ident: 8
  doi: 10.2207/qjjws.12.468
– ident: 6
  doi: 10.1016/j.ijthermalsci.2012.07.006
– ident: 12
  doi: 10.2207/qjjws.38.147
– ident: 22
– ident: 10
  doi: 10.2207/qjjws.38.173
– ident: 13
  doi: 10.2207/qjjws.37.108
– ident: 7
  doi: 10.2207/qjjws.38.164
– ident: 16
  doi: 10.1126/science.1127647
– ident: 5
  doi: 10.1016/S1003-6326(08)60275-7
– ident: 21
  doi: 10.2207/jjws.88.230
– ident: 15
  doi: 10.1038/323533a0
– ident: 3
  doi: 10.1299/jsmea.46.391
– ident: 9
  doi: 10.2207/qjjws.7.21
– ident: 24
  doi: 10.1109/TSMC.1979.4310076
– ident: 14
  doi: 10.2207/qjjws.38.103
– ident: 25
SSID ssib005901878
ssib000937286
ssib044765221
ssj0033573
ssib031741155
ssib000961621
ssib023161316
ssib023168149
ssib002224207
ssib029852163
Score 2.1794922
Snippet Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 322
SubjectTerms Armor
Ceramics
Deep learning
Estimation of weld pool penetration
Gas metal arc welding
GMA Welding
Grooves
Image classification
Machine learning
Melting
Metal active gas welding
Penetration depth
Pulsed current welding
Training
V groove
Weld pool image
Title Estimation of Melting State at Groove Root in Pulsed MAG Welding Using Deep Learning
URI https://www.jstage.jst.go.jp/article/qjjws/39/4/39_322/_article/-char/en
https://www.proquest.com/docview/2615755773
https://doi.org/10.2207/qjjws.39.322
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 2021, Vol.39(4), pp.322-333
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2434-8252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0033573
  issn: 0288-4771
  databaseCode: KQ8
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2434-8252
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044765221
  issn: 0288-4771
  databaseCode: M~E
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60CuLBt1jRsgf1lppuNtnkWLRWlIqKRT2FZHdSrCWtmip68Lc7ebRWBfWSEHYCwzyYb3ZnZgF2PI7II880ahE6hoisyHAxDAwHI5fgrYmWSJuTW2fOcVuc3Ng3U7Az6oWZOL_n3JT7D93uyxMl5lUyvGmYcWxC3CWYaZ-d12-z7RM33RzK8iouLGFQwsPz-vYfv3-JPLNdAl8d_IIr54bxIHh9CXq9iRBztAiNEXN5Zcl9dZiEVfX2bW7jX9wvwUKBMVk9N4plmMJ4BeYnJg-uwlWDXDvvWmT9iLWwl5Y_swx6siBhTQLUz8gu-_2E3cXsfEgRVLNWvcmuMTuuYlmtATtEHLBiRmtnDdpHjauDY6O4YMFQhGK4EYVS68BLsxiFNalsglsOl57tco9HppOGf6W1cCx6SUsjfZJyAySUpWnZWodS3I9xA5ijeCilqZRyTYFB6GkTPcVRBKGu2RLLsDsSvj_I52j4lH-kUvIzKfmW55OUyuDmmhlTFR70SSUK0vFK2p9GTl6GrZEu_cIRn3xKEAmQ2lJaZdgb6_dXFjb_S7gFpeRxiNuESpKwAtOnFy49W--NSmGgH-CY5FE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60FcSDb7FSZQ_qLTXdbLLJsWhVhEqRFuspJLsTsZa0amrRX-_k0VoV1FMIO4FlHsz37c5MAA49jsgjzzTqETqGiKzIcDEMDAcjl-CtiZZIm5Nb185lV1z17N4CHE57Yebu7zk35clTvz95IWJeI8dbhLJjE-IuQbl73W7cZccnbno4lPEqLixhEOHheX37j8-_ZJ6lPoGve_yCK5fH8Sh4mwSDwVyKOV-D5nRzeWXJY22chDX1_m1u41-7X4fVAmOyRu4UG7CA8SaszE0e3IJOk0I771pkw4i1cJCWP7MMerIgYRcEqF-R3QyHCXuIWXtMGVSzVuOC3WJ2XcWyWgN2hjhixYzW-23onjc7p5dG8YMFQxGK4UYUSq0DL2UxCutS2QS3HC492-Uej0wnTf9Ka-FY9JCWRnol4wZIKEvTsrUDpXgY4y4wR_FQSlMp5ZoCg9DTJnqKowhCXbclVuBoqnx_lM_R8Il_pFryMy35lueTlirg5paZSRUR9CklCtHZStqfRkFegerUln4RiC8-EUQCpLaUVgWOZ_b9dQt7_xWsQil5HuM-oZIkPCic8gM97eIr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Melting+State+at+Groove+Root+in+Pulsed+MAG+Welding+Using+Deep+Learning&rft.jtitle=QUARTERLY+JOURNAL+OF+THE+JAPAN+WELDING+SOCIETY&rft.au=Denchi%2C+WANG&rft.au=Gewei%2C+ZHANG&rft.au=YAMANE%2C+Satoshi&rft.date=2021&rft.pub=JAPAN+WELDING+SOCIETY&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=39&rft.issue=4&rft.spage=322&rft.epage=333&rft_id=info:doi/10.2207%2Fqjjws.39.322&rft.externalDocID=article_qjjws_39_4_39_322_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon