Estimation of Melting State at Groove Root in Pulsed MAG Welding Using Deep Learning
Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the...
        Saved in:
      
    
          | Published in | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY Vol. 39; no. 4; pp. 322 - 333 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Japanese | 
| Published | 
        Tokyo
          JAPAN WELDING SOCIETY
    
        2021
     Japan Science and Technology Agency  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0288-4771 2434-8252 2434-8252  | 
| DOI | 10.2207/qjjws.39.322 | 
Cover
| Abstract | Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the melting state of the root of the groove. In this study, a single-sided downward-facing weld with a ceramic backing material is used. In order to apply deep learning, it is necessary to construct training data. A large amount of time is required to construct the training data. The relationship between the melting state of the root of the groove and that of the ceramic backing material was determined by basic experiments. The ceramic backing material melts when the brightness of the state in front of the weld pool increases. Using this feature, the state of the tip of the weld pool in the molten pool image was classified into three types. This facilitated the image classification. In addition, since only the tip ofthe molten part was targeted, the image was less susceptible to changes in the bevel shape. This was applied to the case where the gap varied from 4 mm to 6 mm. The effectiveness of the estimation of the melting state of the root of the groove was confirmed. | 
    
|---|---|
| AbstractList | Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding results in this welding. The authors used the image of the weld pool as input for deep learning to identify the welding state and estimate the melting state of the root of the groove. In this study, a single-sided downward-facing weld with a ceramic backing material is used. In order to apply deep learning, it is necessary to construct training data. A large amount of time is required to construct the training data. The relationship between the melting state of the root of the groove and that of the ceramic backing material was determined by basic experiments. The ceramic backing material melts when the brightness of the state in front of the weld pool increases. Using this feature, the state of the tip of the weld pool in the molten pool image was classified into three types. This facilitated the image classification. In addition, since only the tip ofthe molten part was targeted, the image was less susceptible to changes in the bevel shape. This was applied to the case where the gap varied from 4 mm to 6 mm. The effectiveness of the estimation of the melting state of the root of the groove was confirmed. | 
    
| Author | YAMANE, Satoshi Gewei, ZHANG Denchi, WANG  | 
    
| Author_xml | – sequence: 1 fullname: Denchi, WANG organization: Graduate School of Engineering, Saitama Univ – sequence: 1 fullname: Gewei, ZHANG organization: Graduate School of Engineering, Saitama Univ – sequence: 1 fullname: YAMANE, Satoshi organization: Graduate School of Engineering, Saitama Univ  | 
    
| BookMark | eNqF0E1LAzEQBuAgFazVmz8g4NWt-dhsNicRrVVoUbTiMcTdWd2yJjVJLf33prbo0UuGYZ4MyXuIetZZQOiEkiFjRJ5_zuerMORqyBnbQ32W8zwrmWA91CesLLNcSnqAjkNoXwkRitBSln00G4XYfpjYOotdg6fQxda-4adoImAT8dg79wX40bmIW4sfll2AGk8vx_gFunpDn8PmvAZY4AkYb1N3hPYbk-Dxrg7Q881odnWbTe7Hd1eXk6yiQrGseZV1bRRRBamAykooQQsmlSiZYg0pGC1pVdd5wVORvIbUKgYGBM3rNOYDlG33Lu3CrFem6_TCp9_4taZEb1LRP6lornRKJfnTrV9497mEEPXcLb1NT9SsoEIKISVP6myrKu9C8ND8t_Riy-chmjf4xcbHturgD-e7G7-T6t14DZZ_A-f5iPI | 
    
| Cites_doi | 10.2207/qjjws.12.374 10.2207/qjjws.23.65 10.1016/j.jmapro.2020.12.067 10.14723/tmrsj.44.181 10.1016/j.jmapro.2020.10.019 10.1016/j.sna.2021.112551 10.2355/isijinternational.39.1075 10.1007/s11263-015-0816-y 10.1016/j.jmsy.2020.01.006 10.2207/qjjws.12.468 10.1016/j.ijthermalsci.2012.07.006 10.2207/qjjws.38.147 10.2207/qjjws.38.173 10.2207/qjjws.37.108 10.2207/qjjws.38.164 10.1126/science.1127647 10.1016/S1003-6326(08)60275-7 10.2207/jjws.88.230 10.1038/323533a0 10.1299/jsmea.46.391 10.2207/qjjws.7.21 10.1109/TSMC.1979.4310076 10.2207/qjjws.38.103  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 by JAPAN WELDING SOCIETY Copyright Japan Science and Technology Agency 2021  | 
    
| Copyright_xml | – notice: 2021 by JAPAN WELDING SOCIETY – notice: Copyright Japan Science and Technology Agency 2021  | 
    
| DBID | AAYXX CITATION 7TB 8BQ 8FD FR3 JG9 KR7 ADTOC UNPAY  | 
    
| DOI | 10.2207/qjjws.39.322 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts METADEX  | 
    
| DatabaseTitleList | Materials Research Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2434-8252 | 
    
| EndPage | 333 | 
    
| ExternalDocumentID | 10.2207/qjjws.39.322 10_2207_qjjws_39_322 article_qjjws_39_4_39_322_article_char_en  | 
    
| GroupedDBID | 123 2WC ALMA_UNASSIGNED_HOLDINGS CS3 E3Z JSF KQ8 OK1 RJT AAYXX CITATION 7TB 8BQ 8FD FR3 JG9 KR7 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c1592-fb7dda90960ce17c5951627958292f062181cdd4631cd73de81c92eae514d0623 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0288-4771 2434-8252  | 
    
| IngestDate | Sun Sep 07 11:07:31 EDT 2025 Mon Jun 30 06:12:09 EDT 2025 Tue Jul 01 00:40:02 EDT 2025 Wed Sep 03 06:30:59 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | Japanese | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1592-fb7dda90960ce17c5951627958292f062181cdd4631cd73de81c92eae514d0623 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.2207/qjjws.39.322 | 
    
| PQID | 2615755773 | 
    
| PQPubID | 2048480 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_2207_qjjws_39_322 proquest_journals_2615755773 crossref_primary_10_2207_qjjws_39_322 jstage_primary_article_qjjws_39_4_39_322_article_char_en  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021 2021-00-00 20210101  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Tokyo | 
    
| PublicationPlace_xml | – name: Tokyo | 
    
| PublicationTitle | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY | 
    
| PublicationYear | 2021 | 
    
| Publisher | JAPAN WELDING SOCIETY Japan Science and Technology Agency  | 
    
| Publisher_xml | – name: JAPAN WELDING SOCIETY – name: Japan Science and Technology Agency  | 
    
| References | 18) Zhehao Zhanga,b, Bin Lia,b, Weifeng Zhanga,b, Rundong Lua,b, Satoshi Wadac, Yi Zhanga,b,Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks, Journal of Manufacturing Systems,Volume 54(2020) 348- 360. 13) K. Kasano, Y. Ogino, S. Asai: Fundamental Study on On-line Image Sensing Technology of Arc Welding– Development of In-process Quality Control Technology of Arc Welding –, Quarterly Journal of The Japan Welding Society, 37-3(2019) 108-114.(in Japanese 23) S. Yamane, H. Yuzawa, Y. Kaneko, H. Yamamoto, M. Hirakawa, K. Oshima ,Image Processing and Control of Weld pool in Switch Back Welding without Backing Plate, Quarterly Journal of The Japan Welding Society, 23-1(2005) 65-70 (in Japanese). 20)K. Nomura, K. Fukushima, T. Matsumura, S. Asai: Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation, Journal of Manufacturing Processes, 61 (2021) 590–600. 5) C. Jia, C. Wu and Y. M. Zhang: Sensing controlled pulse key-holing condition in plasma arc welding , Trans. Nonferrous Met. Soc. China,19 (2009), 341-346 2) Yasuo Suga, Takahiro Shimamura, Shigeaki Usui, Kimiya Aoki:Measurement of Molten Pool Shape and Penetration Control Applying Neural Network in TIG Welding of Thin Steel Plates, ISIJ International, 39-10 (1999) pp. 1075-1080 24) N. Otsu: A threshold selection method from gray-level histogram, IEEE Transactions on System Man Cybernetics, Vol. SMC-9-1(1979) 62-66. 3) Masahiro MURAMATSU, Yasuo SUGA, Kazuhiro MORI: Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding, JSME International Journal Series A Solid Mechanics and Material Engineering,46-3(2003) 391-397 4) Takanori Hino, Syota Fujioka, Shin Kira, Shigeru Kato, Takuro Sakiyama, Ryo Kato, Toshio Matsubara, Hiroyuki Yanagimoto: Visualization of Gas Tungsten Arc Welding Skill Using Brightness Map of Backside Weld Pool,Transactions of the Materials Research Society of Japan, 44-5 (2019) 181-186 9) Y. Sugitani, Y. Kanjo, Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of The Japan Welding Society, 7-1(1989),21-26.(in Japanese 14) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai: Study on welding phenomena observation method based on arc and moltenpool light emission characteristics in visible and infrared wavelength region–Development of image sensing technology for in-process welding monitoring technology –,Quarterly Journal of The Japan Welding Society, 38-2(2020) 103-113.(in Japanese 7) S. Wonthaisong, S. Shinohara, K. Shinozaki, R. Phaoniam, M. Yamamoto: High-Efficiency and Low-Heat-Input CO2 Arc-Welding Technology for Butt Joint of Thick Steel Plate Using Hot Wire, Quarterly Journal of The Japan Welding Society,38-3(2020) 164-170. 15) Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams: Learning representations by back-propagating errors, Nature, 323(1986), 533–536 . 25) MVTec Software GmbH: HALCON 12 User's Manuals (2014 19) Guohong Ma, Lesheng Yu, Haitao Yuan, Wenbo Xiao, Yinshui He: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network, Journal of Manufacturing Processes, 64 (2021) 130–139. 22) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, https://arxiv.org/ abs/1512.03385 , Access 2021,6,30 17) Russakovsky, O., Deng, J., Su, H., et al. : ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), 115-3(2015) 211-252 11) Y. Kaneko, T. Iisaka, S. Yamane, K. Ohshima: Neuro-Fuzzy Control of Weld Pool in Pulsed MIG Welding, Quarterly Journal of The Japan Welding Society,12-3(1994), 374-378.(in Japanese 21) A. Okamoto, K. Ozaki, T. Ashida, M. Hida, T. Yamashita : Automatic Welding in Initial Layer Penetration Welding using Deep Learning, Journal of the Japan Welding Society, 88-4 (2019) 230-233. (in Japanese 1) Yanling Xu, Ziheng Wang: Visual sensing technologies in robotic welding: Recent research developments and future interests, Sensors and Actuators A: Physical, 320(2021). 10) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai, T. Sano: Observation of welding phenomena with blowholes for detection of welding defects– Development of in-process welding monitoring technology with image sensing technology –,Quarterly Journal of The Japan Welding Society, 38-3(2020), 173-182.(in Japanese 12) T. Matsumura, K. Nomura, S. Asai: Study of burn-through prediction in MAG arc welding using molten pool monitoring technique, Quarterly Journal of The Japan Welding Society,38-3(2020) 147-156. (in Japanese 16) Hinton, Geoffrey E., and Ruslan R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313 (2006), 504-507. 6) Zuming Liu, Chuan Song Wu, and Jinqiang Gao: Vision-based observation of keyhole geometry in plasma arc welding, International Journal of Thermal Sciences, 63 (2013), 38-45. 8) Y. Sugitani, W. Mao :Automatic Simultaneous Control of Bead Height and Back Bead Shape Utilizing Arc Sensor in One Side Welding with Backing Plate, Quarterly Journal of The Japan Welding Society,12-1(1994) 468-476.(in Japanese 22 23 24 25 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21  | 
    
| References_xml | – reference: 4) Takanori Hino, Syota Fujioka, Shin Kira, Shigeru Kato, Takuro Sakiyama, Ryo Kato, Toshio Matsubara, Hiroyuki Yanagimoto: Visualization of Gas Tungsten Arc Welding Skill Using Brightness Map of Backside Weld Pool,Transactions of the Materials Research Society of Japan, 44-5 (2019) 181-186 – reference: 22) Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition, https://arxiv.org/ abs/1512.03385 , Access 2021,6,30 – reference: 3) Masahiro MURAMATSU, Yasuo SUGA, Kazuhiro MORI: Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding, JSME International Journal Series A Solid Mechanics and Material Engineering,46-3(2003) 391-397 – reference: 24) N. Otsu: A threshold selection method from gray-level histogram, IEEE Transactions on System Man Cybernetics, Vol. SMC-9-1(1979) 62-66. – reference: 17) Russakovsky, O., Deng, J., Su, H., et al. : ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV), 115-3(2015) 211-252 – reference: 18) Zhehao Zhanga,b, Bin Lia,b, Weifeng Zhanga,b, Rundong Lua,b, Satoshi Wadac, Yi Zhanga,b,Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks, Journal of Manufacturing Systems,Volume 54(2020) 348- 360. – reference: 7) S. Wonthaisong, S. Shinohara, K. Shinozaki, R. Phaoniam, M. Yamamoto: High-Efficiency and Low-Heat-Input CO2 Arc-Welding Technology for Butt Joint of Thick Steel Plate Using Hot Wire, Quarterly Journal of The Japan Welding Society,38-3(2020) 164-170. – reference: 12) T. Matsumura, K. Nomura, S. Asai: Study of burn-through prediction in MAG arc welding using molten pool monitoring technique, Quarterly Journal of The Japan Welding Society,38-3(2020) 147-156. (in Japanese) – reference: 25) MVTec Software GmbH: HALCON 12 User's Manuals (2014) – reference: 11) Y. Kaneko, T. Iisaka, S. Yamane, K. Ohshima: Neuro-Fuzzy Control of Weld Pool in Pulsed MIG Welding, Quarterly Journal of The Japan Welding Society,12-3(1994), 374-378.(in Japanese) – reference: 13) K. Kasano, Y. Ogino, S. Asai: Fundamental Study on On-line Image Sensing Technology of Arc Welding– Development of In-process Quality Control Technology of Arc Welding –, Quarterly Journal of The Japan Welding Society, 37-3(2019) 108-114.(in Japanese) – reference: 6) Zuming Liu, Chuan Song Wu, and Jinqiang Gao: Vision-based observation of keyhole geometry in plasma arc welding, International Journal of Thermal Sciences, 63 (2013), 38-45. – reference: 15) Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams: Learning representations by back-propagating errors, Nature, 323(1986), 533–536 . – reference: 20)K. Nomura, K. Fukushima, T. Matsumura, S. Asai: Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation, Journal of Manufacturing Processes, 61 (2021) 590–600. – reference: 23) S. Yamane, H. Yuzawa, Y. Kaneko, H. Yamamoto, M. Hirakawa, K. Oshima ,Image Processing and Control of Weld pool in Switch Back Welding without Backing Plate, Quarterly Journal of The Japan Welding Society, 23-1(2005) 65-70 (in Japanese). – reference: 19) Guohong Ma, Lesheng Yu, Haitao Yuan, Wenbo Xiao, Yinshui He: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network, Journal of Manufacturing Processes, 64 (2021) 130–139. – reference: 21) A. Okamoto, K. Ozaki, T. Ashida, M. Hida, T. Yamashita : Automatic Welding in Initial Layer Penetration Welding using Deep Learning, Journal of the Japan Welding Society, 88-4 (2019) 230-233. (in Japanese) – reference: 14) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai: Study on welding phenomena observation method based on arc and moltenpool light emission characteristics in visible and infrared wavelength region–Development of image sensing technology for in-process welding monitoring technology –,Quarterly Journal of The Japan Welding Society, 38-2(2020) 103-113.(in Japanese) – reference: 16) Hinton, Geoffrey E., and Ruslan R. Salakhutdinov: Reducing the dimensionality of data with neural networks, Science 313 (2006), 504-507. – reference: 10) K. Kasano, Y. Ogino, S. Fukumoto, S. Asai, T. Sano: Observation of welding phenomena with blowholes for detection of welding defects– Development of in-process welding monitoring technology with image sensing technology –,Quarterly Journal of The Japan Welding Society, 38-3(2020), 173-182.(in Japanese) – reference: 1) Yanling Xu, Ziheng Wang: Visual sensing technologies in robotic welding: Recent research developments and future interests, Sensors and Actuators A: Physical, 320(2021). – reference: 2) Yasuo Suga, Takahiro Shimamura, Shigeaki Usui, Kimiya Aoki:Measurement of Molten Pool Shape and Penetration Control Applying Neural Network in TIG Welding of Thin Steel Plates, ISIJ International, 39-10 (1999) pp. 1075-1080 – reference: 5) C. Jia, C. Wu and Y. M. Zhang: Sensing controlled pulse key-holing condition in plasma arc welding , Trans. Nonferrous Met. Soc. China,19 (2009), 341-346 – reference: 8) Y. Sugitani, W. Mao :Automatic Simultaneous Control of Bead Height and Back Bead Shape Utilizing Arc Sensor in One Side Welding with Backing Plate, Quarterly Journal of The Japan Welding Society,12-1(1994) 468-476.(in Japanese) – reference: 9) Y. Sugitani, Y. Kanjo, Y. Nishi: Simultaneous Control of Penetration Depth and Bead Height by Controlling Multiple Welding Parameters, Quarterly Journal of The Japan Welding Society, 7-1(1989),21-26.(in Japanese) – ident: 11 doi: 10.2207/qjjws.12.374 – ident: 23 doi: 10.2207/qjjws.23.65 – ident: 19 doi: 10.1016/j.jmapro.2020.12.067 – ident: 4 doi: 10.14723/tmrsj.44.181 – ident: 20 doi: 10.1016/j.jmapro.2020.10.019 – ident: 1 doi: 10.1016/j.sna.2021.112551 – ident: 2 doi: 10.2355/isijinternational.39.1075 – ident: 17 doi: 10.1007/s11263-015-0816-y – ident: 18 doi: 10.1016/j.jmsy.2020.01.006 – ident: 8 doi: 10.2207/qjjws.12.468 – ident: 6 doi: 10.1016/j.ijthermalsci.2012.07.006 – ident: 12 doi: 10.2207/qjjws.38.147 – ident: 22 – ident: 10 doi: 10.2207/qjjws.38.173 – ident: 13 doi: 10.2207/qjjws.37.108 – ident: 7 doi: 10.2207/qjjws.38.164 – ident: 16 doi: 10.1126/science.1127647 – ident: 5 doi: 10.1016/S1003-6326(08)60275-7 – ident: 21 doi: 10.2207/jjws.88.230 – ident: 15 doi: 10.1038/323533a0 – ident: 3 doi: 10.1299/jsmea.46.391 – ident: 9 doi: 10.2207/qjjws.7.21 – ident: 24 doi: 10.1109/TSMC.1979.4310076 – ident: 14 doi: 10.2207/qjjws.38.103 – ident: 25  | 
    
| SSID | ssib005901878 ssib000937286 ssib044765221 ssj0033573 ssib031741155 ssib000961621 ssib023161316 ssib023168149 ssib002224207 ssib029852163  | 
    
| Score | 2.1794922 | 
    
| Snippet | Robotic welding has been introduced in GMA welding to save labor. Estimation of the penetration depth of the molten pool is important to obtain good welding... | 
    
| SourceID | unpaywall proquest crossref jstage  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 322 | 
    
| SubjectTerms | Armor Ceramics Deep learning Estimation of weld pool penetration Gas metal arc welding GMA Welding Grooves Image classification Machine learning Melting Metal active gas welding Penetration depth Pulsed current welding Training V groove Weld pool image  | 
    
| Title | Estimation of Melting State at Groove Root in Pulsed MAG Welding Using Deep Learning | 
    
| URI | https://www.jstage.jst.go.jp/article/qjjws/39/4/39_322/_article/-char/en https://www.proquest.com/docview/2615755773 https://doi.org/10.2207/qjjws.39.322  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 39 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 2021, Vol.39(4), pp.322-333 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2434-8252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033573 issn: 0288-4771 databaseCode: KQ8 dateStart: 19830101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2434-8252 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044765221 issn: 0288-4771 databaseCode: M~E dateStart: 19830101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60CuLBt1jRsgf1lppuNtnkWLRWlIqKRT2FZHdSrCWtmip68Lc7ebRWBfWSEHYCwzyYb3ZnZgF2PI7II880ahE6hoisyHAxDAwHI5fgrYmWSJuTW2fOcVuc3Ng3U7Az6oWZOL_n3JT7D93uyxMl5lUyvGmYcWxC3CWYaZ-d12-z7RM33RzK8iouLGFQwsPz-vYfv3-JPLNdAl8d_IIr54bxIHh9CXq9iRBztAiNEXN5Zcl9dZiEVfX2bW7jX9wvwUKBMVk9N4plmMJ4BeYnJg-uwlWDXDvvWmT9iLWwl5Y_swx6siBhTQLUz8gu-_2E3cXsfEgRVLNWvcmuMTuuYlmtATtEHLBiRmtnDdpHjauDY6O4YMFQhGK4EYVS68BLsxiFNalsglsOl57tco9HppOGf6W1cCx6SUsjfZJyAySUpWnZWodS3I9xA5ijeCilqZRyTYFB6GkTPcVRBKGu2RLLsDsSvj_I52j4lH-kUvIzKfmW55OUyuDmmhlTFR70SSUK0vFK2p9GTl6GrZEu_cIRn3xKEAmQ2lJaZdgb6_dXFjb_S7gFpeRxiNuESpKwAtOnFy49W--NSmGgH-CY5FE | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60FcSDb7FSZQ_qLTXdbLLJsWhVhEqRFuspJLsTsZa0amrRX-_k0VoV1FMIO4FlHsz37c5MAA49jsgjzzTqETqGiKzIcDEMDAcjl-CtiZZIm5Nb185lV1z17N4CHE57Yebu7zk35clTvz95IWJeI8dbhLJjE-IuQbl73W7cZccnbno4lPEqLixhEOHheX37j8-_ZJ6lPoGve_yCK5fH8Sh4mwSDwVyKOV-D5nRzeWXJY22chDX1_m1u41-7X4fVAmOyRu4UG7CA8SaszE0e3IJOk0I771pkw4i1cJCWP7MMerIgYRcEqF-R3QyHCXuIWXtMGVSzVuOC3WJ2XcWyWgN2hjhixYzW-23onjc7p5dG8YMFQxGK4UYUSq0DL2UxCutS2QS3HC492-Uej0wnTf9Ka-FY9JCWRnol4wZIKEvTsrUDpXgY4y4wR_FQSlMp5ZoCg9DTJnqKowhCXbclVuBoqnx_lM_R8Il_pFryMy35lueTlirg5paZSRUR9CklCtHZStqfRkFegerUln4RiC8-EUQCpLaUVgWOZ_b9dQt7_xWsQil5HuM-oZIkPCic8gM97eIr | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+Melting+State+at+Groove+Root+in+Pulsed+MAG+Welding+Using+Deep+Learning&rft.jtitle=QUARTERLY+JOURNAL+OF+THE+JAPAN+WELDING+SOCIETY&rft.au=Denchi%2C+WANG&rft.au=Gewei%2C+ZHANG&rft.au=YAMANE%2C+Satoshi&rft.date=2021&rft.pub=JAPAN+WELDING+SOCIETY&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=39&rft.issue=4&rft.spage=322&rft.epage=333&rft_id=info:doi/10.2207%2Fqjjws.39.322&rft.externalDocID=article_qjjws_39_4_39_322_article_char_en | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon |